From spin chains to sigma models

Dmitri Bykov

Nordita, Stockholm and Steklov Mathematical Institute, Moscow

IGST, ETH Zürich, 23 August 2012

'A haven of geometry in an ocean of algebra' Unknown author

arXiv:1104.1419 and arXiv:1206.2777 $\,$

- Entered physics via low-energy QCD with the work of M.Gell-Mann and M.Levy (1960)
- Describe the scattering of Goldstone bosons in 4D, for example π-mesons in the case
 <u>SU(2)×SU(2)</u> SU(2) (u, d quarks)
- Renormalizable in 2D

- Entered physics via low-energy QCD with the work of M.Gell-Mann and M.Levy (1960)
- Describe the scattering of Goldstone bosons in 4D, for example π-mesons in the case
 <u>SU(2)×SU(2)</u> SU(2) (u, d quarks)
- Renormalizable in 2D

- Entered physics via low-energy QCD with the work of M.Gell-Mann and M.Levy (1960)
- Describe the scattering of Goldstone bosons in 4D, for example π -mesons in the case $\frac{SU(2) \times SU(2)}{SU(2)} (u, d \text{ quarks})$

Renormalizable in 2D

- Entered physics via low-energy QCD with the work of M.Gell-Mann and M.Levy (1960)
- Describe the scattering of Goldstone bosons in 4D, for example π -mesons in the case $\frac{SU(2) \times SU(2)}{SU(2)} (u, d \text{ quarks})$
- Renormalizable in 2D

- A theory of maps $\phi : \Sigma \to \mathcal{M}$ with a typical action $\mathcal{S} = \int d^D x \frac{1}{2} \partial_\mu \phi^i G_{ij}(\phi) \partial^\mu \phi^j$ Therefore provides a method for the exploration of target-space geometry
- The θ -term / the WZNW term \Rightarrow Quantization of amplitudes
- Among the most beautiful (and therefore useful) constructions of quantum field theory
- Renormalizable in 2D (Ricci flow)

- A theory of maps $\phi : \Sigma \to \mathcal{M}$ with a typical action $\mathcal{S} = \int d^D x \frac{1}{2} \partial_\mu \phi^i G_{ij}(\phi) \partial^\mu \phi^j$ Therefore provides a method for the exploration of target-space geometry
- The θ -term / the WZNW term \Rightarrow Quantization of amplitudes
- Among the most beautiful (and therefore useful) constructions of quantum field theory
- Renormalizable in 2D (Ricci flow)

- A theory of maps $\phi : \Sigma \to \mathcal{M}$ with a typical action $\mathcal{S} = \int d^D x \frac{1}{2} \partial_\mu \phi^i G_{ij}(\phi) \partial^\mu \phi^j$ Therefore provides a method for the exploration of target-space geometry
- The θ -term / the WZNW term \Rightarrow Quantization of amplitudes
- Among the most beautiful (and therefore useful) constructions of quantum field theory
- Renormalizable in 2D (Ricci flow)

- A theory of maps $\phi : \Sigma \to \mathcal{M}$ with a typical action $\mathcal{S} = \int d^D x \frac{1}{2} \partial_\mu \phi^i G_{ij}(\phi) \partial^\mu \phi^j$ Therefore provides a method for the exploration of target-space geometry
- The θ -term / the WZNW term \Rightarrow Quantization of amplitudes
- Among the most beautiful (and therefore useful) constructions of quantum field theory
- Renormalizable in 2D (Ricci flow)

- A theory of maps $\phi : \Sigma \to \mathcal{M}$ with a typical action $\mathcal{S} = \int d^D x \frac{1}{2} \partial_\mu \phi^i G_{ij}(\phi) \partial^\mu \phi^j$ Therefore provides a method for the exploration of target-space geometry
- The θ -term / the WZNW term \Rightarrow Quantization of amplitudes
- Among the most beautiful (and therefore useful) constructions of quantum field theory
- Renormalizable in 2D (Ricci flow)

- QFT requires regularization preserving the symmetries
- Natural to discretize both Σ and $\mathcal{M} \Rightarrow$ spin chain
- The ferromagnetic vacuum ⇒ Nonrelativistic models a-la the continuous Heisenberg ferromagnet
- The antiferromagnetic vacuum = the ground state, spinons = particles

- QFT requires regularization preserving the symmetries
- Natural to discretize both Σ and $\mathcal{M} \Rightarrow$ spin chain
- The ferromagnetic vacuum ⇒ Nonrelativistic models a-la the continuous Heisenberg ferromagnet
- The antiferromagnetic vacuum = the ground state, spinons = particles

- QFT requires regularization preserving the symmetries
- Natural to discretize both Σ and $\mathcal{M} \Rightarrow$ spin chain
- The ferromagnetic vacuum ⇒ Nonrelativistic models a-la the continuous Heisenberg ferromagnet
- The antiferromagnetic vacuum = the ground state, spinons = particles

- QFT requires regularization preserving the symmetries
- Natural to discretize both Σ and $\mathcal{M} \Rightarrow$ spin chain
- The ferromagnetic vacuum ⇒ Nonrelativistic models a-la the continuous Heisenberg ferromagnet
- The antiferromagnetic vacuum = the ground state, spinons = particles

- QFT requires regularization preserving the symmetries
- Natural to discretize both Σ and $\mathcal{M} \Rightarrow$ spin chain
- The ferromagnetic vacuum ⇒ Nonrelativistic models a-la the continuous Heisenberg ferromagnet
- The antiferromagnetic vacuum = the ground state, spinons = particles

