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Outline

qq̄ potential from the anomalous dimension of a Wilson loop
with a cusp

Cusp anomalous dimension using integrability
Indirect method:

1 Insert a chain of fields of length L at a point in the WL

2 WL sets open boundaries: determine the reflection matrix Ra
b

3 Global rotation of one of the Ra
b to introduce cusp angles

4 TBA to incorporate finite size effects

5 L→ 0 limit of Casimir energy gives the cusp anomalous
dimension

This is valid in the planar limit of N = 4 SYM and for any value of
the ’t Hooft coupling λ.
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Introduction

Quark-antiquark potential

R

T
for T � R

e−Vqq̄(R)T = 〈Tr
[
Pe i

∮
A.dx

]
〉

Cusp anomalous dimension [Polyakov 80]

φ e
−Γcusp(φ) log(

ΛIR
ΛUV

)
= 〈Tr

[
Pe i

∮
A.dx

]
〉



Γcusp(φ) gives the quark anti-quark potential on S3 for a
configuration which is separated by an angle δ = π − φ.

φ

π − φ

Plane to cylinder map (log r = t)

〈W 〉 ' e
− log(

ΛIR
ΛUV

)Γcusp = e−TΓcusp ⇒ Γcusp = Vqq̄

δ → 0 gives Vqq̄ in flat space

In N = 4 SYM, the locally susy Wilson loop also has a
coupling to the scalars, specified by ~n

W ∼ Tr
[
Pe i

∮
A·dx+

∮
|dx |~n·~Φ

]
We can take ~n and ~n′ for the 2 lines of the cusp. This
introduces an internal cusp angle cos θ = ~n · ~n′.
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Open chain spectral problem

WL with fields inserted regarded as open spin chain states

Tr
[
PO(τ)e

∮
dτ(iAτ+~n~Φ)

]
= −→−−(

O(τ)︷ ︸︸ ︷
ZZYZZYZZ)−→−− ←→

Computing 〈W [O(τ)O(τ ′)]〉 perturbatively leads to a mixing
problem which is equivalent to some open spin chain spectral
problem,

〈W [Oren
A (τ)Oren

B (τ ′)]〉 =
δAB

|τ − τ ′|2∆A

τ

τ ′

For instance, to 1-loop in an su(2) sector, an integrable open
XXX chain is obtained [Drukker,Kawamoto]

This problem is argued to be integrable to all-loop order:
Find all-loop reflection matrix & check BYB is satisfied
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Wilson loop reflection matrix

Magnons are fundametals of SU(2|2)L × SU(2|2)R

−→−−−(ZZZχaȧZZZ )−→−−− a is a fund. of SU(2|2)L
ȧ is a fund. of SU(2|2)R

Reflection matrix is fixed with the boundary/vacuum symm.
SU(2|2)D = SU(2|2)2 ∩ OSp(4∗|4) [Correa, Young], [Correa, Regelskis, Young]

[Correa,Maldacena, Sever] &[Drukker]

1 Bulk magnon ≡ 1 pair of magnons of SU(2|2)D

χaȧ(p)

χcċ(−p)

χa(p)

χċ(p)

χȧ(−p)

χc(−p)

Raȧ
cċ (p) =

1

σB(p)

1

σ(p,−p)
Ŝaȧ
cċ (p,−p)



Boundary Yang-Baxter condition



Boundary Yang-Baxter condition

Up to some overall scalar factors, the boundary Yang-Baxter
condition looks like a succession of bulk scattering factors

Thus, bulk Yang-Baxter condition ensures boundary Yang-Baxter
condition for the Wilson loop reflection matrix



Wilson loop boundary dressing phase

Crossing symmetry constrains the unknown function [Janik 06]

Crossing: particle (E , p) ↔ anti-particle (−E ,−p)

=

a b ā
a

b

b

ā

b′

c
c̄

d
Scd
ab (p, q)Ccc̄S c̄b′

ā′d (p̄, q) = Caāδbb′

scatt. with a singlet is trivial[Beisert]

