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/ Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.
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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential

between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of
antiparallel lines.
e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.
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/ Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential
between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of
antiparallel lines.

e Such an object exists also in N =4 SYM.
— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

e Explicit calculations at weak and at strong coupling:
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/ Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential
between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of

antiparallel lines.
e Such an object exists also in N =4 SYM.
— The Wilson loop calculates the potential between two W-bosons arising from a

Higgs mechanism.

e Explicit calculations at weak and at strong coupling:
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/ Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential
between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of
antiparallel lines.
e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a
Higgs mechanism.

e Explicit calculations at weak and at strong coupling:

[ + A 1 ! — A< 1
N n — o o o
AL 8m2L A\

VI(L,A) = 4
A2/ ) 1.3359...
—([1-—=F A>1
(T(3)4L VA
e Recently O(\?) was calculated. [Mﬁﬁgﬁjﬁfesféer}

e Hard to guess how to connect these two regimes.
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between charged particles.
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e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a
Higgs mechanism.

e Explicit calculations at weak and at strong coupling:

[ + A 1 ! — A< 1
N n — o o o
AL 8m2L A\

VI(L,A) = 4
A2/ ) 1.3359...
—([1-—=F A>1
(T(3)4L VA
e Recently O(\?) was calculated. [Mﬁﬁgﬁjﬁfesféer}

e Hard to guess how to connect these two regimes.
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Introduction and motivation

e One of the most fundamental quantities in a quantum field theory is the potential
between charged particles.

e In gauge theories this is captured by a long rectangular Wilson loop, or a pair of
antiparallel lines.
e Such an object exists also in N =4 SYM.

— The Wilson loop calculates the potential between two W-bosons arising from a
Higgs mechanism.

e Explicit calculations at weak and at strong coupling:

[ + A 1 ! — A< 1
N n — o o o
AL 8m2L A\

~

VI(L,A) = 4
A2/ ) 1.3359...
—([1-—=F A>1
(T(3)4L VA
e Recently O(\?) was calculated. [Mﬁﬁgﬁjﬁfesféer}

e Hard to guess how to connect these two regimes.
e Can we do any better?

e Shouldn’t integrability allow us to calculate this for all values of the coupling (in the
planar approximation)?
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The end
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Outline

Introduction and motivation

Wilson loops
— Cusp anomalous dimensions and the quark-antiquark potential

— Local operator insertions

Wilson loops in N =4 SYM
— Perturbative calculation
— String calculation

— Expansions in small angles

Wilson loops and integrability
— Operator insertions and open spin—chains
— All loop reflection matrix and a twist

— Wrapping effects and the quark-antiquark potential
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Wilson loops

e In any gauge theory one can define Wilson loop operators

W = Tr P exp M 1A, xt ds]

e Can be defined for an arbitrary curve in spacetime.

e This is the holonomy of the gauge field.
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Wilson loops

e In any gauge theory one can define Wilson loop operators

W = Tr P exp [jl{ 1A, xt ds]

e Can be defined for an arbitrary curve in spacetime.
e This is the holonomy of the gauge field.

e For a pair of antiparallel lines
(W) ~exp|—TV(L,\) y
e The potential behaves like

i g(A) screening
V(LX) = £ conformal
o'L  confining I

\
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Cusp anomalous dimensions and quark-antiquark potential

e A regular Wilson loop will suffer from linear UV divergences (uninteresting).

e The antiparallel lines suffer also from a linear IR divergence (subtle).
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Cusp anomalous dimensions and quark-antiquark potential

e A regular Wilson loop will suffer from linear UV divergences (uninteresting).
e The antiparallel lines suffer also from a linear IR divergence (subtle).

e [t is simpler to control logarithmic divergences.
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Cusp anomalous dimensions and quark-antiquark potential

e A regular Wilson loop will suffer from linear UV divergences (uninteresting).

e The antiparallel lines suffer also from a linear IR divergence (subtle).

e [t is simpler to control logarithmic divergences.

e Consider Wilson loops with cusps

\ . ’ /7
~ N Y U y .
~ \ % ‘ / //
\ \ 1y ’ / r
~N AN “ ,' // //
\\ \ \‘ 'l / P
Nyl
Y

> .z >

e All but the black line will suffer from logarithmic divergences.

e Taking ¢ = ip and ¢ — oo gives the Lorenzian null cusp.

