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1 Introduction

AdS/CFT 1907~

Diverse aspects in diverse set-ups

The most basic aspect in the most basic set-up

Structure of CFT in N =4 SYM/AdS; x S string duality

Basic ingredients for CFT

¢ 2-point functions <  spectrum

¢ 3-point functions < interaction

=  4-point functions : crossing symmetry, etc
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Correlation functions in the basic duality:

(O1(x1) O2(x2) * + - On(xn))

O;i(xz;) = Tr (o1 (xs) p2(xs) -+ ) SYM side
SV [ @z Vi(zis®i)  ® € O(AdS5) string side

Studies of the basic correlation functions have naturally evolved in the manner

BPS (kinematical ) =—> Non-BPS (dymanical)
2-point —> 3-point

A large number of people contributed to this fascinating developments,
using integrability-based methods: integrable spin chains, Bethe ansatz,

method of spectral curves, etc. ( See the review by Beisert et al (2010))

U

Most recently, the focus has been on
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Non-BPS 3-point functions using integrability

SYM side Technology to compute the overlaps of Bethe eigenstates
Okuyama, Tseng, Roiban, Volovich, Alday, Gava, Narain, ...,
2011 ~  Escobedo, Gromov, Sever, Vieira, Caetano, Foda, Serban, Wheeler,

Kostov, Matsuo, ...

String side Use of semi-classical integrability for “heavy” states

e Heavy-Heavy : Tsuji, Janik-Surowka-Wereszczynski, Buchbinder-Tseytlin,. . .

e Heavy-Heavy @ Light(BPS) or near BPS
2010 ~  Zarembo, Costa-Monteiro-Santos-Zoakos, Roiban-Tseytlin, ...,
2011~  Klose-MclLoughlin, Buchbinder-Tseytlin, ...

e Genuine Heavy-Heavy-Heavy: <— | focus of this talk

2011 ~  Janik-Wereszczynski, Kazama-Komatsu
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Holographic 3-point function in the saddle-point approximation

- Structure N

3
G (w1, 2, x3) = e [T Vi[ X3 24, 25, Q)
i=1

ax; = Points on the boundary of AdS
S ~ log V;[Q;] ~ O(VX)

Vo(as)

X, Vi(a1)

5% (—S[X] + Eijlog %[X])

e V; = (1,1) primary = No z; dependence.
@ Near each x;, the solution X, ~ the saddle point solution for (V;(x1) V;(x2))
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Serious obstacles

¢ No systematic method to construct conformally invariant vertex
operators of interest (even semi-classically) in curved spacetime.

¢ No three-pronged saddle solutions in curved spacetime are known.
Nontheless

It is possible to overcome these difficulties by exploiting the classical
integrability of the string in AdS, X S*

Key: The global information is connected to the local infor-
mation through underlying integrability and analyticity
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¢ R. Janik and A. Wereszczynski, arXiv:1109.6262
e |Strings in AdS, x S¥
Computed the contribution of the AdS5 part of the string ~ evaluation of

the action. (Contribution of the vertex operators ~ trivial since string is
structureless on the boundary )
Contribution of the (spinning) S* part (action @ vertex) remains to be com-

puted.
¢ Y.K. and S. Komatsu

— arXiv:1110.3949: Part |
e |Large spin limit of GKP spinning strings in AdS; (LSGKP)
Evaluated the finite part of the action S[X]

— arXiv:1205.6060: Part II:

* Developed a general method for evaluating the contribution of the

vertex operators = Applied to GKP strings
* Complete finite result for the LSGKP 3-point function .
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Part |

Computation of the finite part of the action

(~ Calculation of the area of the Wilson loop for gluon-scattering)
¢ Integrability for strings in AdSs3 and GKP string I
* Method of Pohlmeyer reduction

¢ Action in terms of contour integrals

Generalized Riemann bilinear identity
¢ Analysis of the auxiliary linear problem from two directions

— Monodromy matrices and their eigenfunctions

— WKB analysis of eigenfunctions

¢ Computation of the finite part of the action
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Part