There is also a boundary crossing condition

R(p) · S(p,−p̄) · R(p̄) = 1I

This imposes a condition on σB (16π2g2 = λ)

σB(p)σB(p̄) =
x− + 1

x−

x+ + 1
x+

x± := x(u ± i
2 )

x(u) + 1
x(u) = u

g



Wilson loop boundary dressing phase

Crossing symmetry constrains the unknown function [Janik 06]

Crossing: particle (E , p) ↔ anti-particle (−E ,−p)

=

a b ā
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The solution to this crossing equation is not unique

Applying a method proposed for the bulk dressing factor
[Volin] & [Volin,Vieira], we found the following solution
[Correa,Maldacena,Sever] & [Drukker]

σB = e iχ(x+)−iχ(x−)

χ(x) = Φ(x) =

∮
dz

2π

1

z − x
log

{
sinh[2πg(z + 1

z )]

2πg(z + 1
z )

}
, |x | > 1

χ(x) = Φ(x)− i log

{
sinh[2πg(x + 1

x )]

2πg(x + 1
x )

}
, |x | < 1

which passes a few non-trivial checks



Strong coupling dressing phase check

In the strong coupling limit, (when x± = e±i
ip
2 ),the boundary

scattering phase we have proposed:

R0(p) =
1

σB(p)

1

σ(p,−p)
= e iδR(p)

goes as

δR(p) = −
√
λ

π
cos

p

2
log

(
1− sin p

2

1 + sin p
2

)
− 2
√
λ

π
cos

p

2
log cos

p

2

This coincides exactly with the classical string computation.

One computes the time delay ∆t suffered for magnon during the
reflection. The time delay is related to the derivative of the
reflection phase with respect to the energy [Jackiw,Woo 75]

∆t =
∂δ

∂ε



Now that we know the reflection matrix, let’s continue with the
steps enumerated in the outline

3 Introduce cusps: globally rotate the right reflection matrix

−→−−−(· · · )
�
↗· · ·· · · · · ·· · ·

φ
Ra
c (φ) = ma

b(φ)Rb
c

4 Finite L corrections → Thermodynamic Bethe ansatz

5 Focus on the ground state in the limit L→ 0

lim
L→0
−→−−−(ZL)

�
↗· · ·· · · · · ·· · ·

φ

The limit L→ 0 of the Casimir energy gives the cusp
anomalous dimension

Γcusp = lim
L→0
E0(L)



Boundary Thermodynamic Bethe Ansatz [Zamolodchikov 90]
[LeClair,Mussardo, Saleur, Skorik 95]

Physical strip

{
p ↔ i Ẽ
E ↔ i p̃

}
Mirror Theory

L

1
T = β L

β

|Bright〉

|B left〉

Z open
Bl ,Br

= Tropen[e
−βHopen

Bl ,Br ] = 〈Bl |e−LHclosed |Br 〉

• Analytic continuation of R(p) gives the probability of emitting
pairs of particles from the boundary state [Ghoshal, Zamolodchivov 93]

|B〉 = exp

(∫ ∞
0

dp̃

2π
K a,b(p̃)a†a(−p̃)a†b(p̃)

)
|0〉 = exp

(∫ ∞
0

dp̃

2π

)
|0〉

with K a,b(p̃) =
[
R−1(p̃)

]a
d
Cd ,b p̃ has mirror kinematics

• In the β →∞ limit,
(i) Partition function → the ground state energy Z open

Bl ,Br
∼ e−βE0(L)

(ii) Bethe Ansatz in the mirror theory becomes exact
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Partition Function in the mirror channel

e−βE0(L) ∼ 〈Bl |e−LHclosed |Br 〉 for β →∞

• Still not straightforward. |B〉 is written as superpositions of
a†(p̃) which are not eigenstates of Hclosed (unless mirror S-matrix
were trivial)

• Lüscher-type correction gives the leading finite size correction
and can be obtained by regarding superpositions of a†(p̃) as
eigenstates of Hclosed

The partition function is reduced to the overlap of the 2-particle,
4-particles,... components of |B〉