• F.D.M.Haldane, 1983

 $\overline{SU(2)}$, representation of spin $s = \frac{m}{2}$ on $Sym(V_{fund}^{\otimes m})$ with Hamiltonian

$$\mathcal{H} = \sum_i \, ec{S_i} \cdot ec{S_{i+1}}$$

• Long-range correlations of the spin chain in the large s limit are described by the σ -model with $\mathcal{M} = S^2$ and the topological term $\Omega = \frac{\theta}{2\pi i} \frac{dz \wedge d\bar{z}}{(1+z\bar{z})^2}, \quad \theta = \pi m$

- F.D.M.Haldane, 1983 $\overline{SU(2)}$, representation of spin $s = \frac{m}{2}$ on $\operatorname{Sym}(V_{\text{fund}}^{\otimes m})$ with Hamiltonian

$$\mathcal{H} = \sum\limits_i \, ec{S_i} \cdot ec{S_{i+1}}$$

Long-range correlations of the spin chain in the large s limit are described by the σ -model with $\mathcal{M} = S^2$ and the topological term $\Omega = \frac{\theta}{2\pi i} \frac{dz \wedge d\bar{z}}{(1+z\bar{z})^2}, \quad \theta = \pi m$

F.D.M.Haldane, 1983 SU(2), representation of spin $s = \frac{m}{2}$ on $Sym(V_{fund}^{\otimes m})$ with Hamiltonian

$$\mathcal{H} = \sum_i \, ec{S}_i \cdot ec{S}_{i+1}$$

- Long-range correlations of the spin chain in the large *s* limit are described by the σ -model with $\mathcal{M} = S^2$ and the topological term $\Omega = \frac{\theta}{2\pi i} \frac{dz \wedge d\bar{z}}{(1+z\bar{z})^2}, \quad \theta = \pi m$

The goal / result

• The goal is to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian

$$egin{aligned} m{H} &= \sum\limits_{i=1}^{L} \sum\limits_{k=1}^{m-1} m{d}_k \ m{\vec{S}}_i \cdot m{\vec{S}}_{i+} \end{aligned}$$
 where $m{d}_k &= \sqrt{rac{m-k}{k}}$

• Method: build a path integral for the spin chain partition function.

The goal / result

- The goal is to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian $H = \sum_{i=1}^{L} \sum_{k=1}^{m-1} d_k \vec{S}_i \cdot \vec{S}_{i+k}$ where $d_k = \sqrt{\frac{m-k}{k}}$

 Method: build a path integral for the spin chain partition function.

The goal / result

- The goal is to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian

$$H = \sum_{i=1}^{L} \sum_{k=1}^{m-1} d_k \vec{S}_i \cdot \vec{S}_{i+k}$$

where $d_k = \sqrt{\frac{m-k}{k}}$

• Method: build a path integral for the spin chain partition function.

- Build a path integral for the spin chain partition function → convenient for the semiclassical and continuum limits.
- The construction of coherent states for simple groups Berezin, Perelomov, mid-70's
- Consider representation V. Take $|w\rangle \in V$ and form an orbit $G |w\rangle$.
- Example: $SU(2) \Rightarrow \mathbb{CP}^1$:

 $|w
angle=z_1^m\Rightarrow \phi_v(z)=\left(ar v_1z_1\!+\!ar v_2z_2
ight)^m,\; v{
m eCP^1}$

- Build a path integral for the spin chain partition function → convenient for the semiclassical and continuum limits.
- The construction of coherent states for simple groups Berezin, Perelomov, mid-70's
- Consider representation V. Take $|w\rangle \in V$ and form an orbit $G |w\rangle$.
- Example: $SU(2) \Rightarrow \mathbb{CP}^1$:

 $\ket{w}=z_1^m\Rightarrow\phi_v(z)=\left(ar v_1z_1\!+\!ar v_2z_2
ight)^m,\; v{
m \in}{
m CP^1}$

- Build a path integral for the spin chain partition function → convenient for the semiclassical and continuum limits.
- The construction of coherent states for simple groups <u>Berezin</u>, <u>Perelomov</u>, <u>mid-70's</u>
- Consider representation V. Take $|w\rangle \in V$ and form an orbit $G |w\rangle$.
- Example: $SU(2) \Rightarrow \mathbb{CP}^1$:

 $\ket{w}=z_1^m\Rightarrow\phi_v(z)=\left(ar v_1z_1\!+\!ar v_2z_2
ight)^m,\; v{
m \in}{
m CP^1}$

- Build a path integral for the spin chain partition function → convenient for the semiclassical and continuum limits.
- The construction of coherent states for simple groups Berezin, Perelomov, mid-70's
- Consider representation V. Take $|w\rangle \in V$ and form an orbit $G |w\rangle$.
- Example: $SU(2) \Rightarrow \mathbb{CP}^1$:

 $\ket{w}=z_1^m\Rightarrow\phi_v(z)=\left(ar{v}_1z_1\!+\!ar{v}_2z_2
ight)^m,\;v\!\in\!\mathrm{CP}^1$

- Build a path integral for the spin chain partition function → convenient for the semiclassical and continuum limits.
- The construction of coherent states for simple groups Berezin, Perelomov, mid-70's
- Consider representation V. Take $|w\rangle \in V$ and form an orbit $G |w\rangle$.
- Example: $SU(2) \Rightarrow CP^1$: $\downarrow \downarrow \downarrow \downarrow \downarrow$ m $|w\rangle = z_1^m \Rightarrow \phi_v(z) = (\bar{v}_1 z_1 + \bar{v}_2 z_2)^m, v \in CP^1$