Contribution of the vertex operators

¢ state-operator correspondence
vertex operators = wave functions

in terms of action-angle variables

— Integrability for strings in AdS5 and GKP string 11

* Framework of spectral curve and finite gap solution

— Sklyanin’s method & global symmetry transformations
to construct and evaluate the action-angle variables:

=>- contributions of wave functions
¢ Computation of two point functions

¢ Computation of the three point function for LSGKP strings
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Part |

Computation of the finite part of the action
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2

Integrability for strings in AdS3 and GKP strings |
Method of Pohlmeyer reduction

2.1 String in Euclidean AdS;

String in Euclidean AdSS5

(radius set to 1)
X — (X_l, ,Xl, X2, ,X4) C AdS5
X - X=-X2 +X24+X24+X2=-1

Poincaré coordinates:

Boundary of AdS5 at z = 0, described by (x, )

1 TT
X+EX_1—|—X4:;, _EX_l—X4:Z—|——
X
z

z
XEXl—I—ZXz:

’ XEX1—2X2=

N |8
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Convenient matrix representation and global symmetry transformation

X, X
X= ( Xjf X_), detX =1
X'= ViXVgx

Vi € SL(Z, C)L, Vg € SL(Z,C)R

Global symmetry: G = S0O(4,C) = SL(2,C); x SL(2,C)g ,

Action
szT.AreaZZT/dzzax.é;z, X.X=_1
Eq. of motion and Viraosoro conditions

90X = (80X -80X)X, 8X.-0X=0X-0X=0
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2.2 Pohlmeyer reduction

Describe the system with G-invariant fields o, p, p (N 1L X,0X,0X)
20 C AY s o _ 1o o
e =-0X - -0X, p:5N 0°X , p:—EN 0°X

Eq. of motion + Virasoro < Flatness of certain left and right connections

0+ Br,0+ B =0, [0+B90+Bf=0
U

80a — e** + ppe 2 =0
p = p(z), p = p(z)
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Integrability =- Extend to flat Lax connections B.(§), Bz (&)
with & = complex spectral parameter

B.(£) = %cl»z +A.,  Bai€) =£Ds + As

They are expressed in terms of ¢, p and P as

. %8(1 0 . —%504 0
0 28a 0 28a
0

b — 0 —e” . — —pe™“
= —pe~ % 0 ’ T\ —e” 0

BL and B are identified as

e BE=B.(¢=1), B.l=DB:(¢=1)
e BE=U'B.(¢=i)u, BE=U'B:(¢=ilU

u:e’iﬂ'/4 01
1 0
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O Auxiliary linear problem and reconstruction formula:

Flatness condition < compatibility of the set of linear equa-

tions:

Auxiliary linear problem

(3+Bz(€))¢(€azaf) =0, (5+BZ(€))¢(£7272) =0

Two independent solutions for 1 (&, z, Z) contain all the important
information

= Two sets of independent solutions for the left and the right problems
¢f=¢a(€=1)a ¢§=Uf¢a(€=i)a a,a =1,2
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S L(2)-invariant product

(hyx) = €Bpaxg, (€% = =P, 2=1)

L+ are normalized as

WEYL) = €ans  (WE, T = €

Reconstruction formula for the string coordinates

L R L R
Raa = VeV T ¥2,a%54
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2.3 GKP string spinning in X;-X> plane

“Reference” (elliptic) GKP solution (Gubser-Klebanov-Polyakov, 2002)

ref X, X )\ _ [ e cosh p(o) e“" sinh p(o)
GEP X X_ e “7 sinh p(o) e"" sinh p(o)

ref
It can be expressed in terms of the Jacobi el- x

liptic functions® dn and cn A * X
2 = I
k=wk, w=-Kk), k<1 |
vy

(z,z) = (0,0) (xz,z) =(0,0) (x,Z) = (z0,T0)
dn (w(o + w/2
cosh p(o) = (w(o + 7/2)) (R S R