−p̃ p̃
1 +

∞∫
0

dp̃
2π e
−2LẼ(p̃) + · · ·



This leads to [LeClair, Mussardo, Saleur, Skorik 95]

E0(L) ∼ −
∞∫

0

dp̃

2π
log
{

1 + e−2LẼ(p̃)Tr[K (p̃)K̄ (p̃)]
}

This can be expanded either as

E0(L) ∼ −
∞∫

0

dp̃

2π
e−2LẼ(p̃)Tr[K (p̃)K̄ (p̃)] +O(e−4LẼ(0))

or as

E0(L) ∼ −1

2
e−LẼ(0)

√
p̃2Tr[K (p̃)K̄ (p̃)]|p̃=0 +O(e−2LẼ(0))

when KK̄ has a double pole at p̃ = 0

Our dressing phase σB produces such pole, which we will see is
crucial for getting the correct cusp anomalous dimension



Boundary TBA derivation
The mirror system is the same as the one obtained in the

periodic case. [Arutyunov,Frolov], [Bombardelli,Fioravanti,Tateo]
[Gromov,Kazakov,Kozak,Vieira]

The difference is that now we overlap the Bethe eigenstates
between the boundary states rather than tracing over them

Same mirror part. ⇒ same Y-functions Ya,s ( dens. of particles
dens. of holes )

Carrying mom. particles come in pairs with (−p̃, p̃)
⇒ Ya,0 is needed for u4 > 0 only (p̃ > 0)

Boundary state is invariant under SU(2|2)D .
If roots u1, u2, u3 appear, also −u7,−u6,−u5 appear

⇒ Ya,−s(u) = Ya,s(−u) s

a

1 2 3 4

2

3

4

Rotation: acts diagonally on the impurities of each level
⇒ cusp angles φ and θ enter as chemical potentials for the 6=
magnon bound states

Boundary dressing factor: σB enter as a u4 dependent
chemical potential for the Ya,0
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Ground state TBA equations

log Y1,1 = iθ + iφ+ Km−1 ∗ log
1 + Y 1,m

1 + Ym,1
+R(01)

1 a ∗ log(1 + Ya,0)

log Y 2,2 = iθ + iφ+ Km−1 ∗ log
1 + Y 1,m

1 + Ym,1
+ B(01)

1 a ∗ log(1 + Ya,0)

log Y 1,s = 2i(s − 1)θ − Ks−1,t−1 ∗ log(1 + Y 1,t)− Ks−1 ∗ log
1 + Y1,1

1 + Y 2,2

log Ya,1 = i2(a− 1)φ− Ka−1,b−1 ∗ log(1 + Yb,1)− Ka−1 ∗ log
1 + Y1,1

1 + Y 2,2

+

+
[
R(01)

ab + B(01)
a−2,b

]
∗ log(1 + Yb,0)

log Ya,0 = −i2aφ+ log[σB σ̄B ]− 2LẼa(u) +
[
2Sa b −R

(11)
a b + B(11)

a b

]
∗ log(1 + Yb,0)

+ 2
[
R(1 0)

a b + B(1 0)
a,b−2

]
∗sym log(1 + Yb,1) + 2R(1 0)

a 1 ∗sym log(1 + Y1,1)− 2B(1 0)
a 1 ∗sym log(1 + Y 2,2)

Same kernels as in periodic case TBA. Y a,s = 1/Ya,s

Apart from the folding symmetry and the boundary dressing
factor σB , they are similar to the twisted boundary conditions
TBA equations, [Arutyunov, deLeeuw, vanTongeren] ,

[Ahn, Bajnok, Bombardelli,Nepomechie] , [deLeeuw, vanTongeren]
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Recovering Lüscher: Throwing convolutions with Ya,0



Asymptotic solution to the TBA equations

Y1,1 = − cos θ

cosφ
, Y1,s =

sin[(s + 1)θ] sin[(s − 1)θ]

sin2 θ

Y2,2 = −cosφ

cos θ
, Ya,1 =

sin2 φ

sin[(a + 1)φ] sin[(a− 1)φ]

