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The symmetry of the S-matrix in planar N/ = 4 SYM

All the on-shell states in ' = 4 SYM can be combined into an on-shell superfield,

1 1 _ 1 _
D= GV nAFA + gnAnBSAB + gsABCDnAanCFD + 56ABCD77A77377077DG ;

which depends on the Grassmann variable n“, and a null momenta pog = a4

All color-ordered amplitudes are packaged into a superamplitude A({)\;, \;,n;}); it
can be classified according to the Grassmann degree 4k + 8,

54, Aid)8O8 (30, i) =
(225 XiAi)0P (5, mZAn,k.

An = Anmuv + AnNvav + -+ A, gy = (12)(23) - - - (n1)

k=0

where we strip off the MHV tree prefactor; A,, ,, denotes the N*MHV amplitude.

N = 4 SYM is a superconformal field theory. By introducing a deformation of the
free algebra, the tree-level S-matrix is invariant under this psu(2,2|4) symmetry:

—A = A <o A Bargheer Beisert Gall
{9%, 95 Pas, Mags, My 4, 50554, Eaa, 0, t5 | [oaber vt ouhin sa00. -
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The symmetry of the S-matrix in planar N/ = 4 SYM
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Yangian symmetry of the S-matrix in planar ' = 4 SYM

e In the planar limit, a dual conformal symmetry has been observed at both
weak [, ioummondtenn 1 s] @and strong couplings [,..a2%,..]. The symmetry has been

rnov Sokatchev 2006

generalized to a dual superconformal symmetry [corchomerySorasme 2008].  1he tree-level
S-matrix is invariant under the dual psu(2, 2|4) symmetry.

Anastasiou Bern

e The four-gluon amplitude has an all-loop, exponentiated form [4nastasiou Bem

—s— —t s — —t
Ay = exp|—T'cugp log & log — + d(log 5 e + log — ) + const].
i T e T

Bern Dixon

A general ansatz to remove all infrared and collinear divergences [¢nRxson.]:

ASDS =1+ Z g%A,,(f) — exp [Z g% (Féﬁ%p A(l) o(fe) + 1+ oW 4 E,,(f)(e))] .
/=1

e Loop amplitudes are not invariant under the dual conformal symmetry, but they

satisfy an anomalous Ward identity [«orcnomemroraicne 2007]. BDS ansatz is exact for n =
4,5, since it is the only solution. In general, a finite remainder function is allowed,

2 2
which depends on 3(n — 5) cross-ratios, e.g. u; = —$-4¢ etc. for n = 6.

1436
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The symmetry of the S-matrix in planar N/ = 4 SYM

e There is strong evidence for a duality between MHV amplitude and a null polygonal
Wilson loop in dual spacetime [y.qaiém zo0r] [Soiaene 2007 -] [Fiavagiini 20071, tested up to

1 1 Drummond Henn Bern Dixon Kosower Roiban
tWO'loop SIX'pOInt [Korchemsky Sokatchev 2007] [Spradlin Vergu Volovich 2008 | »

e The original superconformal symmetry of the amplitude are mapped to the dual
symmetry of the Wilson loop by T-dualities .55 50s] [+t iaisos]. Their closure is
an infinite-dimensional Yangian symmetry, y[psu(2,2[4)] [SummsgHenn].

e A generalized duality between the superamplitude and a supersymmetric Wilson
loop has been derived at the integrand level [ Yas05.,,][S3ienHue], although a rigorous
UV regularization for the super-loop has not been carried out [28izky korchemsky

_ 1
An(Aiy Aiymi) = Wi(zi,0:) (1 + Oe)), W, = ﬁ(TrP@_‘ﬁA(wi’ei)y

e The chiral super Wilson loop obscures one chiral half of superconformal symme-
tries. As a natural generalization, Wilson loops in non-chiral N' = 4 superspace
generally manifest the full symmetry [S39 0] [vasssia] [schmm gy 2012]
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The symmetry of the S-matrix in planar N/ = 4 SYM

e We define BDS-subtracted S-matrix: A, = ABPS x R, , which is a finite object
depending on dual conformal cross-ratios and the so-called R-invariants. It has
simple collinear limits, and by definition, Ry o = R5 0 = R5 1/Rtree = 1.