V1—k? pe) =
Y U A Y A Y B O
kcn (w(o + mw/2)) TR

T N Y A O A
RV R R
\/1 — k2 o\
| | »"J \ ‘\J
Y v v v

sinh p(o) =

“IC(k?) = complete elliptic integral of the first
kind.
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Large spin limit of GKP (LSGKP) : k—1=>w-—okK

gt _ [ € " coshp(o) e sinhp()
LSGKP e "7 sinh p(o) e*" sinh p(o)

Dilatation charge and spin in terms of

A 2 A
A = £K,/ do cosh? p = £(f-sm' + sinh k)
27 0 27
A 2 A
S = £K‘,/ do sinh® p = £(—K,7T + sinh k)
27 0 27T
1 A
SL(2)r (left) charge ¢+ = §(A + S5) = 2£sinh KT
Iy
VA

1
SL(2)g (right) charge £~ §(A —S) = Pl K £ forlarge Kk
™
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O View from the Pohlmeyer reduction:

From the definitions of p, p and «,

K2 K2

p(z)= vk p(z) = T
e20(2,2) _ —

Auxiliary linear problem: (8 + B.(£€))® = 0 and (0 + B:(£€))y =0

Solution

~ ~1/4p0/2
'Qb — -A/’vb ’ A — (p 0 p1/4g—a/2 )
- ﬁ 4 B B 1
Py = exp (:I: 5 (67'Inz — ¢&In z)) <:|:1>
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Monodromy around the origin

)’ 1) e 0
() = (32) o= (73 )

p(&)=ikm (£ + &)

This characterizes the behavior around each singularity (leg).
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3 Action in terms of contour integrals

3.1 Finite part of the area
Definition of the “regularized area” (for N-point function)

A:Z/dzzaf°(‘§)_€24/d2262a:Afin+Adiv

|12

0i
Adiv = 4/d2z VvPpp S 4/d2z 194 ~ log divergent

|1z — z;|?

Apin = 4/dzz (eza — pﬁ) EolM 2A,¢ + (N — 2)

Areg = /dzz (eza + ppe 2™ — 2\/p15)
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We can write A,eq as  (cf. gluon scattering problem (Alday-Maldacena, ...) )

4 /D
A= VP

w = udz + vdz = closed 1-form

where

1 1
u = 2y/p(cosh2a — 1), v=—(04)?, d=a— —Inpp
VP 2

Behavior of p(z) near the insertion points

2
Z—z; —I{'I;
=z ~Y
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For three point function, p(z) is actually uniquely determined

1 (Kiz12213 K5Z21Z23  KaZ31232 1
p(z) = — ( - )
4\ z— 2z zZ — 2Z9 z—2z3 ) (z—2z1)(z — 22)(2 — 23)
Zij = 2 — Zj

Define the function

Az) = /: Az dz' = /z: Vp(z)dz'

0
A(z) has

e three log branch cuts running from the singularities z;

e one square-root cut connecting 2 zeros of p(z)

A is single-valued on the double cover D of the world-
sheet.
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Stokes theorem = Ayeg as a contour integral

Areg:i/DdA/\w:i/Dd(Aw): —i/aDAw

The contour @D for the LSGKP three-point function

Contours on the 1st sheet

Further, we can re-express faD Aw more explicitly by using the general-

ization of the Riemann bilinear identities.
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3.2 Generalized Riemann bilinear identities

Usual Riemann bilinear identity for closed 1-forms A and w:

Example: Hyperelliptic Riemann surface with g = 1

b cycle

a cycle

R AN £

One can derive a generalization for the case with additional log branch

cuts
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The full identity is rather complicated.

® For LSGKP strings, substantial simplification occurs. The most convenient

form is
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® The major task will be the evaluation of the integral ffd- w.
j

This information is contained in the behavior of
the eigenfunctions of the auxiliary linear problem
around z; and along paths connecting {z;, 2, }

holcorin-28




4 Analysis of the auxililary linear problem

4.1 Monodromy matrices and their eigenfunctions

Globally we do not know the saddle point solution.

Locally around each z;, the solution ~ LSGKP solution
Characterized by the local monodromy matrix M; € SL(2,C).