Ya,0 = 4σB σ̄B

(
z [−a]

z [+a]

)2L+2

(cosφ− cos θ)2 sin2 aφ

sin2 φ

The ground state energy is

E0(L) = −
∞∑
a=1

∞∫
0

dp̃

2π
log (1 + Ya,0)

Since as p̃ → 0 we have Ya,0 ∼ G2
a

p̃2 ,

E0(L) ∼ −1

2

∞∑
a=1

Ga



Strong coupling check

Large L at strong coupling(
z [−a]

z [+a]

)L+1
∣∣∣∣∣∣
p̃=0

= e−(L+1)Ẽa

∣∣∣
p̃=0
∼ e

− aL
2g

To leading order only a = 1 contributes

Evaluating the dressing factors for p̃ → 0 and g →∞

E0(L) ∼ (cosφ− cos θ)
16g

e2
e−

L
2g

which exactly agrees with a classical string theory
computation (E − L of a string that stretches from the center
to the boundary of AdS5 and carries L units of angular
momentum in the S5) [Correa, Maldacena, Sever]



Weak coupling check

For g � 1, e−(L+1)Ẽa is small for any L

e−(L+1)Ẽa ∼
(

4g2

a2 + p̃2

)(L+1)

The product of σB ’s becomes (for g � 1 and p̃ → 0)

σB(p̃)σ̄B(p̃) ∼ a2

p̃2

Collecting all contributions:

E0(L) ∼ −4g2L+2 (cosφ− cos θ)

sinφ

∞∑
a=1

(−1)a
sin aφ

a2L+1

∼ −g2L+2 (cosφ− cos θ)

sinφ

(−1)L(4π)2L+1

(2L + 1)!
B2L+1

(
π − φ

2π

)
+O(g4+2L)

B is the Bernoulli polynomial



Weak coupling check

If we take L→ 0 in above ground state energy, we should get the
cusp anomalous dimension (at leading weak coupling order)

E0(0) = Γcusp = Vqq̄ = 2g2(cosφ− cos θ)
φ

sinφ
+O(g4)

In exact agreement with the weak coupling computation for
the cusp anomalous dimension [Drukker,Gross,Ooguri 99]



In the small φ limit, TBA equations simplify a bit. We solved them
iteratively and analytically up to 3-loop order

Γcusp = Vqq̄ = −φ2

[
λ

16π2
− λ2

384π2
+

λ3

6144π2
+O(λ4)

]

• This is in perfect agreement with the weak coupling expansion
of the exact small angles answer computed using localization
results [Correa,Henn,Maldacena,Sever]

Γcusp ' (θ2 − φ2)H(λ,N) where

H(λ,N) =
1

2π2
λ∂λ log

(
2√
λ
I1(
√
λ)

)
=

√
λ

4π2

I2(
√
λ)

I1(
√
λ)

=
λ

16π2
− λ2

384π2
+

λ3

6144π2
+O(λ4)

The complete H(λ,N) has been recently obtained from a
simplified TBA [Gromov,Sever]



Conclusions

We derived a set of TBA equations to compute
Γcusp(φ, θ, λ) = Vqq̄ potential exactly in the planar limit

We checked they give the correct answer for arbitrary cusp
angles at leading weak coupling orders

In the strong coupling limit we checked they give the correct
answer for a string with arbitrary cusp angles and large
angular momentum L

We checked they give the correct answer for small cusp angles
up to 3-loop order weak coupling (now checked to all-loop
[Gromov,Sever])



Interesting limits to consider

Small angles limit (or φ ' θ): TBA eqs. drastically simplify
[Gromov,Sever]

BES equation for iφ = ϕ→∞

qq̄ potential in flat space for φ→ π

Ladders limit, when θ = iϑ for ϑ→∞ while keeping eϑλ fixed

Also to consider:

Solve the TBA eqs. numerically for any λ

can be something similar done in ABJM? Maybe the small
cusp angles limit can help to fix the unknown function h(λ) in
the ABJM dispersion relation

E (p) =
√

1 + h(λ) sin2(p2 )