• The path integral for $\operatorname{tr}(e^{-\beta H})$ is built by splitting the 'time' segment of length β into an infinite number of pieces $(K \to \infty)$:

$$\begin{aligned} & \operatorname{tr} (e^{-\beta H}) = \operatorname{tr} \lim (1 - \frac{\beta}{K} H)^{K} = \\ & = \lim \int \prod_{i=1}^{K-1} d\mu(z_{i}, \bar{z}_{i}) \ \tau(q, \bar{z}_{K-1}) \tau(z_{K-1}, \bar{z}_{K-2}) \dots \tau(z_{2}, \bar{z}_{1}) \tau(z_{1}, \bar{y}) \times \\ & \times \frac{(\phi_{\bar{y}}, \phi_{\bar{z}_{1}})(\phi_{\bar{z}_{1}}, \phi_{\bar{z}_{2}}) \dots (\phi_{\bar{z}_{K-2}}, \phi_{\bar{z}_{K-1}})(\phi_{\bar{z}_{K-1}}, \phi_{\bar{q}})}{(\phi_{\bar{y}}, \phi_{\bar{q}})(\phi_{\bar{z}_{1}}, \phi_{\bar{z}_{1}}) \dots (\phi_{\bar{z}_{K-1}}, \phi_{\bar{z}_{K-1}})} \\ & \operatorname{tr} (z_{k+1}, \bar{z}_{k}) = 1 - \frac{\beta}{K} \ \mathcal{H}(z_{k+1}, \bar{z}_{k}), \ (\phi_{\bar{z}_{k}}, \phi_{\bar{z}_{k+1}}) = (z_{k} \circ \bar{z}_{k+1})^{m} \end{aligned}$$

The path integral for $\operatorname{tr} (e^{-\beta H})$ is built by splitting the 'time' segment of length β into an infinite number of pieces $(K \to \infty)$:

$$\begin{aligned} \operatorname{tr} (e^{-\beta H}) &= \operatorname{tr} \lim (1 - \frac{\beta}{K} H)^{K} = \\ &= \lim \int \prod_{i=1}^{K-1} d\mu(z_{i}, \bar{z}_{i}) \ \tau(q, \bar{z}_{K-1}) \tau(z_{K-1}, \bar{z}_{K-2}) \dots \tau(z_{2}, \bar{z}_{1}) \tau(z_{1}, \bar{y}) \times \\ &\times \frac{(\phi_{\bar{y}}, \phi_{\bar{z}_{1}})(\phi_{\bar{z}_{1}}, \phi_{\bar{z}_{2}}) \dots (\phi_{\bar{z}_{K-2}}, \phi_{\bar{z}_{K-1}})(\phi_{\bar{z}_{K-1}}, \phi_{\bar{q}})}{(\phi_{\bar{y}}, \phi_{\bar{q}})(\phi_{\bar{z}_{1}}, \phi_{\bar{z}_{1}}) \dots (\phi_{\bar{z}_{K-1}}, \phi_{\bar{z}_{K-1}})} \quad \text{where} \\ &\tau(z_{k+1}, \bar{z}_{k}) = 1 - \frac{\beta}{K} \ \mathcal{H}(z_{k+1}, \bar{z}_{k}), \ (\phi_{\bar{z}_{k}}, \phi_{\bar{z}_{k+1}}) = (z_{k} \circ \bar{z}_{k+1})^{m} \end{aligned}$$

Generalizations using symplectic geometry

Aiming at an expression of the following form: $\begin{aligned}
\mathcal{Z} &= \int \prod_{t \in [0,1]} d\mu(z(t), \bar{z}(t)) \exp(-\mathcal{S}), \\
\text{where } z \in \mathbb{CP}^{N-1} \text{ and} \\
S &= m \int_{0}^{1} dt \sum_{i} \left(i \frac{\dot{z}_{i} \circ \bar{z}_{i}}{z_{i} \circ \bar{z}_{i}} + \beta \left| \frac{z_{i} \circ \bar{z}_{i+1}}{z_{i} \circ \bar{z}_{i}} \right|^{2} \right)
\end{aligned}$

Generalizations using symplectic geometry

Aiming at an expression of the following form: $\begin{aligned} \mathcal{Z} &= \int \prod_{t \in [0,1]} d\mu(z(t), \bar{z}(t)) \exp\left(-\mathcal{S}\right), \\ \text{where } z \in \mathbf{CP}^{N-1} \text{ and} \\ \mathcal{S} &= m \int_{0}^{1} dt \sum_{i} \left(i \frac{\dot{z}_{i} \circ \bar{z}_{i}}{z_{i} \circ \bar{z}_{i}} + \beta \left| \frac{z_{i} \circ \bar{z}_{i+1}}{z_{i} \circ \bar{z}_{i}} \right|^{2} \right) \end{aligned}$

Generalizations using symplectic geometry

- Let us have a closer look at the action $S = m \int_{0}^{1} dt \sum_{i} \left(i \frac{\dot{z}_{i} \circ \bar{z}_{i}}{z_{i} \circ \bar{z}_{i}} + \beta \left| \frac{z_{i} \circ \bar{z}_{i+1}}{z_{i} \circ \bar{z}_{i}} \right|^{2} \right)$

• The kinetic term

$$S=m \; \int\limits_{0}^{1} dt \; \sum\limits_{i} \left(\overline{ rac{\dot{z}_{i} \circ ar{z}_{i}}{z_{i} \circ ar{z}_{i}}} + eta ig| rac{z_{i} \circ ar{z}_{i+1}}{z_{i} \circ ar{z}_{i}} ig|^{2}
ight)$$

The kinetic term $S = m \int_{0}^{1} dt \sum_{i} \left(\frac{\dot{z}_{i} \circ \bar{z}_{i}}{z_{i} \circ \bar{z}_{i}} + \beta \left| \frac{z_{i} \circ \bar{z}_{i+1}}{z_{i} \circ \bar{z}_{i}} \right|^{2} \right)$

The Kähler current, i.e. $j: dj = \omega$ — the Fubini-Study form (1D WZNW term)

• The potential term

$$S=m\; \int\limits_{0}^{1} dt\; \sum\limits_{i} \left(irac{\dot{z}_i\circar{z}_i}{z_i\circar{z}_i} + egin{bmatrix} eta|rac{m{z}_i\circar{m{z}}_{i+1}}{m{z}_i\circar{m{z}}_i}|^2 \end{pmatrix}
ight)$$

The potential term $S = m \int_{0}^{1} dt \sum_{i} \left(i \frac{\dot{z}_{i} \circ \bar{z}_{i}}{z_{i} \circ \bar{z}_{i}} + \beta \left| \frac{z_{i} \circ \bar{z}_{i+1}}{z_{i} \circ \bar{z}_{i}} \right|^{2} \right)$

• The angle between two vectors in \mathbf{C}^{N+1}
The path integral for the spin chain. 4.