Each M, separately, can be diagonalized as

B ei(8) 0 A . B
VMU = ( 0 eiﬁi(£)> i) =i (€7 +E)

Eigenvectors 2L of M,

14~ exp [i (%/mderf/\/ﬁdz)]
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*x M;'s cannot be diagonalized simultaneously.

¢ det Mz =1
¢ Global consistency MiMsMs; = 1

= M, and the eigenvectors i1 can be determined in terms of pH;(§)

up to some unknown constants.

e These constants cancel in some combinations of | (i, j—)

Example

2

sip PLE)=P2(O)+P3(E) 5., —P1(E)+P2(£)+P3(8)
log (2_,1,) +1log(1_,2,) = log ( 2 >

sin p1 (&) sin p2(&)

To separate out the individual terms, we need to know the global
analyticity property of (24, j5) as a function of &.
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4.2 WKB analysis of eigenfunctions

For this purpose, solve the auxiliary linear problem in powers of £ (and

1/§)
@+ B.(§)¥(€) =0, (9+ B:(§)¥(€) =0

(&
v=Av= (%)
_ S )
Y1 = exp [T-I-So-FﬁSl-l-ﬁ Sy 4 .-

We can solve for S_1, S, S1,. ...

In the vicinity of each z;, classify the two independent solutions as

s; = small solution: exponentially decreasing, unambiguous

b; = big solution: exponentially increasing, ambiguous b,’i = b; + as;
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5 Computation of the finite part of the action

Combine the analysis of monodromy eigenstates and the WKB eigenstates:

Relate s; with ¢: This depends on the sign of Im & (S_; is imaginary)

Im £ > 0 region (with ke > K1, K3, K1+ K3 > Kao.)

= ldentification: sy~ 1,,80,~2_,83~ 3,

Contour integrals fdz’ w appear in ratios of (s;, s;)

(82, 83) _ (2-,34)
(s2,81)(s1,83)  (2-,14)(14,34)

n N
= e p[g/dl)\dz—i—{/dl\/z_)dz—l—z

w+...]

dy

Im £ < 0 region l|dentification with 24 are reversed.
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Thus one finds

_ (14,2-) Img >0
<81782> — { <1_’2+> Im£ <0 ’ etc.
Apply Wiener-Hopf decomposition formula
L - F(¢), (Im¢ > 0)
i ) ™ s'— e r e = {—G(s), (Im¢ < 0)

to the preV|ous|y obtained relation

n P1(§)—p2(£)+p3(§) sin —151(5)4-232(5)4-153(5))

S1
log(2_,1;) + log(1_,2;) = log ( s2in151(£) sin P2 (§) 2

=> We obtain log(2_,1,) and log(1_, 2, ) separately in terms of p;(&).

So we can now evaluate A,.4 in terms of K; in the manner

Areg = [ w <= ratios of (si,55) ~ (i) = Pi(€) 3 ¥
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4 Result for ATeg

7T
Areg = E + 7 —IilK(K,l) — K,QK(FLQ) — K,3K(K,3)

Iﬁ:1—|—l€2—|—l/{,3 '431—|-l£2—|—f<53

i 2 K 5 )
4 | — K1 -|-2n2-|—f<:3|K(| — K1 -|—2,<,2 _|_,<L3|)
4 |K'/1 — ’;2 —|-K:3|K(|K,1 — ;;2 _|_,<,3|)
+ k1 + Ko — 14:3|K(|I<:1 + Ko — ;4;3|)
2 2
\
where K (x)

1 oo
K(w) = ;/ do 6_0 log (1 — e—4ﬂ'mcosh9>

— o0
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Part ||

Contribution of the vertex operators
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6 Evaluating the contribution of the vertex operators via
state-operator correspondence

* State-operator correspondence

In the saddle point approximation

Vig«(z = 0)]e 54 (7<70) = ¥[q, (79, o)]

, \Ij[q*(mv (7)]
P er—i—w

q+(7T,0) = saddle point configuration in some canonical variable g(7, o)
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If we can employ the action-angle variables (J;,, 0, ), the wave func-

tion can be expressed simply as

W [0]= exp Zjnen E{JIn})T

& Extremely hard to construct action-angle variables for non-linear
systems by solving Hamilton-Jacobi equation.