N
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Cusp anomalous dimensions and quark-antiquark potential

e The antiparallel lines suffer also from a linear IR divergence (subtle).
e [t is simpler to control logarithmic divergences.

e Consider Wilson loops with cusps

~ \ Y q /
~ \ ‘\ l' / ~ =
\ \ A ’ / r
~ \\ \ ’ // P ~
~ \ \‘ ': / P
~ ~ \‘ " // ~
A\XY/A
> L >

e All but the black line will suffer from logarithmic divergences.

e Taking ¢ = ip and ¢ — oo gives the Lorenzian null cusp.

My talk will focus on the euclidean cusp, but all that I

say can be immediately extended to Minkowski space.

N

e A regular Wilson loop will suffer from linear UV divergences (uninteresting).
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e One can also consider a compact versions of

cusped loops.

e No gauge-invariance subtleties!
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e One can also consider a compact versions of

cusped loops.

e No gauge-invariance subtleties!

e In a conformal theory they will be equivalent

to the previous picture (up to a finite

anomaly). —4

e In any case, the log divergences, which are a

UV effect will remain the same.
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One can also consider a compact versions of

cusped loops.

No gauge-invariance subtleties!

In a conformal theory they will be equivalent

to the previous picture (up to a finite ‘

anomaly). —4

In any case, the log divergences, which are a

UV effect will remain the same.

I label the opening angle m — ¢.
¢ = 0 is the circle.

¢ — m gives the antiparallel lines.
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e One can also consider a compact versions of

cusped loops.

e No gauge-invariance subtleties!

e In a conformal theory they will be equivalent

to the previous picture (up to a finite T

anomaly). —4 —2

e In any case, the log divergences, which are a

UV effect will remain the same.

e [ label the opening angle m — ¢.
e ¢ = 0 is the circle.

e ¢ — m gives the antiparallel lines.

e In a conformal theory, by the usual conformal Ward identity

2

e A is the coefficient of the log divergence.

N

¢

1 COS =
|/|/ ~N —— d: —2
< > dza’ : 1 — Sing
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e By the inverse exponential map we get the gauge theory on S? x R

e These are parallel lines on S? x R.
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e By the inverse exponential map we get the gauge theory on S? x R
e These are parallel lines on S? x R.

e From this last picture we expect

(W) = exp [ _TV(, A)}

e In a conformal theory 7T’ is related to divergence at the cusp by the

exponential map

R
T =log —
€

e Therefore V (¢, \) is the same as A, the coefficient of the log

divergence.

Y
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e By the inverse exponential map we get the gauge theory on S? x R
e These are parallel lines on S? x R.

e From this last picture we expect

(W) = exp [ _TV(, A)}

e In a conformal theory 7T’ is related to divergence at the cusp by the

exponential map *

R
T =log —
€

e Therefore V (¢, \) is the same as A, the coefficient of the log

divergence.

potential.

e This V (¢, \) is the generalization of V' (L, A\) — the quark-antiquark '\/'

e For a conformal theory it has a pole at ¢ — 7 and the residue is i
LV (L, \).

e More generally controls all log divergences of all Wilson loops.

e Needed for a proper renormalization program of Wilson loop operators (and to derive

\ regularized loop equations). /
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Local operator insertions

e There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.
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Local operator insertions

e There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

e For example, one operator in the straight line

w =167 [owye ([ 405

0 0o
= Tr [73 exp (/ 1A, ds) O(0)P exp (/ 1A, T ds)]
o 0

e O is any adjoint operator, e.g., Fyz, D?Fi4, Fi2(Fy3)?, etc.

e If the theory has adjoint scalars and/or fermions, they can be inserted as well.
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Local operator insertions

e There is another source of log divergences in Wilson loops:

Adjoint valued operators inserted into the Wilson loop.

e For example, one operator in the straight line

w =167 [owye ([ 405

0 0o
= Tr [77 exp (/ 1A, ds) O(0)P exp (/ 1A, T ds)]
o 0

e O is any adjoint operator, e.g., Fyz, D?Fi4, Fi2(Fy3)?, etc.

e If the theory has adjoint scalars and/or fermions, they can be inserted as well.

e In a conformal theory, a Wilson loop with two operator insertions at a distance d will

have a VEV .

