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Nonlinear σ-models Entered physics via low-energy QCD with the
work of M.Gell-Mann and M.Levy (1960) Describe the scattering of Goldstone bosons in
4D, for example π-mesons in the case
SUp2q�SUp2q

SUp2q (u, d quarks) Renormalizable in 2D
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Nonlinear σ-models A theory of maps φ : ΣÑÑÑM with a typical

action S ��� ³³³
dDx 1

2
BBBµφiGijpppφqqq BBBµφj

Therefore provides a method for the
exploration of target-space geometry The θ-term / the WZNW term ñ
Quantization of amplitudes Among the most beautiful (and therefore
useful) constructions of quantum field theory Renormalizable in 2D (Ricci flow)
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From a spin chain to a σ-model QFT requires regularization preserving the
symmetries Natural to discretize both Σ and M ñ spin
chain The ferromagnetic vacuum ñ Nonrelativistic
models a-la the continuous Heisenberg
ferromagnet The antiferromagnetic vacuum = the ground
state, spinons = particles
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From a spin chain to a σ-model. II. F.D.M.Haldane, 1983
SU ppp2qqq, representation of spin s ��� m

2
on

SympppV bm
fund

qqq with Hamiltonian

H ��� °°°
i

~Si ��� ~Si�1 Long-range correlations of the spin chain in
the large s limit are described by the σ-model
with M ��� S2 and the topological term

Ω ��� θ
2πi

dz^dz̄p1�zz̄q2 , θ ��� πm
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The goal / result The goal is to construct the spin chain with

target space UpppNqqq
Upppn1qqq���������Upppnmqqq .

The Hamiltonian

H ��� L°°°
i�1

m�1°°°
k�1

dk
~Si ��� ~Si�k

where dk ���b
m�k
k Method: build a path integral for the spin

chain partition function.

6/28



The goal / result The goal is to construct the spin chain with

target space UpppNqqq
Upppn1qqq���������Upppnmqqq .

The Hamiltonian

H ��� L°°°
i�1

m�1°°°
k�1

dk
~Si ��� ~Si�k

where dk ���b
m�k
k Method: build a path integral for the spin

chain partition function.

6/28



The goal / result The goal is to construct the spin chain with

target space UpppNqqq
Upppn1qqq���������Upppnmqqq .

The Hamiltonian

H ��� L°°°
i�1

m�1°°°
k�1

dk
~Si ��� ~Si�k

where dk ���b
m�k
k Method: build a path integral for the spin

chain partition function.

6/28



The path integral for the spin chain Build a path integral for the spin chain
partition function Ñ convenient for the
semiclassical and continuum limits. The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s Consider representation V . Take |||wy PPP V

and form an orbit G |||wy. Example: SU ppp2qqq ñññ CP1:loooooomoooooon
m|||wy ��� zm

1 ñññ φvpppzqqq ��� pppv̄1z1���v̄2z2qqqm, vPCP
1

7/28



The path integral for the spin chain Build a path integral for the spin chain
partition function Ñ convenient for the
semiclassical and continuum limits. The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s Consider representation V . Take |||wy PPP V

and form an orbit G |||wy. Example: SU ppp2qqq ñññ CP1:loooooomoooooon
m|||wy ��� zm

1 ñññ φvpppzqqq ��� pppv̄1z1���v̄2z2qqqm, vPCP
1

7/28



The path integral for the spin chain Build a path integral for the spin chain
partition function Ñ convenient for the
semiclassical and continuum limits. The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s Consider representation V . Take |||wy PPP V

and form an orbit G |||wy. Example: SU ppp2qqq ñññ CP1:loooooomoooooon
m|||wy ��� zm

1 ñññ φvpppzqqq ��� pppv̄1z1���v̄2z2qqqm, vPCP
1

7/28



The path integral for the spin chain Build a path integral for the spin chain
partition function Ñ convenient for the
semiclassical and continuum limits. The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s Consider representation V . Take |||wy PPP V

and form an orbit G |||wy. Example: SU ppp2qqq ñññ CP1:loooooomoooooon
m|||wy ��� zm