• We see therefore that the whole object is geometric!

- Phase space \mathcal{N} is a symplectic manifold.
- $\boldsymbol{\omega}$ is a non-degenerate closed 2-form: $d\boldsymbol{\omega} = \mathbf{0}$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- $\boldsymbol{\omega}$ is a non-degenerate closed 2-form: $d\boldsymbol{\omega} = \mathbf{0}$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- ω is a non-degenerate closed 2-form: $d\omega = 0$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$\mu(g\circ x)=Ad_g\,\mu(x)\equiv g\mu(x)g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- ω is a non-degenerate closed 2-form: $d\omega = 0$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- ω is a non-degenerate closed 2-form: $d\omega = 0$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- ω is a non-degenerate closed 2-form: $d\omega = 0$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

- Phase space \mathcal{N} is a symplectic manifold.
- ω is a non-degenerate closed 2-form: $d\omega = 0$
- $G \circlearrowright \mathcal{N}$, the moment map $\mu : \mathcal{N} \to \mathfrak{g}$
- Equivariance:

$$ig| \mu(g \circ x) = A d_g \, \mu(x) \equiv g \mu(x) g^{-1}$$

- Hamiltonians: $d\mu_a = i_{X_a}\omega, \quad a \in \mathfrak{g}$
- Simplest example: angular momentum

$$\mathcal{N}=\mathbb{R}^6,\,G=SO(3),\,\omega=dec{r}\wedge dec{p},\,ec{L}=ec{r} imesec{p}.$$

- Let V be a representation of U(N) with highest weight $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$.
- It can be built on the space of sections of a holomorphic fiber bundle

$$L_{\lambda}=\left. \mathcal{O}_{1}(\lambda_{1})\otimes \cdots\otimes \mathcal{O}_{N}(\lambda_{N})
ightarrow U(N)/U(1)^{N}$$

A generalization of the fact that for **SU(N)** leads to symmetric polynomials

of degree \boldsymbol{m} in \boldsymbol{N} variables (viewed as sections of $\mathcal{O}(\boldsymbol{m})$)

- Let V be a representation of U(N) with highest weight $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$.
- It can be built on the space of sections of a holomorphic fiber bundle

$$L_{\lambda}=\left. {\mathcal O}_1(\lambda_1)\otimes \cdots \otimes {\mathcal O}_N(\lambda_N)
ightarrow U(N)/U(1)^N
ight.$$

A generalization of the fact that for **SU(N)** leads to symmetric polynomials

of degree \boldsymbol{m} in \boldsymbol{N} variables (viewed as sections of $\mathcal{O}(\boldsymbol{m})$)

- Let V be a representation of U(N) with highest weight $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$.
- It can be built on the space of sections of a holomorphic fiber bundle

$$L_{\lambda}=\left. {\mathcal O}_1(\lambda_1)\otimes \cdots \otimes {\mathcal O}_N(\lambda_N)
ightarrow U(N)/U(1)^N
ight.$$

A generalization of the fact that for SU(N)
 leads to symmetric polynomials

of degree \boldsymbol{m} in \boldsymbol{N} variables (viewed as sections of $\mathcal{O}(\boldsymbol{m})$)

- Let V be a representation of U(N) with highest weight $\vec{\lambda} = (\lambda_1, \dots, \lambda_N)$.
- It can be built on the space of sections of a holomorphic fiber bundle

$$L_{\lambda}=\left. {\mathcal O}_1(\lambda_1)\otimes \cdots\otimes {\mathcal O}_N(\lambda_N)
ightarrow U(N)/U(1)^N
ight.$$

- A generalization of the fact that for SU(N)leads to symmetric polynomials

of degree m in N variables (viewed as sections of $\mathcal{O}(m)$)

• Simple way to deal with it: use the embedding

 $i: \mathcal{F}_N \hookrightarrow \underbrace{\operatorname{CP}^{N-1} \times \cdots \times \operatorname{CP}^{N-1}}_{N \text{ times}}.$ $\mathcal{F}_N \text{ is the space of } N \text{ orthogonal lines in } \mathbb{C}^N$

• The first Chern class of the line bundle: $c_1(L_{\lambda}) = \mathbf{i}^*(\tilde{L}_{\lambda}) = \mathbf{i}^*(\sum_{i=1}^N \lambda_i \omega_i) = \sum_{i=1}^N \lambda_i \Omega_i$ The pull-back of it is exactly the kinetic term

in the path integral.

• Simple way to deal with it: use the embedding

$$i: \mathcal{F}_N \hookrightarrow \underbrace{\operatorname{CP}^{N-1} \times \cdots \times \operatorname{CP}^{N-1}}_{N \text{ times}}.$$
$$\mathcal{F}_N \text{ is the space of } N \text{ orthogonal lines in } \mathbb{C}^N$$

• The first Chern class of the line bundle: $\mathbf{c}_1(L_\lambda) = \mathbf{i}^*(\tilde{L}_\lambda) = \mathbf{i}^*(\sum_{i=1}^N \lambda_i \omega_i) = \sum_{i=1}^N \lambda_i \Omega_i$

in the path integral.