<W>NdQ—A

e A is the coefficient of the log divergences — the conformal dimension of the insertions.
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Wilson loops in N =4 SYM

e In addition to the gauge field, N' =4 SYM has six real scalar fields and four fermions,

all in the adjoint of the gauge group.

e The most natural Wilson loops in N/ =4 SYM include a coupling to the scalar fields

W = TrPexp [7{ (¢4,2" + \jz\nl@f)ds

n! do not have to be constant.

e For a smooth loop and continuous |nf| = 1, these are finite observables.

e The Wilson loop with the scalar coupling is natural for calculating the potential

between W-bosons.

~
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Wilson loops in N =4 SYM

e In addition to the gauge field, N' =4 SYM has six real scalar fields and four fermions,
all in the adjoint of the gauge group.

e The most natural Wilson loops in N/ =4 SYM include a coupling to the scalar fields
W = TrPexp [7{ (¢4,2" + \jz\nl@f)ds

n! do not have to be constant.
e For a smooth loop and continuous |nf| = 1, these are finite observables.

e The Wilson loop with the scalar coupling is natural for calculating the potential
between W-bosons.

e For the loop with cusp can have each line couple to a different scalar field

d, and ®{ cosf + P5sinf

e Gives another parameter: 6.
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Wilson loops in N =4 SYM

e In addition to the gauge field, N' =4 SYM has six real scalar fields and four fermions,
all in the adjoint of the gauge group.

e The most natural Wilson loops in N/ =4 SYM include a coupling to the scalar fields
W = TrPexp [7{ (¢4,2" + \jz\nl@f)ds

n! do not have to be constant.
e For a smooth loop and continuous |nf| = 1, these are finite observables.

e The Wilson loop with the scalar coupling is natural for calculating the potential
between W-bosons.

e For the loop with cusp can have each line couple to a different scalar field

d, and ®{ cosf + P5sinf

e Gives another parameter: 6.

e Crucial point: Calculations of V' (¢, 0, \) are no harder than for the antiparallel case!
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Perturbative calculation

N

e Expanding at weak coupling

vw,e,A):i( 4 )nv“”(qﬁ,e)

e And at strong coupling

Vi(p,0,\) =

1672

n=1

Nadav Drukker
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1-loop

e Just the exchange of a gluon and scalar field

e This graph is given by the integral

(9,\<W>|>\ LT / ds dt <(iAuj3“(s) + |z|®n! (s)) (¢A,zH(t) + ]x'\q)JnJ(t))>
- s<t
o L I I
LA [ b))+l ()l (1)
8 |(s) — x(t)]?
A — cos ¢ + cos 6 A cos¢ — cosf R
= —— [ dsdt = — log —
812 2 + 12 + 2stcos ¢ 812 sin ¢ ¢log €
e Therefore
(1) :Zcosgb—(:os@

N /
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/Higher order graphs

N

e Ladder graphs are relatively easy.

e They dominate a funny double-scaled limit where

0 — 100 with \0 fixed.

|

Correa, Henn
Maldacena, Sever |

e They are given by harmonic polylogs apparently to

all orders.

[Henn, Huber

e Results at weak and strong coupling match.

/
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/Higher order graphs

e Ladder graphs are relatively easy.

e They dominate a funny double-scaled limit where
0 — 100 with A0 fixed. [ Correa, Henn

Maldacena, Sever |

e They are given by harmonic polylogs apparently to

all orders. [Henn, Ehvibe]

e Results at weak and strong coupling match.

e Interacting graphs are a bit more complicated.

e At two loops there are bubble graphs and the single

cubic vertex graphs.

e they give

V2(6,0) = ~<(x% = VD (6,0

int

e Full 3 loop answer was also calculated.

[ Correa, Henn }

Maldacena, Sever
Nadav Drukker 14-a
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String calculation

N

[Maldacena] [Rey, Yee} [ Drukker

Gross, Ooguri]

e Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open

string extending to the boundary of AdS.

e At the leading order one should find the minimal area surface.

e One loop requires studying the string fluctuations, and so on.

