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A theory of maps ¢ : 3 — M with a typical
Therefore provides a method for the
exploration of target-space geometry

The 6-term / the WZNW term =
Quantization of amplitudes

Among the most beautiful (and therefore
useful) constructions of quantum field theory

Renormalizable in 2D (Ricci flow)
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QFT requires regularization preserving the
symmetries

Natural to discretize both > and M = spin
chain

The ferromagnetic vacuum = Nonrelativistic
models a-la the continuous Heisenberg
ferromagnet

The antiferromagnetic vacuum = the ground
state, spinons = particles
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F.D.M.Haldane, 1983

SU (2), representation of spin s = * on
Sym(V2™) with Hamiltonian

’H=Z Si'Si—i-l

Long-range correlations of the spin chain in
the large s limit are described by the o-model
with M = 52 and the topological term

_ 0 dzndz _
= 2wt (14+2%2)2° 0 = mm
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U(ny) xxU(nm,)

The Hamiltonian

L m-1

H=3Y Y d5Siu

=1 k=1

where dj, = mT_k
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The goal is to construct the spin chain with

U(N
target space T () x_(__x)U(nm).

The Hamiltonian

L m-1

H=3Y Y d5Siu

=1 k=1

where dj = mT_k

Method: build a path integral for the spin
chain partition function.
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Build a path integral for the spin chain
partition function — convenient for the
semiclassical and continuum limits.

The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s

Consider representation V. Take |w) e V'
and form an orbit G' |w).
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Build a path integral for the spin chain
partition function — convenient for the
semiclassical and continuum limits.

The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s

Consider representation V. Take |w) e V'
and form an orbit G' |w).

Example: SU(2) = CP":

~—_————
m

|lw) = 2" = ¢,(2) = (0121 +Va22)"", vecp?
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The path integral for tr (e 7*!) is built by
splitting the ‘time’ segment of length /3 into
an infinite number of pieces (K — o0):

tr (e PH)=tr lim (1—%H)K=

K-1
=lim S Il du(zi,z:) 17(g,Z2x-1)7(2K-1,ZK—2)...T(22,21) 7 (Z1,7) X
=1
(¢ﬂ7¢21 )(d’il 7¢Z2) (¢EK72 ’¢2K71)(¢2K71 74)(7)
(g:0g)(Dzq,021) - (Pzpe_1+Pzp_ 1)

T(2k41,20)=1— £ H(2k11,2k), (D202, ,)=(2k0Zk11)"
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Z={ T du(=(t),2(t)) exp(-5),

te[0,1]
z e CpPV-1

1 - )
S=m SdtZ(iM+B Zi0Zit1 2)
0 i

Z5028
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Aiming at an expression of the following form:

Z=§ TI du(=(t),2(t)) exp(-S)

te[0,1]
where z e CPV !

1 - )
S=m SdtZ(iM+B Zi0Zit1 2)
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Aiming at an expression of the following form:

Z=§ TI du(=(t),2(t)) exp(-S)

te[0,1]
where z e CPV !

1 - )
S=m SdtZ(iM+B Zi0Zit1 2)
0 i

and

Z50Z

25072

Generalizations using symplectic geometry
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Let us have a closer look at the action

c 2i0Z. i0Zi+1
S=m§dt§(iﬂ+ﬂz’—2>

50524

250524
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The kinetic term

1 3.0 % o
S=m {dt ¥ iZ 2 4 gjaciap
0 i

50578

Z; O jEfi
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The kinetic term

OZ,L'

S=m g t 3 ( + B|FEe 2)

Zp © g

The Kéhler current, i.e. 7 : dj = w — the
Fubini-Study form (1D WZNW term)

10/28



The potential term

I — Sdtz ( z,zz + Bzzozz+1|2>

10/28



The potential term

S=m SdtZ ( jm 4 g B0 % )

i O 24

The angle between two vectors in C¥
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We see therefore that the whole object is
geometric!
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Phase space N is a symplectic manifold.
w is a non-degenerate closed 2-form: dw = 0
G O N, the moment map u: N — g

Equivariance:

p(gox) = Adyp(x) = gu(x)g ™

Simplest example: angular momentum

N =R% G =SO(3), w=di rndp, L =7x p|
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Let V' be a representation of U (V') with
highest weight A = (A1, -~ -, An).

Ly= 0:(M)® - ® On(An) = UN)/UD)Y
SU(N)
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Let V' be a representation of U (V') with
highest weight A = (A1, -~ -, An).