1 ñññ φvpppzqqq ��� pppv̄1z1���v̄2z2qqqm, vPCP
1

7/28



The path integral for the spin chain Build a path integral for the spin chain
partition function Ñ convenient for the
semiclassical and continuum limits. The construction of coherent states for simple
groups Berezin, Perelomov, mid-70’s Consider representation V . Take |||wy PPP V

and form an orbit G |||wy. Example: SU ppp2qqq ñññ CP1:loooooomoooooon
m|||wy ��� zm

1 ñññ φvpppzqqq ��� pppv̄1z1���v̄2z2qqqm, vPCP
1

7/28



The path integral for the spin chain. 2. The path integral for tr pppe�βHqqq is built by
splitting the ‘time’ segment of length β into
an infinite number of pieces (K ÑÑÑ888):

tr pppe�βHqqq���tr lim ppp1��� β

K
HqqqK������lim

³³³ K�1±±±
i�1

dµpppzi,z̄iqqq τ pppq,z̄K�1qqqτ pppzK�1,z̄K�2qqq...τ pppz2,z̄1qqqτ pppz1,ȳqqq������ pφȳ,φz̄1
qpφz̄1

,φz̄2
q ... pφz̄K�2

,φz̄K�1
qpφz̄K�1

,φq̄qpφȳ,φq̄qpφz̄1
,φz̄1

q ... pφz̄K�1
,φz̄K�1

q where

τ pppzk�1,z̄kqqq���1��� β

K
Hpppzk�1,z̄kqqq, pppφz̄k

,φz̄k�1
qqq���pppzk���z̄k�1qqqm
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The path integral for the spin chain. 3. Aiming at an expression of the following form:

Z ��� ³³³ ±±±
tPr0,1sdµpppzppptqqq, z̄ppptqqqqqq exp p�Sq,

where z PPP CPN�1 and

S ���m
1³³³
0

dt
°°°
i

�
i 9zi�z̄i
zi�z̄i ��� β

��zi�z̄i�1

zi�z̄i ��2	 Generalizations using symplectic geometry
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The path integral for the spin chain. 4.

 Let us have a closer look at the action

S ���m
1³³³
0

dt
°°°
i

�
i 9zi�z̄i
zi�z̄i ��� β

��zi�z̄i�1

zi�z̄i ��2	
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The path integral for the spin chain. 4.

 The kinetic term

S ���m
1³³³
0

dt
°°°
i

�
i
9zi � z̄i
zi � z̄i ��� β

��zi�z̄i�1

zi�z̄i ��2�
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The path integral for the spin chain. 4.

 The kinetic term

S ���m
1³³³
0

dt
°°°
i

�
i
9zi � z̄i
zi � z̄i ��� β

��zi�z̄i�1

zi�z̄i ��2� The Kähler current, i.e. j : dj ��� ω — the
Fubini-Study form (1D WZNW term)
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The path integral for the spin chain. 4.

 The potential term

S ���m
1³³³
0

dt
°°°
i

�
i 9zi�z̄i
zi�z̄i ��� β

��zi � z̄i�1

zi � z̄i ��2 �
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The path integral for the spin chain. 4.

 The potential term

S ���m
1³³³
0

dt
°°°
i

�
i 9zi�z̄i
zi�z̄i ��� β

��zi � z̄i�1

zi � z̄i ��2 � The angle between two vectors in CN�1
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The path integral for the spin chain. 4.