/
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String calculation [Maldaeena] [Rey, Yee“ Drukker ]

Gross, Ooguri

e Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open
string extending to the boundary of AdS.

e At the leading order one should find the minimal area surface.
e One loop requires studying the string fluctuations, and so on.

e In our case the boundary conditions are lines separated by m — ¢
on the boundary of AdS and 6 on S°.

o All the string solutions fit inside AdS3 x S*

ds® = VA (— cosh? pdt? + dp? + sinh? pdp? + d192)

/
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String calculation Maldacena) | Rey, Yee| [Gr(?sg‘f%géuﬂ]

e Within the AdS/CFT correspondence Wilson loops are calculated by an infinite open
string extending to the boundary of AdS.

e At the leading order one should find the minimal area surface.
e One loop requires studying the string fluctuations, and so on.

e In our case the boundary conditions are lines separated by m — ¢
on the boundary of AdS and 6 on S°.

o All the string solutions fit inside AdS3 x S*

ds® = VA (— cosh? p dt? + dp? + sinh? pdp? + dv?)

e The equations of motion can be solved by elliptic integrals.
— K, b=m— (K—H—k )
Ny b\/b% + p? (s t)

where b, k, p and ¢ are related by

0 —

1 b2 (b* — p?)
b2:_(2_2 2  _2)\2 42) k2:
5 ¢+ /(P — ¢®)2 + 4p b
\ e These are transcendental equations for p, ¢ in terms of 6, ¢ /
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e The induced metric is

1 — k2
2 _ 2 2
dsi g = VA n2(0) [—dT +do ]

e The classical action can also be calculated

TV \/b* (b% +1)p
Se1 = \/_/dtdgopcosthsthp_ VA + P T K—E

T bp b4+p

e This determines Vf(l d)S as a function of p, ¢ and implicitly in term of ¢, 6.

N /
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e The induced metric is

1 — k2
2 _ 2 2
dsi g = VA n2(0) [—dT +do ]

e The classical action can also be calculated

TV \/b* (b% +1)p
Se1 = \/_/dtdgppcosthsthp_ VA + P T K—]E

T bp b4+p

e This determines Vf(l d)S as a function of p, ¢ and implicitly in term of ¢, 6.

e We can also expand around ¢ = 60 = 0

1 1

Vids(#:6) =~ (6 = ¢*) — o5 (6" = *) (6% — 5¢°)
+ 641”5 (607 — ¢*) (6% — 146%¢* + 37¢%)
-5 4187T7 (0% — ¢*) (0° — 270 ¢ + 2916°¢* — 585¢°) + O((¢,6)"°)

N /
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1

—loop determinant

N

e At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.

e Such a calculation was done long ago for a confining string by Liischer.

e The “Liischer term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

e We have to repeat the calculation in the AdSs x S° sigma model.

/
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1-loop determinant

e At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation

modes.
e Such a calculation was done long ago for a confining string by Liischer.

e The “Liischer term” is proportional to the number of transverse dimensions and

always has a Coulomb behavior.

e We have to repeat the calculation in the AdSs x S° sigma model.

e All the differential operators can be written as Lamé operators

—02 — 02 + 2k*sn*(o|k?)

e Requires using many elliptic identities, using different ks and rescaling 7 and o.

N /
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/ e The result of a tedious calculation gives \

T T dw e2w? det® O%
e = —— llinm n = >
2 20 ) _o 2 det’ OF det” Of det Of
where
inh (2K
det OF == sinh(2K w)
w
det OF = sinh(2K; Z (o))
e >~
e (w2 — k) (w? — k% D)(w—2k2 + 1)
det O€ ~ sinh(2K2 Z(CYQ))
e —
2T (1= k2)3/2(ky + 1)3/(wE + k2)(wE + 1)(w2 + k2 + 1)
et O 8Kz+\/w? + k2 sinh(Ky Z(ar)) 92(0, q2) V4 (5%E, g2)
€ F —

em(1 — k2)(ky + 1)24/(w3 + 1) (w3 + k3 + 1) 91(0, ¢2) V3 (5RE, ¢=)

and w;, €;, k; are algebraic in the usual w, etc. and «; are solutions to some elliptic
equations. . .