• Simple way to deal with it: use the embedding

$$i: \mathcal{F}_N \hookrightarrow \underbrace{\operatorname{CP}^{N-1} \times \cdots \times \operatorname{CP}^{N-1}}_{N \text{ times}}.$$

$$\mathcal{F}_N \text{ is the space of } N \text{ orthogonal lines in } \mathbb{C}^N$$

- The first Chern class of the line bundle: $c_1(L_{\lambda}) = i^*(\tilde{L}_{\lambda}) = i^*(\sum_{i=1}^N \lambda_i \omega_i) = \sum_{i=1}^N \lambda_i \Omega_i$ The pull-back of it is exactly the kinetic term

in the path integral.

In special cases the base can be reduced:

Yellow color means that the highest weight $\boldsymbol{\lambda}$ is orthogonal to the corresponding simple root.

• In special cases the base can be reduced:

Yellow color means that the highest weight λ is orthogonal to the corresponding simple root.

The semiclassical picture of the antiferromagnetic vacuum

• Getting a singlet from a tensor product of representations

The semiclassical picture of the antiferromagnetic vacuum

- Getting a singlet from a tensor product of representations

The semiclassical picture of the antiferromagnetic vacuum

- Getting a singlet from a tensor product of representations

A picture of the spin chain

On the choice of Hamiltonian: an example

- We choose the Hamiltonian in such a way that the singlet is a ground state (at least semiclassically)
- This amounts to constructing a function *H* on the phase space which has a minimum on the Lagrangian submanifold described above

On the choice of Hamiltonian: an example

- We choose the Hamiltonian in such a way that the singlet is a ground state (at least semiclassically)
- This amounts to constructing a function *H* on the phase space which has a minimum on the Lagrangian submanifold described above

On the choice of Hamiltonian: an example

- We choose the Hamiltonian in such a way that the singlet is a ground state (at least semiclassically)
- This amounts to constructing a function *H* on the phase space which has a minimum on the Lagrangian submanifold described above

On the choice of Hamiltonian. 2. • The **CP**¹ case: $\mathcal{H}_{i,i+1} = \left|\frac{z_i \circ \bar{z}_{i+1}}{z_i \circ \bar{z}_i}\right|^2$.

- The minimum $\mathcal{H}_{i,i+1} = 0$: when $z_i \circ \overline{z}_{i+1} = 0$ — the AF 'vacuum'. The space of solutions is \mathbb{CP}^1 , but it is a Lagrangian submanifold inside $\mathbb{CP}^1 \times \mathbb{CP}^1$
- The equation above is equivalent to the statement that the moment map

$$\mu = \frac{\overline{z}_i \otimes z_i}{\overline{z}_i \circ z_i} + \frac{\overline{z}_{i+1} \otimes z_{i+1}}{\overline{z}_{i+1} \circ z_{i+1}} - 1 \text{ is zero: } \mu = 0.$$

On the choice of Hamiltonian. 2. $z_{1}z_{2}z_{2}z_{1}z_{1}^{2}$

• The CP¹ case: $\mathcal{H}_{i,i+1} = \left| \frac{z_i \circ \bar{z}_{i+1}}{z_i \circ \bar{z}_i} \right|^2$.

- The minimum $\mathcal{H}_{i,i+1} = 0$: when $z_i \circ \overline{z}_{i+1} = 0$ — the AF 'vacuum'. The space of solutions is \mathbb{CP}^1 , but it is a Lagrangian submanifold inside $\mathbb{CP}^1 \times \mathbb{CP}^1$
- The equation above is equivalent to the statement that the moment map

$$\mu = \frac{\overline{z}_i \otimes z_i}{\overline{z}_i \circ z_i} + \frac{\overline{z}_{i+1} \otimes z_{i+1}}{\overline{z}_{i+1} \circ z_{i+1}} - 1 \text{ is zero: } \mu = 0.$$

On the choice of Hamiltonian. 2.

- The CP¹ case: $\mathcal{H}_{i,i+1} = \left| \frac{z_i \circ \bar{z}_{i+1}}{z_i \circ \bar{z}_i} \right|^2$.
- The minimum $\mathcal{H}_{i,i+1} = 0$: when $z_i \circ \overline{z}_{i+1} = 0$ — the AF 'vacuum'. The space of solutions is \mathbb{CP}^1 , but it is a Lagrangian submanifold inside $\mathbb{CP}^1 \times \mathbb{CP}^1$
- The equation above is equivalent to the statement that the moment map

$$\mu = \frac{\overline{z}_i \otimes z_i}{\overline{z}_i \circ z_i} + \frac{\overline{z}_{i+1} \otimes z_{i+1}}{\overline{z}_{i+1} \circ z_{i+1}} - 1 \text{ is zero: } \mu = 0.$$

On the choice of Hamiltonian. 2.

• The CP¹ case: $\mathcal{H}_{i,i+1} = \left| \frac{z_i \circ \bar{z}_{i+1}}{z_i \circ \bar{z}_i} \right|^2$.

- The minimum $\mathcal{H}_{i,i+1} = 0$: when $z_i \circ \overline{z}_{i+1} = 0$ — the AF 'vacuum'. The space of solutions is \mathbb{CP}^1 , but it is a Lagrangian submanifold inside $\mathbb{CP}^1 \times \mathbb{CP}^1$
- The equation above is equivalent to the statement that the moment map

$$\mu = \frac{\overline{z}_i \otimes z_i}{\overline{z}_i \circ z_i} + \frac{\overline{z}_{i+1} \otimes z_{i+1}}{\overline{z}_{i+1} \circ z_{i+1}} - 1 \text{ is zero: } \mu = 0.$$

On the choice of Hamiltonian. 2.

• The CP¹ case: $\mathcal{H}_{i,i+1} = \left| \frac{z_i \circ \bar{z}_{i+1}}{z_i \circ \bar{z}_i} \right|^2$.