* For integrable systems, we may use Sklyanin’s method to
construct action-angle variables
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6.1 Integrability for strings in AdS3; and GKP strings ||
Framework of spectral curve and finite gap methods

To make use of the Sklyanin's method, we need to use the framework of spectral

curve and finite gap methods.

O Right and left Lax connections:

Basic object = right flat current (S L(2)g-covariant, SL(2) _-invariant)
j. =X710X,  j:=X7'8X

=

Right Lax connection with spectral parameter - : = singularities at * = +1

1
J(x) = VEE JZ () = Jz

1—:_1: 1+
0+ J.(2),0+ JL(x)] =0
1—¢2

Relation between x and the previous parameter £ : o = ez
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Similarly, we will need left flat current and left Lax connection
I, =0XX1!, [;=90xx1
0+ J1(2) 8+ Ji(@)] = 0

l —_ 1 l —_ 1
=T ams O E T

Most important object: Monodromy matrix Q(x, z)

Q(z; zp) = Pe~ $(Jz(@)dz+JT;(z)dz)

ep(T)
0 e—ih(=) u(x; 20)

w(x; 2g) "1

p(x) = quasi-momentum
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Properties of €2 is encoded in

Spectral curve I' : hyperelliptic Riemann surface with singularities
' : T'(x,y) =det (yl — Q(x;29)) =0
N <y _ eiﬁ(w)) (y _ e—z‘ﬁ(w)) — 0

Property of I' <= behavior at € = 00,0 and at * = +1.

¢ Conserved right and left global charges from the behaviors at * = o0, 0

p(a) = 5. +0() (a2 — o)

D = 2T™m A x> xr —
p(r) = 2 +\/XS°+O( ) ( 0)

¢ Leading singular behavior of p(a) around x = =1 is dictated by the Virasoro

condition

01

u~1 = special Jordan block
00

Tr (]z]z) =0 = jz = Uu <
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Diagonalizing 2(x) carefully,

Pa) = +—=—==+0((@F1) (z— *1)

Vite

“Half-poles” at & = 41, as opposed to simple poles for R X S? case.

Structure of the spectral curve for g = 1

r=—1 r = +1
U \AVAVAVAVAVAYA BB G & IR AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV S IEEREEID 4> GEED Gl AVAVAVAVAVAVAVA

(X's denote node-like singularities (€?(®) = e~%(*) ) accumulating to £1. )

Spectral curve with finite g = construct “finte gap” solution
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6.2 Construction of the action-angle variables

Sklyanin’s method

Normalized Baker-Akhiezer eigenvector h(xz; T) of Q(z; 7,0 = 0)

(*) Qz;T,0 = 0)h(z;T) = eP®h(z; )

fn-h=1| ﬁ:(""’l), A

ns

I
N
& &
N =
N~

f_;,(a:; 7) has g+1 poles, as a function of x.

Their positions on I' : (1,725« « « » Ygy Yoo ) (T)
~;(7) depends on 7t
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Q(x) (hence p(;))= dynamical variables = {Q(x), Q(a:’)}P

Through (%), v;(7)'s become dynamical variables.

Sklyanin constructed canonical variables associated to these
poles !