N /
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K e The result of a tedious calculation gives \

T T dw e2w? det® O%
e = —— llinm n = >
2 20 ) _o 2 det’ OF det” Of det Of
where
inh (2K
det OF == sinh(2K w)
w
det OF = sinh(2K; Z (o))
e >~
e (w2 — k) (w? — k% D)(w—2k2 + 1)
det O€ ~ sinh(2K2 Z(CYQ))
e —
2T (1= k2)3/2(ky + 1)3/(wE + k2)(wE + 1)(w2 + k2 + 1)
et O 8Kz+\/w? + k2 sinh(Ky Z(ar)) 92(0, q2) V4 (5%E, g2)
€ F —

em(1 — k2)(ky + 1)24/(w3 + 1) (w3 + k3 + 1) 91(0, ¢2) V3 (5RE, ¢=)

and w;, €;, k; are algebraic in the usual w, etc. and «; are solutions to some elliptic
equations. . .

e For small ¢ we can expand

5 42 /53 4 223 15 15 ’

<14645_229<(3)_%<(5) 315 (7)> ¢ +0(6')

128 8 - EC 25678

N /
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¢ — 7 limit

N

o VI V(2 ijl?l)s and Vf(xiz)s all have poles at ¢ =

e In perturbation theory

Vip,0) — —

A 1+ cosb A2 (1 + cosf)?

8T w™— ¢ +327r3 T— ¢

/
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¢ — 7 limit

« VU, y®@ vl

L—m—¢

N

Vg, 0) —

0)

e In perturbation theory

1
45 and Vf(ld)S

A1+ cosb

all have poles at ¢ =7

A2 (14 cosh)? e Lo

V(L,\) = <

8 m™— ¢

205 16 B2 _g)

e In the case of 6 = 0 we get essentially the same as the antiparallel lines with

(A A2 T

_ n— 4 ... \< 1
L Tseen T T <
472/ ) 1.3359 . . .
”1f(1—+---> A1
([($)* L VA

e The strong coupling calculations also agree in the limit.

/
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Expansions in small angles

e Consider the expansion of V(¢,0,\) at small ¢ or 6

(N 32
10_2‘/(%97)\) :_18_2V<¢797)\) _, 167T2_3847T2+”' AL 1
2 062 p=0=0  20¢? $=06=0 VA3

\47r2_87r2+.“ Al

N /
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Expansions in small angles

e Consider the expansion of V(¢,0,\) at small ¢ or 6

( \ )\2
_ L \ < 1
1 92 T ) 1 02 s @ 1672 38472 - <
2902 (9,0, )¢:9:o__§w (0,0, )¢:9:O—< /3 ;
_ L A S 1
\ 472 872 i >
e This quantity was named the bremsstrahlung function B(\) [Mgcc’gg;’la}}%gger}

e (Calculates the radiation of an accelerated quark.

e Is related to small deformations of BPS Wilson loops and can be calculated exactly

1
B = ﬁA8A<WO>

1 AN\
|/|/o — —L1 - SN
Wo) = Inv1 ( 4]\7) ¢

N /
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Expansions in small angles

e Consider the expansion of V(¢,0,\) at small ¢ or 6

( \ )\2
_ L \ < 1
1 92 T ) 1 02 s @ 1672 38472 i <
2902 (¢, 0, )¢:9:o__§w (9,0, )¢:9:O—< 3
_ L A S 1
\ 472 82 i >
e This quantity was named the bremsstrahlung function B(\) [Mg%lggs&al,{%%%er}

e (Calculates the radiation of an accelerated quark.

e Is related to small deformations of BPS Wilson loops and can be calculated exactly

1
B = ﬁA8A<WO>

1 AN\
|/|/o — —L1 - SN
Wo) = Inv1 ( 4]\7) ¢

e See also Kolya’s talk tomorrow.

N /
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Result so far:

Explicit expressions for these families of Wilson loops at weak and strong coupling.

N

/
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Wilson loops and integrability

e We want to apply the tools of integrability to the case of Wilson loops:

— Find a spin—chain model.
— Find the all loop scattering (and reflection) matrix

— Try to solve it exactly.

e This will allow to derive the gauge theory perturbative results from world-sheet

techniques.

/
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Wilson loops and integrability

e We want to apply the tools of integrability to the case of Wilson loops:
— Find a spin—chain model.
— Find the all loop scattering (and reflection) matrix
— Try to solve it exactly.

e This will allow to derive the gauge theory perturbative results from world-sheet
techniques.

e Main trick will be to start with the Wilson loop with an arbitrary insertion in it,

which will simplify the steps above and at the end remove the insertion.

e In the case of the straight line, after removing the insertion, the operator is 1/2 BPS,

so no anomalous dimension. So need to know how to treat the cusp.

N /
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/string picture

N

e The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.

~

/
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/string picture

N

e The string dual of a Wilson loop with an insertion is an excited state of the open
string describing the Wilson loop.