- The minimum $\mathcal{H}_{i,i+1} = 0$: when $z_i \circ \overline{z}_{i+1} = 0$ — the AF 'vacuum'. The space of solutions is \mathbb{CP}^1 , but it is a Lagrangian submanifold inside $\mathbb{CP}^1 \times \mathbb{CP}^1$
- The equation above is equivalent to the statement that the moment map

$$\mu = \frac{\overline{z}_i \otimes z_i}{\overline{z}_i \circ z_i} + \frac{\overline{z}_{i+1} \otimes z_{i+1}}{\overline{z}_{i+1} \circ z_{i+1}} - 1 \text{ is zero: } \mu = 0.$$

- $\mu^{-1}(0)$ is invariant under U(N) (recall that $\mu(g \circ x) = g \,\mu(x) \, g^{-1}$) \Rightarrow splits into orbits.
- When a nondegeneracy condition is fulfilled,

 $\mu^{-1}(0)$ is a single orbit \iff $\mu^{-1}(0)$ is a Lagrangian submanifold

• In the cases under consideration, the Hamitonian reaches its minimum on $\mu^{-1}(0)$ for some μ , and $\mu^{-1}(0)$ is an orbit

• $\mu^{-1}(0)$ is invariant under U(N) (recall that $\mu(g \circ x) = g \,\mu(x) \, g^{-1}$) \Rightarrow splits into orbits.

• When a nondegeneracy condition is fulfilled,

 $\mu^{-1}(0)$ is a single orbit \iff $\mu^{-1}(0)$ is a Lagrangian submanifold

In the cases under consideration, the Hamitonian reaches its minimum on $\mu^{-1}(0)$ for some μ , and $\mu^{-1}(0)$ is an orbit

- $\mu^{-1}(0)$ is invariant under U(N) (recall that $\mu(g \circ x) = g \,\mu(x) \, g^{-1}$) \Rightarrow splits into orbits.
- When a nondegeneracy condition is fulfilled,

 $\mu^{-1}(0)$ is a single orbit \iff $\mu^{-1}(0)$ is a Lagrangian submanifold

In the cases under consideration, the Hamitonian reaches its minimum on $\mu^{-1}(0)$ for some μ , and $\mu^{-1}(0)$ is an orbit

- $\mu^{-1}(0)$ is invariant under U(N) (recall that $\mu(g \circ x) = g \,\mu(x) \, g^{-1}$) \Rightarrow splits into orbits.
- When a nondegeneracy condition is fulfilled,

 $\mu^{-1}(0)$ is a single orbit \iff $\mu^{-1}(0)$ is a Lagrangian submanifold

In the cases under consideration, the Hamitonian reaches its minimum on $\mu^{-1}(0)$ for some μ , and $\mu^{-1}(0)$ is an orbit

The general setup

■ The antiferromagnetic setup:

- Consider a function I which has a minimum on a Lagrangian submanifold $L \subset \mathcal{N}$.
- 'Equipped' Lagrangian submanifold

The general setup

• The antiferromagnetic setup:

- Consider a function I which has a minimum on a Lagrangian submanifold $L \subset \mathcal{N}$.
- 'Equipped' Lagrangian submanifold

The general setup

• The antiferromagnetic setup:

- Consider a function I which has a minimum on a Lagrangian submanifold $L \subset \mathcal{N}$.
- · 'Equipped' Lagrangian submanifold
The general setup

• The antiferromagnetic setup:

- Consider a function I which has a minimum on a Lagrangian submanifold $L \subset \mathcal{N}$.
- · 'Equipped' Lagrangian submanifold

The general setup • The antiferromagnetic setup:

- Expand the action around the 'vacuum': $S \sim \int dt \left(p \, \dot{q} - p^2 \cdot f(q) \right)$
- Integrate out $p \Rightarrow$ Obtain an action quadratic in time derivatives

The general setup • The antiferromagnetic setup:

- Expand the action around the 'vacuum': $S \sim \int dt \left(p \, \dot{q} - p^2 \cdot f(q) \right)$
- Integrate out $p \Rightarrow$ Obtain an action quadratic in time derivatives

The metric

- The metric in the normal directions to L: the Hessian $h_{ij} = \frac{\partial^2 I}{\partial x^i \partial x^j}$

The metric on L

$$g_{ij} = \omega_{im} \cdot \left[\left(rac{\partial^2 I}{\partial x^2}
ight)^{-1}
ight]^{mn} \cdot \omega_{nj} = \omega_{im} \, h^{mn} \, \omega_{nj}$$

where I is determined from the Hamiltonian

 The canonical metric for the 'equipped' Lagrangian submanifold

The metric

- The metric in the normal directions to L: the Hessian $h_{ij} = \frac{\partial^2 I}{\partial x^i \partial x^j}$

The metric on L

$$g_{ij} = \omega_{im} \cdot \left[\left(rac{\partial^2 I}{\partial x^2}
ight)^{-1}
ight]^{mn} \cdot \omega_{nj} = \omega_{im} \, h^{mn} \, \omega_{nj}$$

where I is determined from the Hamiltonian

 The canonical metric for the 'equipped' Lagrangian submanifold

The metric

- The metric in the normal directions to L: the Hessian $h_{ij} = \frac{\partial^2 I}{\partial x^i \partial x^j}$