e Such invariants can be constructed using twistors of the dual (super)space [%559%,

2009
momentum twistor :  Z; = (Z%, x2) = (AY, 28N, 094 Nia);

(1234) (4561)
(1245)(3461)°

four-bracket :  (ijkl) = capeaZl 23252, €0, uy =

6014 (xA(jklm) + cyclic)

Reimvanant : (i 5 kiml = s s (ki) (i) (mig k)

They form the fundamental representation of the dual superconformal algebra,

- 0
Q% = (Q%,6%) Z ZaA, Qi = (64,94 =50 =) xi

— 0Z¢
§ 0
aaaﬁaaam(x ) 7 s RA :%A = A—
(sB B aﬁ Z ) aZb ;Xt aXZB
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The S-matrix from the symmetry: a new proposal

>
) + cyclic.

e The BDS-subtracted S-matrix is not invariant under the naive Q4. We propose an
all-loop equation for the “anomaly” as collinear integral (see also [2lim9e.]),

B T=00 A .
QfRn,k; - Fcusp resez()/ (d2|32n_|_1) I:Rn_|_1’k_|_1 - Rn,kRg,e—El’l] _|_ CyC“C7
7=0

a

= = 5 2 4
where the cusp anomalous dimension is known g = g2 — Z-g* + HZ-¢6 + ...

e The RHS is an 1d integral over 7; one then computes the residue at ¢ — 0,

(n—1n23)
(n123)

=0 —1n23) oC
res,_ 2Bz, A = n —1nl a]{ d / dr(d*By 1) .

Brois = By — & By 1 — T2Z1) 4+ O(€?),
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The S-matrix from the symmetry: a new proposal

Using the discrete parity symmetry, we derive an equivalent equation for level-one
1a . - a a
generator, Q( ) = (8%:---) = %Zi,j sgn(s —4) (Zz GYA] ZJ Xl Z; axB Xf ag )

> dr aRn’k _
- (dnn—Fl)A Rn—l—l k — ZC i,7 a + CyC||C.

t,J

S)aRn k — FcuspZa 21_{% ;

The equations essentially amount to Yangian invariance of the S-matrix. RHS are
not anomalies: they should be interpreted as quantum corrections of (naive) sym-
metry generators acting on the S-matriX [ cae vetoughiin z000] [vieraso00] [meLodghin Fiefka 2010]-

We claim that the equations are valid for any value of the coupling. When ex-
panded in powers of I'qs, they recursively give derivatives of all-loop amplitudes.

The differential equations are nice: both sides are finite, regulator independent,
and manifest the transcendentality of loop amplitudes. They are powerful: together
with collinear limits, the solutions uniquely determine the full S-matrix.

22. August, 2012, Song He: Yangian symmetry of scattering amplitudes in planar A/ = 4 Super Yang-Mills

9/21



The S-matrix from the symmetry: outline of a derivation

The way () acts on a Wilson loop is by inserting a fermion operator on the edges,
which was calculated in explicit examples using Feynman diagrams [§gigHuo!

Qﬁ(W@ x g° %dxda«wA + Fo4 + .. D)W,

The key new ingredient: the fermion insertion is the unique excitation with given
guantum numbers. The Operator Product Expansion [4lda Gaiotio Maidacena ] gllows usS to

Sever Vieira 2010

extract the excited n-gon Wilson loop from an (n+1)-gon in collinear limit,

1 _ 2 T=00 -
ABDSQ<Wn7k> - F?g2) reSc—o / d2|3Zn+1Rn_|_1,k+1<T, 6) —+ CyC||C,
w 7=0

Given that BDS ansatz is one-loop exact, we obtain the @ of BDS,

1 r=oo |
<Wn’k>QABDS — _FcuspRn,k r€Sc—o / d2|3Zn+1Rg,e—E1,l<T7 6) + CyC“C‘
n 7=0