Canonical pairs “(q,p)” ~ (Z(’Yi),ﬁ(’?’i))

{Z(’Yz) ’ \/_p(AYJ)}P — 523

{Z(fy’t) 7z(7.7)}P — {p(’\/z) 7ﬁ(’7j)}P =0

z = x + — = Zhukovski variable
€T

'Applied to string in R X 83 by Dorey and Vicedo. Applicable to Euclidean AdSs5 case as

well.
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Action variables S; (~ § pdq)

S; = ;\/;/zﬁ(a:)dz

= "filling fraction”

(:=1,2,...,g9,00)

Angle variables ¢; conjugate to S;:

Generating function F'(S;, z(7;)) for the canonical transformation

OF vV OF

(*) 8 (i) = RP(%’) ) (%) a5, = i
Integrating ()
o\ i)
F(S;,z(vi)) = 4—7”2 /z(wo) p(x')dz
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To compute ¢; from (*%), vary S; with all other S;’s fixed
&< Add to pdz a 1-form whose period integral along a; is non-vanishing o< w;

with the properties

Cs

7 S
Using this we get

0,

F V(T)
o;(T) = o5, = 271'2’;/960 w; = Abel map

® ¢;(7) indeed evolves linearly in 7 for classical solutions.

e Need one more angle variable qgo conjugate to the left global charge

So. This is obtained from the left connection J'! by the same procedure.

holcorfn-45



O Illustration: The case of LSGKP string;:

Explicit form of the right-current

1 0 0 e3~7
= X 1dX = —
J d nd7<0_1>—|—na<e_2m 0 )

7+ and j, are independent of o .

Monodromy matrix

Q(x, T) = exp ( /U T J,,(a;)da) — 127”"’21\4(7, x)

; 2KT
—ix e
where M (1,x) = ( o )
1T

e

Eigenvalues of M (1, x): Ay = /1 — x? = time-independent (conserved)

Eigenfunctions

e2nT
Vi = (:I:\/l—a:2—|—iw>
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Normalized Baker-Akhiezer vector (for A )

1
h = }¢+ ’ 1 =nihy + n2h,

= f=mn1e" + na(v1 — x? + ix)

h has a moving pole at the zero of f.

2(8) = - (5) e = sin(26(t 4+ £0)), (T = it)

t() = ——log—

Change of the normalization vector shifts the position of the pole.

The differential ws, with the correct properties is given by

e (1, fooe=)
Woo — Woo = ]_, Woo = —1
27“' 1 I w2 ao~o CS
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Angle variable is given by the Abel map

z(t) _ N
Poo = 271'/ Woo = sin~ '(sin(2kt)) + const = 2kt + const

This 1s indeed linear in t.
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6.3 Evaluation of the angle variables and the wave function

Need to evaluate the angle variables for a general “finite gap” so-
lution X

Main idea:

¢ Produce the solution of interest X from a suitable reference solution Xref

by a | global transformation X = VLXI‘erR

¢ | Compute the shift of angle variables A¢; under this transformation

Xref Xref

A = * X

(z,2) = (0,0) (1}, T) = (0’0) (377'%) = (.To,:i‘())
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Explicit formula:

e (Case of the angle variables {¢1,..., @4, P} describable by the right-

current.

Angle variables < Positions of the poles of BA vector

= | How do the poles move under the global transformations ?

Under a global right transformation Vg, the normalized Baker-Akhiezer vec-

tor gets transformed as

R (z;71) = Vglﬁref(w; T)

f(x;7)
f(x; ) is needed to keep FL’(CB; 7) normalized.

Under this transformations, the positions of poles change {~;} — {fy,:}

1/ f(x; 7) must remove the poles {~;} and add the poles {~'}
& Divisorof fis  (f) = 27 (v — ).
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Meromorphic differential which encodes this is
= d(l _ Y I ! and ith residues 1 and —1
= d(log f) = 7 > poles at v; and ~y; with residues 1 and —
By studying the structure of ©o, one can prove

¢ ¢; with : = 1 ~ g do not change under the global transformation

= Only ¢, can possibly change.

¢ The change of ¢ can be expressed as

g+1 /
w = log (f(oo+)> = 2m /% Woo = AP
: ot

One can explicitly evaluate this from the asymptotic behavior of

h'ef(z;7) at © = oo
¢ Similar analysis with the left-current = Similar formula for Agy
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Altogether we obtain

- Master formula

~

, V22 — T2U21 - , V11 + 22021
Apo = —1log L , Apy = —ilog | = !