~

/
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/string picture \

e The string dual of a Wilson loop with an insertion is an excited state of the open
string describing the Wilson loop.

- /
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/string picture \

e The string dual of a Wilson loop with an insertion is an excited state of the open

string describing the Wilson loop.

\ e Study the spectrum of open string states all satisfying the same boundary conditions./
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e An insertion of Z” is described by a string ending along the same curve on the
boundary but in the bulk of space rotating around the equator of S° with

momentum J.

e An excitation traveling along this string will not know that it’s an open string and not

the usual Tr Z7 vacuum.

~

/
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N

e An insertion of Z” is described by a string ending along the same curve on the
boundary but in the bulk of space rotating around the equator of S° with

momentum J.

e An excitation traveling along this string will not know that it’s an open string and not

the usual Tr Z7 vacuum.

e Once it gets to the end of the string we should impose boundary conditions.

~

/
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e An insertion of Z” is described by a string ending along the same curve on the

boundary but in the bulk of space rotating around the equator of S° with

momentum J.

e An excitation traveling along this string will not know that it’s an open string and not

the usual Tr Z7 vacuum.

e Once it gets to the end of the string we should impose boundary conditions.

Gauge theory picture

N

valued operator like Z”/ at the cusp.

We take the cusped Wilson loop with an adjoint

O~2ZYZ---ZZ

~

/
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e In this case the classical dimension is 5.

N

It is clear how to see the appearance of the spin—chain by considering the compact \

operator in the gauge theory

/
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/ e It is clear how to see the appearance of the spin—chain by considering the compact \
operator in the gauge theory

e In this case the classical dimension is 5.

e The bulk hamiltonian is like the usual Minahan-Zarembo spin—chain (Beisert S-matrix
Sei(p1,p2) ® SS4 (p1,p2) )-

e Boundary interaction has to be studied separately.

N /
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/ e It is clear how to see the appearance of the spin—chain by considering the compact \
operator in the gauge theory

e In this case the classical dimension is 5.

e The bulk hamiltonian is like the usual Minahan-Zarembo spin—chain (Beisert S-matrix
S2<g<p1,p2) X SZZ(plapQ) )

e Boundary interaction has to be studied separately.

e The two boundaries interact through wrapping effects at O(g?(/+1).

\ e For J =0 this is at one-loop. /
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All loop reflection matrix and a twist

N

e The one loop bulk hamiltonian is the same as for closed spin—chains

e The boundary reflection matrix was calculated from Feynman graphs only in the

SU (2) sector.

/
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All loop reflection matrix and a twist

e The one loop bulk hamiltonian is the same as for closed spin—chains

e The boundary reflection matrix was calculated from Feynman graphs only in the
SU (2) sector.

e To do it to all loops we should use the symmetry:

psu(2,24) — psu(2(2)r x psu(2]2)r
ZJ vacuum
boundary J
osp(4*|4) — psu(212) p

e A single boundary breaks the symmetry to a diagonal psu(2|2).

N /
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All loop reflection matrix and a twist

e The one loop bulk hamiltonian is the same as for closed spin—chains

e The boundary reflection matrix was calculated from Feynman graphs only in the
SU (2) sector.

e To do it to all loops we should use the symmetry:

psu(2,2(4) — psu(2|2) X psu(2[2)g
ZJ vacuum
boundary J
osp(4*]4) — psu(2/2)

e A single boundary breaks the symmetry to a diagonal psu(2|2).

e By the usual argument, the boundary

reflection matrix should have the same

matrix structure as the bulk one m\
RZE (p) = Ro(p)SLL(p, —p) /

o It replaces psu(2|2)r < psu(2|2) g labels.

N

/
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e Need to determine
Ro(p) = oB(p)/o(p, —p)
e Like the crossing relation in the

bulk, there is a boundary

“crossing-unitarity equation”

R(p) = S(p, —p)R"(p)

N

X
—

/
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e Need to determine
Ro(p) = oB(p)/o(p, —p)-

e Like the crossing relation in the >©
bulk, there is a boundary >

“crossing-unitarity equation”

R(p) = S(p, —p)R“(p)

e This translates to the conditions on op

r~ +1/x™
p) = p) =1.
o5(P)os(p) = =L (p)os(P)
where the Joukowsky variables are a solution of
+
eip:x—, CC++L—CC_—L:—.
W xt r~ g