Both 7 integrals diverge, but the sum must be finite, so we have ¢?/F(g?) = Tcusp-
A crucial test of our derivation is to check the dispersion relation of the insertion.
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The S-matrix from the symmetry: outline of a derivation

p—d
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The S-matrix from the symmetry: outline of a derivation

The fermion operators are labeled by a momentum, p, conjugate to its position
along the edge. We want to understand the log e term in momentum space,

lim log (/ dr 72 d0|3Xn—|—1 Rn+1,1> — loge x v(p) + C(p),
0

e—0

where the dispersion relation ~(p) has to match that of a fermion excitation of the
null edge, known for any values of the coupling thanks to integrability [55°].

We have derived R ; up to two loops, which can be used to give v(p) to order rgusp,

2

() = Tasp (12— (1) ~ 22 (4 + 40/ (- — 1)+ 6€(3) ).

This agrees precisely with [£55°], and it also confirms the prefactor must be I'¢yqp.

For RHS of the equations, we only need the total-7 integral (zero-momentum).
The cancelation of log ¢ divergences in that case is guaranteed by the Goldstone
theorem: the fermion with p = 0 is a Goldstone fermion, thus ~(0) = 0.
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The S-matrix from the symmetry: jumpstarting amplitudes |

The simplest case, MHV remainder function, R,, o, is independent of Grassmann

variables. We can obtain all the derivatives from its @,

= a
1
5’)(1 S YA

Rn,Oa

which uniquely determine R,, o, up to a constant (fixed by collinear limit). From the
RHS, we can already deduce its total derivative must be of the form

dRpo =Y F;jdlog(i—1ii+1j),
i,]

which holds to all loops. This proves the conjecture of [ggguet].

Remarkably, the solution to () equation is also unique for NMHV amplitude, up to
a linear combination of R-invariants, which can be fixed by collinear limits.

We need both equations beyond NMHYV. For all-loop N*MHYV, the solutions are
unique, up to invariants under naive Q, Q and Q). It is known [Korchemsky J[orummond
that all such invariants are given by the Grassmannian formula [/ amed cashe=e].
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The S-matrix from the symmetry: jumpstarting amplitudes |

e From the collinear integral of Rl %P ‘one can easily compute the derivative of two-
loop MHV hexagon, reproducmg the el s e || e el

2
1 1 1 il
RES® = 42 (L+ u;) — S Lia(1 - ;)>—— (Zng (1 - u)) +6J4+ 3 J2+E

1=1

Higher-point amplitudes are similar; we found the symbol agrees with [Sgig-+uet

e We derived the two-loop NMHV hexagon, and found agreement with results in
Kosswer Rojpan] and [Pixon brummond] - Similarly we computed the symbol for the heptagon.

Vergu Henn

e An ansatz was proposed for S[R3'°°p] pixon orummond] - hased on physical considera-
tions, e.g. OPE constraints, and assumptlons on possible forms of the symbol. We
confirmed their assumptions, and fixed the two undetermined parameters,

SIRSE™) = (S1X] - 28041+ g5 SIA]) (01, um, ).
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Jumpstarting amplitudes Il: restricted kinematics

Amplitudes/Wilson loops simplify significantly for the restricted kinematics when
the 2n external momenta/edges are embedded in a two-dimensional sub-
space [ qaday o][2ebucabun] [ esior 1. It is natural to do the reduction supersymmetri-
cally, and the symmetry factorizes PSU(2,2|4) — SL(2]2)aen X SL(2|2)odq:

Zoi1 = ()\%i—h 0, )‘gz’—lv 0, X%i—lv 0, X%i—lv 0)7 Zoi = (07 )‘%iv 0, )‘%iv 0, X%iv 0, X%z)

Four-brackets factorize, (2i—12j—12k2]) = (2i—125—1)[2k2[]; even and odd

cross-ratios are built from 1d distances, uq .. g = EZ 2 gg Zi.