The metric on
$$L$$

$$g_{ij} = \omega_{im} \cdot \left[\left(\frac{\partial^2 I}{\partial r^2} \right)^{-1} \right]^{mn} \cdot \omega_{nj} = \omega_{im} h^{mn}$$

where I is determined from the Hamiltonian

 The canonical metric for the 'equipped' Lagrangian submanifold

- Take a symmetric degenerate matrix B, det B = 0
- If $\boldsymbol{u}, \boldsymbol{v} \perp \mathbf{ker} \boldsymbol{B}$, then the matrix element $\langle \boldsymbol{u} | \boldsymbol{B}^{-1} | \boldsymbol{v} \rangle$ makes sense: $\boldsymbol{B}^{-1} | \boldsymbol{v} \rangle \equiv | \boldsymbol{w} \rangle : \boldsymbol{B} | \boldsymbol{w} \rangle = | \boldsymbol{v} \rangle$
- In the case at hand $\ker B = T_p L$ is the tangent space to the Lagrangian submanifold.
- Suppose $w \in T_p L$, u, v have the form $u = \omega |\tilde{u}\rangle$ where $\tilde{u} \in T_p L$ $(u_i = \omega_{ij} \tilde{u}^j)$. Then $\langle w | u \rangle = \langle w | \omega | \tilde{u} \rangle = 0$ by the Lagrangian property

- Take a symmetric degenerate matrix $B, \ \det B = 0$
- If $\boldsymbol{u}, \boldsymbol{v} \perp \mathbf{ker} \boldsymbol{B}$, then the matrix element $\langle \boldsymbol{u} | \boldsymbol{B}^{-1} | \boldsymbol{v} \rangle$ makes sense: $\boldsymbol{B}^{-1} | \boldsymbol{v} \rangle \equiv | \boldsymbol{w} \rangle : \boldsymbol{B} | \boldsymbol{w} \rangle = | \boldsymbol{v} \rangle$
- In the case at hand $\ker B = T_p L$ is the tangent space to the Lagrangian submanifold.
- Suppose $w \in T_p L$, u, v have the form $u = \omega |\tilde{u}\rangle$ where $\tilde{u} \in T_p L$ $(u_i = \omega_{ij} \tilde{u}^j)$. Then $\langle w | u \rangle = \langle w | \omega | \tilde{u} \rangle = 0$ by the Lagrangian property

- Take a symmetric degenerate matrix B, det B = 0
- If $\boldsymbol{u}, \boldsymbol{v} \perp \mathbf{ker} \boldsymbol{B}$, then the matrix element $\langle \boldsymbol{u} | \boldsymbol{B}^{-1} | \boldsymbol{v} \rangle$ makes sense: $\boldsymbol{B}^{-1} | \boldsymbol{v} \rangle \equiv | \boldsymbol{w} \rangle : \boldsymbol{B} | \boldsymbol{w} \rangle = | \boldsymbol{v} \rangle$
- In the case at hand $\ker B = T_p L$ is the tangent space to the Lagrangian submanifold.
- Suppose $w \in T_p L$, u, v have the form $u = \omega | \tilde{u} \rangle$ where $\tilde{u} \in T_p L$ $(u_i = \omega_{ij} \tilde{u}^j)$. Then $\langle w | u \rangle = \langle w | \omega | \tilde{u} \rangle = 0$ by the Lagrangian property

- Take a symmetric degenerate matrix B, det B = 0
- If $\boldsymbol{u}, \boldsymbol{v} \perp \mathbf{ker} \boldsymbol{B}$, then the matrix element $\langle \boldsymbol{u} | \boldsymbol{B}^{-1} | \boldsymbol{v} \rangle$ makes sense: $\boldsymbol{B}^{-1} | \boldsymbol{v} \rangle \equiv | \boldsymbol{w} \rangle : \boldsymbol{B} | \boldsymbol{w} \rangle = | \boldsymbol{v} \rangle$
- In the case at hand $\ker B = T_p L$ is the tangent space to the Lagrangian submanifold.
- Suppose $w \in T_p L$, u, v have the form $u = \omega |\tilde{u}\rangle$ where $\tilde{u} \in T_p L$ $(u_i = \omega_{ij} \tilde{u}^j)$. Then $\langle w | u \rangle = \langle w | \omega | \tilde{u} \rangle = 0$ by the Lagrangian property

- Take a symmetric degenerate matrix B, det B = 0
- If $\boldsymbol{u}, \boldsymbol{v} \perp \mathbf{ker} \boldsymbol{B}$, then the matrix element $\langle \boldsymbol{u} | \boldsymbol{B}^{-1} | \boldsymbol{v} \rangle$ makes sense: $\boldsymbol{B}^{-1} | \boldsymbol{v} \rangle \equiv | \boldsymbol{w} \rangle : \boldsymbol{B} | \boldsymbol{w} \rangle = | \boldsymbol{v} \rangle$
- In the case at hand $\ker B = T_p L$ is the tangent space to the Lagrangian submanifold.
- Suppose $\boldsymbol{w} \in T_p L$, $\boldsymbol{u}, \boldsymbol{v}$ have the form $\boldsymbol{u} = \boldsymbol{\omega} | \tilde{\boldsymbol{u}} \rangle$ where $\tilde{\boldsymbol{u}} \in T_p L$ $(\boldsymbol{u}_i = \boldsymbol{\omega}_{ij} \tilde{\boldsymbol{u}}^j)$. Then $\langle \boldsymbol{w} | \boldsymbol{u} \rangle = \langle \boldsymbol{w} | \boldsymbol{\omega} | \tilde{\boldsymbol{u}} \rangle = \mathbf{0}$ by the Lagrangian property

• Construct the Lagrangian embedding

$$\begin{split} & i: \mathcal{F}_{n_1, \cdots, n_m} \hookrightarrow G_{n_1} \times \ldots \times G_{n_m} \\ & \text{(similar to the embedding} \\ & \mathcal{F}_N \hookrightarrow \mathbf{CP}^{N-1} \times \cdots \times \mathbf{CP}^{N-1} \text{ (N factors)} \end{split}$$

that we already encountered)

Ingredients for the θ -term (the elements of $H^2(\mathcal{F}_{n_1,\dots,n_m})$):

$$r_k = i^*ig(c_1({\mathcal O}_{G_{n_k}}(1))ig), \quad \sum_{k=1}^m \, r_k = 0$$

• The $\boldsymbol{r_k}$'s are just particular (known) 2-forms.