N /
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e Need to determine
Ro(p) = oB(p)/o(p, —p)-

e Like the crossing relation in the >©
bulk, there is a boundary >

“crossing-unitarity equation”

R(p) = S(p, —p)R(p)

e This translates to the conditions on op

r~ +1/x™
9] p— 9] p— 1 .
o5(P)os(p) = =L (p)os(P)
where the Joukowsky variables are a solution of
+
eip:aj—, x++i—aﬁ_—i:—.
W xt r~ g

e The solution which matches the all consistency requirements is

Ay T
gB(z):1+1/(x+>2€ xB(z")+ixs(z™)

where

1
mix—z O 2rg(z+1/2)

N /
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xB(x) = —1 :




4 N

e So far only right boundary. What about the left?

N /
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N

e So far only right boundary. What about the left?

e The choice of diagonal subgroup psu(2(2)r X psu(2|2) g — psu(2|2) p» may be different.

The left boundary is essentially the same.

e Conjugate the reflection matrix by a twist matrix G acting on the psu(2]2), labels

G = diag(ewﬂ7 6—1'9/27 €i¢/2’ e—i¢/2)

~

/
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N

So far only right boundary. What about the left?

The left boundary is essentially the same.

~

The choice of diagonal subgroup psu(2|2); x psu(2]2)gr — psu(2|2)p- may be different.

Conjugate the reflection matrix by a twist matrix G acting on the psu(2|2) labels

G = diag(ew/2, 6—19/27 eiqb/?’ €—i¢/2)

This is all the information needed to understand the spectrum of asymptotically large

insertions into the Wilson loop.

P1 P2
AA

|
s
[y

AA %
ll AA

P1 D2

YY AA

Nadav Drukker 28-b

Integrable Wilson loops



-

N

So far only right boundary. What about the left?

The left boundary is essentially the same.

~

The choice of diagonal subgroup psu(2|2); x psu(2]2)gr — psu(2|2)p- may be different.

Conjugate the reflection matrix by a twist matrix G acting on the psu(2|2) labels

G = diag(ew/2, 6—19/27 eiqb/?’ €—i¢/2)

This is all the information needed to understand the spectrum of asymptotically large

insertions into the Wilson loop.

P1 P2
AA

|
s
[y

AA %
ll AA

P1 D2

YY AA

But not the case J =0 ...
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Wrapping effects and the quark-antiquark potential

e One can derive a set of boundary thermodynamic Bethe ansatz equations for this open

spin—chain.

e This can be simplified in the small angle limit, where the full answer was reproduced.

[Correa, Maldacen,} [Gromov}
Sever Sever

e They are the same as the usual TBA equations with several small modifications:
— The Y functions are related by reflection Y, s(—u) = Y, _s(u)
— There are chemical potentials dependent on ¢ and 6.

— There is a complicated driving term for the massive Y, o nodes (aka Yq).

e The Y-system equations are unmodified.

— Analytic properties of the functions are different (determined by the asymptotic

solution).

N /
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N

e To reproduce the one loop answer it is enough to consider Liischer-like corrections.

e This requires to calculate the eigenvalues of the transfer matrix

/
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4 N

e To reproduce the one loop answer it is enough to consider Liischer-like corrections.

e This requires to calculate the eigenvalues of the transfer matrix

AA AA

AA AA
P1 P2

AA AA

AA AA :
P1 P2 : P1 P2 ’ —pP2  —D1

e That is just the product of two twisted psu(2|2) transfer matrices.

N /
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e On the Z7 vacuum this is for the Qs bound state

€

TS’Q(p) = slr [Rm) (p) R(E) (p)} = sTr [Rm) (p) GRW

X

= op(p)os(—p) (I+>2 (sTrG)?

€

(-p)G |

/
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e On the Z7 vacuum this is for the Qs bound state

75°(p) = sTr R® (p) RV (p)| = sTr [RP (p) R (—p) G

X

= op(p)os(—p) (F)Q (sTrG)?

e Simple group theory gives
2 sin® Q¢

sin? ¢

(sTrg G)® = 4(cos ¢ — cosb)

And the Liischer-Bajnok-Janik formula is

1 — [~ (¢,0) =\ —2JE
5EN—%;/O dplog(1+TQ (p)e Q)

N /
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4 N

e On the Z7 vacuum this is for the Qs bound state

75°(p) = sTr R® (p) RV (p)| = sTr [RP (p) R (—p) G

X

= op(p)os(—p) (m—Jr)Q (sTrG)?