Superamplitudes will be built from “mini” R-invariants in even and odd sector,

0°({ab)xc + (be)xa + (ca)xs)

be) =
(abe) (ab) (be) (ca) ’
Tree amplitudes are trivial combinations of R-invariants, which, e.g. for N°MHV,
are products of (abcd) := —(abc)(acd). Loop amplitudes are combinations with

coefficients being pure, transcendental functions of conformal cross-ratios.
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Jumpstarting amplitudes Il: restricted kinematics

e The Q equation in restricted kinematics is derived by considering the overlap of a
2n-gon with the collinear limit of (2n+2)-gon. In the even sector, we have,

Q3 Rop i = Fcusp/d1|2)\2n—|—1 /d0|1)\2n—|—2(R2n—|—2,k—|—1 — R™ Ry, 1) + cyclic,

where we take A5, 12 = A2, + €Ao SUpersymmetrically, and explicitly the measure is

A1
/d1|2>\2n+1/d0|1>\2n+2 = Aap.q IM <)\2n—|—1d)\2n—|—1>/d2X2n—|—1(dX2n—|—2)A

€E—>
A2p—1

e From a reasonably nice form of N2MHV tree, we applied the equation twice and

Heslop ] [Gaiotto Maldacena

derived the 2n-point two-loop MHV, which agrees with [, %

Sever Vieira 2010

e A nice byproduct from the computation is the one-loop NMHYV, now written in a
basis of R-invariants, in terms of functions of cross-ratios, e.g. the octagon

tree

Rg,1 = ((357)[246”81,1(“17“2) + 7CyC|iC) + Rg 1 f82,1(U1»U2);

81,’11400'0 = log(1—wu1) log(1—u2), 827’11"00'0 = logu1(1—u1) logua(1—us2).

22. August, 2012, Song He: Yangian symmetry of scattering amplitudes in planar A/ = 4 Super Yang-Mills 16/21



Jumpstarting amplitudes II: one-loop N2MHV

o For k+¢=3, i.e. one-loop N>2MHV, two-loop NMHV and three-loop MHV, new struc-
tures, such as combinations x—y, 1—xz—y, appear. We computed the amplitudes
explicitly using the equations. The result is highly non-trivial and interesting.

e The one-loop N2MHYV octagon can be put into a nice form (u; := Uj i42,i+4,i+6)

Ui1u2

Rg 2 = Rgs (fs,2(u1,u2) + fs,2(uz,u1)) + (3 cyclic),

].—Ul_'U/Q

2

where Rg% = (1357)[2468], fs2(x,y) = Liz(z) + 1 logzlog (1_‘”) — &=

Yy

e The same pattern also appears in higher-point N°MHV, e.g. the decagon reads,

Rio2 = (1357)[26810] f1g 2(u1, us) + (4 cyclic) + [(1357)[46810] f1o o (w1, us)
+ (1357) [2468]]012072(?14, uz) + 2(1357)[2410][468] fs.2(1—u1,u10) + (9 cyclic)] + ... ,

where ... denotes remaining log log terms with pure R invariants as coefficients;

f110,2(x7y):2 - y(f8,2(1_3371_y)_f8,2(y7x))7

1 —x —
f12072(56',y) — 2Mfg)2(y, 1 — Qj) — QM
r—Y T —

f8,2(33, I — y)

22. August, 2012, Song He: Yangian symmetry of scattering amplitudes in planar A/ = 4 Super Yang-Mills 17/21



Jumpstarting amplitudes Il: two-loop NMHV

e We determined the two-loop NMHV octagon, up to one parameter corresponding
to adding a multiple of the one-loop amplitude, in terms of the two functions:

1,2-loop

1— : : 1 :
7% = Ligp(x, —2) + Liz2(1-, %) = Liza(z, =) = Liz2(1,y) + C(z,y) + (z < y),

T —3b
where the “classical part” C'(x,y) involves only polylogarithms of degree 3 or less:

x T 1—
ey ) = — <u3( ) —Lig(——) i i i (——) — Lig(y)) log ——
(l—)(l—) 1—y - o -

oc?(l—y)