- Construct the Lagrangian embedding
 - $i: \mathcal{F}_{n_1, \dots, n_m} \hookrightarrow G_{n_1} \times \dots \times G_{n_m}$ (similar to the embedding $\mathcal{F}_N \hookrightarrow \mathbf{CP}^{N-1} \times \dots \times \mathbf{CP}^{N-1} (N \text{ factors})$ that we already encountered)
- Ingredients for the θ -term (the elements of $H^2(\mathcal{F}_{n_1,\cdots,n_m})$):

$$r_k = i^*ig(c_1({\mathcal O}_{G_{n_k}}(1))ig), \quad \sum_{k=1}^m \, r_k = 0$$

• The $\boldsymbol{r_k}$'s are just particular (known) 2-forms.

- Construct the Lagrangian embedding
 - $i: \mathcal{F}_{n_1, \dots, n_m} \hookrightarrow G_{n_1} \times \dots \times G_{n_m}$ (similar to the embedding $\mathcal{F}_N \hookrightarrow \mathbf{CP}^{N-1} \times \dots \times \mathbf{CP}^{N-1} (N \text{ factors})$ that we already encountered)
- Ingredients for the θ -term (the elements of $H^2(\mathcal{F}_{n_1,\dots,n_m})$):

$$r_k = i^*ig(c_1({\mathcal O}_{G_{n_k}}(1))ig), \quad \sum_{k=1}^m \, r_k = 0$$
 .

• The $\boldsymbol{r_k}$'s are just particular (known) 2-forms.

- Construct the Lagrangian embedding
 - $i: \mathcal{F}_{n_1, \dots, n_m} \hookrightarrow G_{n_1} \times \dots \times G_{n_m}$ (similar to the embedding $\mathcal{F}_N \hookrightarrow \mathbf{CP}^{N-1} \times \dots \times \mathbf{CP}^{N-1} (N \text{ factors})$ that we already encountered)
- Ingredients for the θ -term (the elements of $H^2(\mathcal{F}_{n_1, \cdots, n_m})$):

$$r_k = i^*ig(c_1({\mathcal O}_{G_{n_k}}(1))ig), \quad \sum_{k=1}^m \, r_k = 0$$
 .

• The r_k 's are just particular (known) 2-forms.

The θ -term. 2.

The
$$\theta$$
-term

$$\Omega = \frac{1}{m} \left(\sum_{k=1}^{m} k \cdot r_k \right)$$

- Hence $\theta = \frac{2\pi}{m}$. Permuting the sites of the spin chain changes the θ -term in $\mathbf{H}^2(\mathcal{M}, \mathbf{Z}_m)!$
- Relation to the action of Weyl group on Schubert cells / Bruhat decomposition

The θ -term. 2.

The
$$\theta$$
-term

$$\Omega = \frac{1}{m} \left(\sum_{k=1}^{m} k \cdot r_k \right)$$

- Hence $\theta = \frac{2\pi}{m}$. Permuting the sites of the spin chain changes the θ -term in $\mathbf{H}^2(\mathcal{M}, \mathbf{Z}_m)!$
- Relation to the action of Weyl group on Schubert cells / Bruhat decomposition

The θ -term. 2.

The
$$\theta$$
-term

$$\Omega = \frac{1}{m} \left(\sum_{k=1}^{m} k \cdot r_k \right)$$

- Hence $\theta = \frac{2\pi}{m}$. Permuting the sites of the spin chain changes the θ -term in $\mathbf{H}^2(\mathcal{M}, \mathbf{Z}_m)!$
- Relation to the action of Weyl group on Schubert cells / Bruhat decomposition

The picture revisited

The result revisited

• The goal was to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian

$$H = \sum_{i=1}^{L} \sum_{k=1}^{m-1} d_k \, ec{S}_i \cdot ec{S}_{i+k}$$

where $d_k = \sqrt{rac{m-k}{k}}$

Depends on \boldsymbol{m} but not on the partition $\boldsymbol{n_1}, \cdots, \boldsymbol{n_m}$

The result revisited

- The goal was to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian

$$H = \sum_{i=1}^{L} \sum_{k=1}^{m-1} d_k \, ec{S}_i \cdot ec{S}_{i+k}$$

where $d_k = \sqrt{rac{m-k}{k}}$

Depends on \boldsymbol{m} but not on the partition $\boldsymbol{n_1}, \cdots, \boldsymbol{n_m}$

The result revisited

- The goal was to construct the spin chain with target space $\frac{U(N)}{U(n_1) \times \cdots \times U(n_m)}$.

The Hamiltonian

$$H = \sum_{i=1}^{L} \sum_{k=1}^{m-1} d_k \vec{S}_i \cdot \vec{S}_{i+k}$$

where $d_k = \sqrt{\frac{m-k}{k}}$

Depends on m but not on the partition n_1, \cdots, n_m

- Constructed a spin chain for a σ -model with target space a flag manifold.
- Universal expressions for the metric and θ -term.
- Is there a **mod** *m* periodicity of the mass gap?
- Is there an efficient way to describe the σ-models numerically using spin chains?

- Constructed a spin chain for a σ -model with target space a flag manifold.
- Universal expressions for the metric and θ -term.
- Is there a **mod** *m* periodicity of the mass gap?
- Is there an efficient way to describe the σ-models numerically using spin chains?

- Constructed a spin chain for a σ -model with target space a flag manifold.
- Universal expressions for the metric and θ -term.
- Is there a **mod** *m* periodicity of the mass gap?
- Is there an efficient way to describe the σ-models numerically using spin chains?

- Constructed a spin chain for a σ -model with target space a flag manifold.
- Universal expressions for the metric and θ -term.
- Is there a **mod** *m* periodicity of the mass gap?
- Is there an efficient way to describe the σ -models numerically using spin chains?

Thank you!