It can be built on the space of sections of a
holomorphic fiber bundle

Ly = 01(\) ®: - ® On(An) = UN)/U1)™
A generalization of the fact that for SU (V)

t HER J leads to symmetric polynomials

"
m

of degree m in IN variables (viewed as
sections of O(m))
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Simple way to deal with it: use the embedding
i Fn = CPN 1 x ... x cPN L,
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N times
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Simple way to deal with it: use the embedding
i Fn = CPN 1 x ... x cPN L,
—_
N times

F n is the space of N orthogonal lines in C*¥

The first Chern class of the line bundle:

Cl(L)\) = 1*(f1)\) = l"‘(% >‘2 wi) = % }\2 Qi

=1 =1
The pull-back of it is exactly the kinetic term
in the path integral.
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A

(@)

O

U(4) - 3
U(3)xU(1) CpP
(6)
UB)xU(2)xU(1)
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In special cases the base can be reduced:

0—0——O v :
UGB)xU@1) CpP

o, O O O O U(6)
UB)xU(2)xU(1)

Yellow color means that the highest weight A
is orthogonal to the corresponding simple root.
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SU(7) : ® ® ) =

= w|, =0
:7:752’;3,;; (e (:;:;3 X (:;:;g X (:;:;;
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Getting a singlet from a tensor product of
representations

sun: H eH ®@ S =

= w|, =0
:7:755’;3,;; (e (:;:;3 X (:;:;g X (:;:53
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Getting a singlet from a tensor product of
representations

sun: H eH ®@ S =

= Equivariant Lagrangian submanifold
(Lagrangian—maximal null = w|, = 0)

:’:7;3,;3,;; (e (:;:;3 X (:;:;3 X (:;:55
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e mmmoooo _/-Elementary cell

| Uy, {Uzl } U41 I { }
———9=-o--{--- -——---F--o---
U2,y U32

NMirarannae U(6)
U@2)=xU(2)xU1)xU(1)

The spin chain for the coset
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We choose the Hamiltonian in such a way that
the singlet is a ground state (at least
semiclassically)
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We choose the Hamiltonian in such a way that
the singlet is a ground state (at least
semiclassically)

This amounts to constructing a function 7 on
the phase space which has a minimum on the
Lagrangian submanifold described above
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Zi0Zi41
50524

CP’ Hiira

Hiiv1=0

2;02i11 =0

CcpP!

CP! x CP!
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= Z50528

Zi+10Z441
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Zi0Zi41 2
The CP' case: Hiiv1 = 272 .
Hiiv1=0
CP!?
CP! x CP!

Zi®zi 4 Zi+1®Zit1 _
= Z50528

Zi+10Z441
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2

Zi0Ziy1
50524

The CP' case: Hiiv1 =

The minimum H; ;1 = 0: when

— the AF ‘vacuum’. The space

of solutions is CP', but it is a Lagrangian
submanifold inside CP! x CP*!

IJJ—M Zit1®Ziv1
Z;0z; Zi+10Zi+1
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2

Zi0Zi41

The CP?! case: H; irl = &
’ Zi0Z;

The minimum H; ;1 = 0: when

— the AF ‘vacuum’. The space

of solutions is CP', but it is a Lagrangian
submanifold inside CP! x CP*!

The equation above is equivalent to the

statement that the moment map
Zi®z; Zi+1®Zi+1

N is zero: p = 0.

H Zi0z; Zi410Zi4+1

= p '(0)
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2

Zi0Zi41

The CP! case: H; i1 = i
) 2592,

The minimum H; ;1 = 0: when

— the AF ‘vacuum’. The space

of solutions is CP', but it is a Lagrangian
submanifold inside CP! x CP*!

The equation above is equivalent to the

statement that the moment map
Zi®z; Zi+1®Zi+1

N is zero: p = 0.

H Zi0z; Zi410Zi4+1

General property, i.e.
minimum of the Hamiltonian <= p~'(0)
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(V) U(N)
p(gox) =gp(x)g™

= 1(0) is a single orbit <=

1~ 1(0) is a Lagrangian submanifold

p~1(0)
p. o pm1(0)
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p~1(0) is invariant under U (IN) (recall that
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p~1(0) is invariant under U (IN) (recall that
u(gox)=gu(x)g') = splits into orbits.

When a nondegeneracy condition is fulfilled,

= 1(0) is a single orbit <=

1~ 1(0) is a Lagrangian submanifold

In the cases under consideration, the
Hamitonian reaches its minimum on g (0)
for some gz, and g~ *(0) is an orbit
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The antiferromagnetic setup:
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The antiferromagnetic setup:

Consider a function I which has a minimum
on a Lagrangian submanifold L < AN/
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The antiferromagnetic setup:

Consider a function I which has a minimum
on a Lagrangian submanifold L < AN/

"Equipped’ Lagrangian submanifold
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The antiferromagnetic setup:

Expand the action around the ‘vacuum’:
S~§dt(pqg—p*- f(q))
p=
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The antiferromagnetic setup:

Expand the action around the ‘vacuum’:
S~§dt(pqg—p*- f(q))

Integrate out p = Obtain an action quadratic
in time derivatives
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The metric on L

L .[(ﬂ)—l]m".
gzg - %am 0x2
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The metric in the normal directions to L: the
2
Hessian [t = LA

0xt 0xI

The metric on L

e\
9ij = Wim * (m) F Wnj = Wim K™ Wy

where [ is determined from the Hamiltonian
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The metric in the normal directions to L: the
2
Hessian [t = LA

0xt 0xI

The metric on L

- _1mn
gi; = Wim * (@) *Wnj = Wim h™™ Wnj

where [ is determined from the Hamiltonian

The canonical metric for the ‘equipped’
Lagrangian submanifold
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B, detB =0

u,v 1 kerB
(u| B~ |v)
B 1l|v)=|w) : Blw)=|v)
kerB =1T,L
wel,L u,v
u=w|ﬂ> '&,eTpL(ui=wijﬂj)

(wluy = (wlwldy = 0
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Take a symmetric degenerate matrix
B, detB =0

If uw,v L kerB, then the matrix element
(u| B™! |v) makes sense:
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Take a symmetric degenerate matrix
B, detB =0

If uw,v L kerB, then the matrix element

(u| B™! |v) makes sense:

B 1l|v)=|w) : Blw)=|v)

In the case at hand ker B = T}, L is the

tangent space to the Lagrangian submanifold.

weT, L u,v

u=w|ﬁ> i},eTpL(ui=wijﬁj)

(wlu) = (w|wl|a) =0
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Take a symmetric degenerate matrix
B, detB =0

If uw,v L kerB, then the matrix element

(u| B™! |v) makes sense:

B 1l|v)=|w) : Blw)=|v)

In the case at hand ker B = T}, L is the
tangent space to the Lagrangian submanifold.

Suppose w € T}, L, u, v have the form

u = w|a) where @ € T, L (u; = w;j u?).
Then (w|u) = {(w|w|a) = 0 by the
Lagrangian property
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f’N s CPN_l X -+ X CPN_I (N factors)

H*(Fpn,, )
T = " (Cl(OGnk(l))), Z;cnzl T = 0
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Construct the Lagrangian embeddlng

t: Foyong = Gpy X oo x Gy,

(similar to the embeddlng

Fn — CPN_l X - X CPN_I (N factors)
that we already encountered)

H2(fn1a"'anm)
e = i*(c1(O¢, (1)), Zpey 7k =0
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Construct the Lagrangian embeddlng

t: Foyong = Gpy X oo x Gy,

(similar to the embeddlng

Fn — CPN_l X - X CPN_l (N factors)
that we already encountered)

Ingredients for the f-term (the elements of
H2 (f"n/la anm)):

i =1i'(c1(Og,, (1)), i, Th=0F

The 7’s are just particular (known) 2-forms.

23/28



The 6-term

Q=%(2 k’l"k>
k=1

H*(M,Z,,)
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The 6-term

Q=%(2 k’l"k>
k=1

Hence 6 = %’T Permuting the sites of the spin
chain changes the §-term in H*(M, Z,,)!
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The 6-term

Q=%<2 k’l"k>
k=1

Hence 6 = %’T Permuting the sites of the spin
chain changes the §-term in H*(M, Z,,)!

Relation to the action of Weyl group on
Schubert cells / Bruhat decomposition

24 /28



e mmmoooo _/-Elementary cell

| Uy, {Uzl } U41 I { }
———9=-o--{--- -——---F--o---
U2,y U32

NMirarannae U(6)
U@2)=xU(2)xU1)xU(1)

The spin chain for the coset
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U(N)
U(ny) xxU(nm,)

The Hamiltonian

L m-1

H=3Y Y d5Siu

=1 k=1

where dj, = mT_k

N1y - MNm
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The goal was to construct the spin chain with

U(N
target space T () x_(__x)U(nm).

The Hamiltonian

L m-1

H=2 2 dkgi'
i=1 k=1

where dj =
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The goal was to construct the spin chain with

U(N
target space T () x_(__x)U(nm).

The Hamiltonian

L m-1

H=3Y Y d5Siu

=1 k=1

where dj = mT_k

Depends on m but not on the partition
N1y - MNm

26,28



Constructed a spin chain for a o-model with
target space a flag manifold.

mod m
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Constructed a spin chain for a o-model with
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Universal expressions for the metric and
f-term.
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Constructed a spin chain for a o-model with
target space a flag manifold.

Universal expressions for the metric and
f-term.

Is there a mod m periodicity of the mass
gap?

Is there an efficient way to describe the
o-models numerically using spin chains?

27/28



Thank you!
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