 We see therefore that the whole object is
geometric!
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Elements of symplectic geometry Phase space N is a symplectic manifold. ω is a non-degenerate closed 2-form: dω ��� 0 G ÷÷÷ N , the moment map µ : N ÑÑÑ g Equivariance:

µpppg ��� xqqq ��� Adg µpppxqqq ��� gµpppxqqqg�1 Hamiltonians: dµa ��� iXa
ω, a PPP g Simplest example: angular momentum

N ��� R
6, G ��� SOppp3qqq, ω ��� d~r ^̂̂ d~p, ~L ��� ~r ��� ~p .
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The A.Borel-A.Weil-R.Bott theorem. 1. Let V be a representation of U pppN qqq with

highest weight ~λ ��� pppλ1, � � � , λN qqq. It can be built on the space of sections of a
holomorphic fiber bundle

Lλ ��� O1pppλ1qqq bbb � � � bbbON pppλN qqq ÑÑÑ U pppN qqq{{{U ppp1qqqN A generalization of the fact that for SU pppN qqqloooooomoooooon
m

leads to symmetric polynomials

of degree m in N variables (viewed as
sections of Opppmqqq)
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The A.Borel-A.Weil-R.Bott theorem. 2. Simple way to deal with it: use the embedding

i : FN ãããÑÑÑ CPN�1 � � � � � CPN�1loooooooooooooooomoooooooooooooooon
N times

.

FN is the space of N orthogonal lines in CN The first Chern class of the line bundle:

c1pppLλqqq ��� i�pppL̃λqqq ��� i�ppp N°°°
i�1

λiωiqqq ��� N°°°
i�1

λiΩi

The pull-back of it is exactly the kinetic term
in the path integral.
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The A.Borel-A.Weil-R.Bott theorem. 3. In special cases the base can be reduced:

Up4q
Up3q�Up1q ��� CP3

Up6q
Up3q�Up2q�Up1q

Yellow color means that the highest weight λ
is orthogonal to the corresponding simple root.
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The semiclassical picture of the
antiferromagnetic vacuum Getting a singlet from a tensor product of

representations

SUppp7qqq : bbb bbb ��� ���  ñ Equivariant Lagrangian submanifold
(Lagrangian=maximal null ñññ ω|||L ��� 0)
F2,2,3 ��� G2 ��� G2 ���G3
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A picture of the spin chain

u11 u21

u22

u31

u32

u41

Elementary cell

The spin chain for the coset Up6q
Up2q�Up2q�Up1q�Up1q
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On the choice of Hamiltonian:
an example We choose the Hamiltonian in such a way that

the singlet is a ground state (at least
semiclassically) This amounts to constructing a function H on
the phase space which has a minimum on the
Lagrangian submanifold described above

17/28



On the choice of Hamiltonian:
an example We choose the Hamiltonian in such a way that

the singlet is a ground state (at least
semiclassically) This amounts to constructing a function H on
the phase space which has a minimum on the
Lagrangian submanifold described above

17/28



On the choice of Hamiltonian:
an example We choose the Hamiltonian in such a way that

the singlet is a ground state (at least
semiclassically) This amounts to constructing a function H on
the phase space which has a minimum on the
Lagrangian submanifold described above

17/28



On the choice of Hamiltonian. 2. The CP1 case: Hi,i�1 ��� ��zi�z̄i�1

zi�z̄i ��2. The minimum Hi,i�1 ��� 0: when
zi ��� z̄i�1 ��� 0 — the AF ‘vacuum’. The space

of solutions is CP1, but it is a Lagrangian
submanifold inside CP1 ���CP1 The equation above is equivalent to the
statement that the moment map

µ ��� z̄ibzi
z̄i�zi ��� z̄i�1bzi�1

z̄i�1�zi�1

��� 1 is zero: µ ��� 0. General property, i.e.
minimum of the Hamiltonian ðððñññ µ�1ppp0qqq
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One more property of the moment map µ�1ppp0qqq is invariant under U pppN qqq (recall that
µpppg ��� xqqq ��� g µpppxqqqg�1) ñ splits into orbits. When a nondegeneracy condition is fulfilled,

µ�1ppp0qqq is a single orbit ðñ
µ�1ppp0qqq is a Lagrangian submanifold In the cases under consideration, the

Hamitonian reaches its minimum on µ�1ppp0qqq
for some µ, and µ�1ppp0qqq is an orbit

19/28



One more property of the moment map µ�1ppp0qqq is invariant under U pppN qqq (recall that
µpppg ��� xqqq ��� g µpppxqqqg�1) ñ splits into orbits. When a nondegeneracy condition is fulfilled,