) logy(1—=)

- 24(3)) log(1—=x)
Y

+ (4Li3(y) + 2Lig(1—y) + Lig(y) log

1 1
+ (— logzylog(l—x)(1—y) — — log x log y) log(l—=x) log(1—y)
2 2

+ Lz log? (1=2) + “Lia(2)liz(v) + _ log? (1-2) log” (1-v),

2,2-loop

and a simpler function f3’1 " = g(z,y) + (v < 1-2) + (y < 1-y) + (z < y):

g(x,y) = | 6Lis(1—x) — Lig(1—x)log —— + log” xzlogl—=x | logy + 8log:c—|— logl—x | logxlog” y
9
4

—1 1 -
og T ogy) + 160

1 2
= log zlogl1—xlogylogl—y — 3((3)logz + % (Z log = log

(1—x)
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Jumpstarting amplitudes Il: two-loop NMHV

e The function fg , is basically a component amplitude, fa.1 = (13)[68]Rg 1]y 1535655

We consider small = expansion, fg (v = %=, w = =) = S0 fa(w)o™
= bgumm”hgv+[nn@Lhﬂ—w%+bgwk%0+ﬂomm+{%gnbg1+w]@
4 4(71_3)71 log(1+w) + . n)n(%—zsl( )) log wlog(1+w) — = ) Liz(—w)
+ 200 (61 ()~ 2 ) log(1+w)? — 2% (6 Lis ()~ log w Lin(—w) 72 log(1+w)),
P21 10g = [ Tog 7Ty + T log? (140 — T tog(14),

where the log v part agrees with OPE leading-order predictions. The most interest-
Ing part is in terms which mix v with w, while the remaining terms are factorized.

e The result becomes remarkably simple after doing a Fourier (Mellin) transform,

1 1
dv dw D .
ﬂn@z/-— — f(v,w)v"2w'2;

o YV Jo W

= factorized.
s1 o (Ph4) psinh(Z2) ¢sinh(5) p—q i
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Jumpstarting amplitudes Il: three-loop MHV

We also derived the two-loop NMHV decagon, whose non-trivial, mixed part is
essentially a sum of octagons. Based on this, we obtained the complete function
for the three-loop MHV octagon, up to two constants multiplying two-loop MHV
and NMHV octagons. All other beyond-the-symbol ambiguities were fixed.

The result, in terms of functions like Lis 3, Is relatively involved, but the small x
expansion is compact; in particular the mixed part is similar to two-loop NMHYV,

n

fg'IOOp _ Z [ciwi(logvlog 1_I:w

a=

— |
1w e

+ 2 Lig(—w) + log wlog(14+w)) + c;w" log

/

¢
+ Z logvlog(1+w) + 2 Lig(—w) + log wlog(1+w)) + —F log(1+w)]reg

+factor|zed.
We expect it to have a nice Mellin representation, and possibly also for higher

points. We have a rich set of data: non-trivial but simple, suggesting some under-
lying picture. How to understand such nice structures from integrability?

22. August, 2012, Song He: Yangian symmetry of scattering amplitudes in planar A/ = 4 Super Yang-Mills 20/21



Summary and outlook

e The all-loop S-matrix in planar N/ = 4 SYM is invariant under a suitably deformed
Yangian symmetry at the quantum level, and is fully determined by it.

e We derived new, elegant equations based on the quantum-corrected symmetry,
and tested them extensively against e.g. results of multi-loop amplitudes and OPE.

e The equations have provided new data for the S-matrix of planar N' = 4 SYM; we
hope that they will provide more insights into its integrability.

e Open questions

OPE interpretations of the result, especially how to understand multi-particle
states? Relations to the spin chain picture in [$ever Yang]?

Understanding the equations at strong coupling? Relations to TBA, Y-system?

Beyond amplitudes in ' = 4 SYM: non-chiral Wilson loops/correlation functions
in the light-cone limit? the S-matrix of super Chern-Simons from symmetries?
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