e Simple group theory gives
2 sin® Q¢

sin? ¢

(sTrg G)® = 4(cos ¢ — cosb)
And the Liischer-Bajnok-Janik formula is
1 — [T (¢,0) (=\ ,—2JE
OE ~ — Z/O dp log (1 + 75" (P)e Q)
Q=1
e Normally for small g (or large J) can expand the logarithm
1L o« [7 - (#,0) (= ,—2JE
OF ~ — dp Ty, @
2 2 | aTs e

g*(cos ¢ — cos 6)?

sin? ¢

N /
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4 N

e Crucial fact is that the dressing factor has a double pole at p = 0

) — oilen(at ) s (o (2mg)*(z* +1/a")(x” +1/27)
o5(p)on(=p) = OE I ))sinh(27rg(x7L + 1/2%)) sinh(2wg(z— + 1/x7))

it a2+ @) QP
sinh? (27 u) p?

/ dp log (1+~£2) = m/c,
0 p

e Then using

N /

Nadav Drukker 32 Integrable Wilson loops




4 N

e Crucial fact is that the dressing factor has a double pole at p = 0

) o 9i(xs(e)xs(a (27g)*(a* +1/27)(z” +1/27)
o5 (p)os(~p) = X=X ))simh(27rg(xJr + 1/xt))sinh(2wrg(z= + 1/x7))

_ it e 207+ Q%/4) Q7
sinh? (27 u) P2

/ dp log (1—|—~£2) = m/c,
0 p

4g2)+1 Lg2)T+2
SinQCb(—l)Q [% —2(J + 2)%—3% + .-

e Then using

e The residue is

cos ¢ — cos 6

Tres€—2JEQ — 9
\/ Q sin ¢

J4+1CO08 ¢ — cosl i (—1)9sin Q¢

N 2
OF ~ —(4g7) sin Q27+1

Q=1
(4g°)7 "1 cos ¢ — cos

- 21 sin @ (Li2J+1(—€Z¢) - Li2J+1(_€_Z¢>)

N /
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For J =0

OF ~

4g* cos ¢ — cos 6

21

sin ¢

5.COS ¢ — cos 0

= 2971

sin @

5 COS @ — cos 0

sin ¢

(Lh(—eiqb) — L11<—6_i¢)>
(—log(1 +€'?) +log(1l + e~*?))

¢+ O(g")

/
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For J =0

4g°% cosp — cosO ,_ . 70 . —id
OF ~ — ¥ o (Liy (—€'®) — Liy (—e™*%))
2621222 ~ 50 (1061 + %) 1 log(1 + e=%))
= = e
g sin @ & ¢ &
cos @ — cos 6
_ 9y? 9050 ¢+ O0(g")

sin ¢

e This integrability calculation is in exact agreement with the one loop perturbative

calculation.

N /
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Summary

e Generalization I: A two—parameter family of Wilson loops interpolating between the

line and the antiparallel lines.

e They are no more complicated than the antiparallel lines. Explicit results at 3 loops in

perturbation theory and classical and 1 loop in string theory.

e These observables interesting in their own right: Cusp anomalous dimension,

bremstrahlung function, renormalization of general Wilson loops.

/
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Summary

Generalization I: A two—parameter family of Wilson loops interpolating between the

line and the antiparallel lines.

They are no more complicated than the antiparallel lines. Explicit results at 3 loops in

perturbation theory and classical and 1 loop in string theory.

These observables interesting in their own right: Cusp anomalous dimension,

bremstrahlung function, renormalization of general Wilson loops.
Generalization II: Including local operator leads to open spin—chain model.

Surprisingly simple open spin—chain model, where the boundary reflection can be

diagonalized.

A set of TBA equations which calculate all these quantities.

/
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e The answer is not very different from that of the usual spectral problem.

by wrapping from one loop on.

e Other interesting observables given by similar spin—chains?

N

e For Konishi wrapping started at 4 loop order. The cusped Wilson loop is given purely

/
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When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

V(L)) = —F4?1)4\/XL

N /
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When I talked about my paper with Valentina a year ago I would end with the question

Will there be a gauge theory derivation of the strong coupling potential:

V(L)) = —F4?1)4\/XL

We are very close to answering Yes!

N /
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The end

/
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