µ�1ppp0qqq is a single orbit ðñ
µ�1ppp0qqq is a Lagrangian submanifold In the cases under consideration, the

Hamitonian reaches its minimum on µ�1ppp0qqq
for some µ, and µ�1ppp0qqq is an orbit

19/28



One more property of the moment map µ�1ppp0qqq is invariant under U pppN qqq (recall that
µpppg ��� xqqq ��� g µpppxqqqg�1) ñ splits into orbits. When a nondegeneracy condition is fulfilled,

µ�1ppp0qqq is a single orbit ðñ
µ�1ppp0qqq is a Lagrangian submanifold In the cases under consideration, the

Hamitonian reaches its minimum on µ�1ppp0qqq
for some µ, and µ�1ppp0qqq is an orbit

19/28



One more property of the moment map µ�1ppp0qqq is invariant under U pppN qqq (recall that
µpppg ��� xqqq ��� g µpppxqqqg�1) ñ splits into orbits. When a nondegeneracy condition is fulfilled,

µ�1ppp0qqq is a single orbit ðñ
µ�1ppp0qqq is a Lagrangian submanifold In the cases under consideration, the

Hamitonian reaches its minimum on µ�1ppp0qqq
for some µ, and µ�1ppp0qqq is an orbit

19/28



The general setup The antiferromagnetic setup:
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q

L
N

I

 Consider a function I which has a minimum
on a Lagrangian submanifold L ���N . ’Equipped’ Lagrangian submanifold
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The metric The metric in the normal directions to L: the

Hessian hij ��� B2IBxi Bxj

The metric on L

gij ��� ωim ��� �� B2IBx2

	�1
�mn ��� ωnj ��� ωimhmnωnj

where I is determined from the Hamiltonian The canonical metric for the ‘equipped’
Lagrangian submanifold
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Why is the metric well-defined? Take a symmetric degenerate matrix
B, detB ��� 0 If u, v KKK kerB, then the matrix elementxu|||B�1 |||vy makes sense:
B�1 |||vy ��� |||wy : B|||wy ��� |||vy In the case at hand kerB ��� TpL is the
tangent space to the Lagrangian submanifold. Suppose w PPP TpL, u, v have the form
u ��� ω|||ũy where ũ PPP TpL pppui ��� ωij ũ

jqqq.
Then xw|||uy ��� xw|||ω|||ũy ��� 0 by the
Lagrangian property
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The θ-term Construct the Lagrangian embedding
i : Fn1, ��� ,nm

ãããÑÑÑ Gn1
��� ...���Gnm

(similar to the embedding
FN ãããÑÑÑ CPN�1 ��� � � � ��� CPN�1 pN factorsq
that we already encountered) Ingredients for the θ-term (the elements of
H2pppFn1, ��� ,nm

qqq):
rk ��� i��c1pppOGnk

ppp1qqqqqq�, °°°m
k�1

rk ��� 0 . The rk’s are just particular (known) 2-forms.
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The θ-term. 2.

The θ-term

Ω ��� 1

m

�
m°°°
k�1

k ��� rk
 Hence θ ��� 2π
m

. Permuting the sites of the spin

chain changes the θ-term in H2pppM,Zmqqq! Relation to the action of Weyl group on
Schubert cells / Bruhat decomposition
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The picture revisited

u11 u21

u22

u31

u32

u41

Elementary cell

The spin chain for the coset Up6q
Up2q�Up2q�Up1q�Up1q
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The result revisited The goal was to construct the spin chain with

target space UpppNqqq
Upppn1qqq���������Upppnmqqq .

The Hamiltonian

H ��� L°°°
i�1

m�1°°°
k�1

dk
~Si ��� ~Si�k

where dk ���b
m�k
k Depends on m but not on the partition

n1, � � �, nm
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Questions / Answers Constructed a spin chain for a σ-model with
target space a flag manifold. Universal expressions for the metric and
θ-term. Is there a mod m periodicity of the mass
gap? Is there an efficient way to describe the
σ-models numerically using spin chains?
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Thank you!
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