" 1~ -
i V12 + v11 012 + Va9

v;; =components of Vg, v;; = components of VJ

e Normalization vectors 7 and 11 are fixed by the requirement that the

wave function
\P[QBO [ﬁ], Di[1], Poo[TT]] = e85000[n] +iSccboo[fi]+i ) ; Siy[7i]

carrying definite A and S <= conformal primary O2+°(x = 0) < Invari-

ant under the special conformal transformation
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- Practical master formula

Apoo = —tlog <@> ,  Agg = —ilog (g>

V11 V22

-

They depend only on the diagonal elements
& Effects of dilatations and rotations, as expected.

Dilatation
1 _
X, — AX,, X_ —>XX_, X, X : invariant
VA 0 VA 0
o= (9 0] v = (90
v v
Rotation

X —€X, X —>-X, Xi: invariant

Vi(©) = (“f i) , VRT@):(
V€
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7 Computation of the two point functions

We now sketch how we can compute two-point functions:

Step 1. Wave function \Ill‘X corresponding to V(O,O)}X can be computed

relative to Wy

sref 1IN terms of the relative shift of the angle variables ~
. X ~
ezJAH (J — Sooa So, 0 = Do ¢0)

Step 2. For the evaluation of qu’X corresponding to V' (x¢, Zo) ‘X, in order to
compare with the angle variables corresponding to Xref
e tranlate X so that the insertion point is brought to the origin.

@ swith to the local cylinder coordinates < effectively (7, 0) — (—7, —0).

translation =
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— “Translated reversed” solution X

Step 3. \112’X can now be computed relative to Wy |, by comparing X with

Xref

Xre

=> General formula for the contribution of the wave functions

(1| )zeu<A0X+MX>
Wy W[, = (—1)P O o~ (Jw—E) (77—
X (Zl _ Zz)é’—I—P(zl _ 22)8—7?

-
. 2 - f
Virasoro eiJ(A9X+A0X) > €+S 7
N——

cancel with the action

(\IJ1 }Xref(o)

Step 4. Compute A¢9X—|—Al9§g for the specific string states by using the master
Tf
_S
formula and add the contribution from the action e '
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Example: Case of the elliptic GKP string

2
\1116_5\112’ = (‘Ijl Xref(o)) > !
X ng—S)ZEgA—FS) mgA—S)a_ng—kS)

with the normalization \111|Xref(0) =1
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8 Computation of the three point function for LSGKP
strings

Theme: Interlacing of local and global information

Around each vertex insertion point z;

e we can compute the local eigensolutions zf’l: and zI:E for the left and
right auxiliary problems.

e We can expand the unknown global solutions sz and ¢§ as
VYo = (Y5, i2)iL — (P, o i)t
’(le <¢a 9 ,I'R>Z < a 9 —|—>z

Plug into the reconstruction formula

X, X
( )_(+ < ) = (L) = ¢£a¢ﬁa + ¢2L,G¢QR@

9

4
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Local string solutions around z;

X, ~ €3 (a sinh ;0 — a; cosh ko)
+ e "3 (o sinh k;o — o cosh &;0)

X ~ "3 (o sinh k;0 — a; cosh &;0)

+ e "3 (a; sinh k;o — . cosh &;0)

1

>
12

X_

12

Coefficients contain the local information about of the global

solution
1

of = (Pr,iL), B = @ldy, il = J5Ei il
—t “ 2+ .

o, = <¢2L’7’:Lt> 9 B = <¢2Ra Zfé)

K13 = K13, Ko = —Ka2
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Location of the vertex operators:

w(i):£ _ ?j/,@f fore =1,3
X—I— T=—00,0=0 /B’L_//BZ_ for v = 2

) = (B, B) — (a, @)

O Computation of the contribution of the wave functions:

(1) Translate each leg to the origin by reS

Xy =T ,»X \ T .1y X

(2) Compare with Xret:

.Y\
Find V1, and Vg such that 1 \
X,,; — VLXrerR [KF' [\
(2

(3) Use the master formula to find
Ap{” and ApD from Vi and Vg

4
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Contribution of the wave functions:

3 3
U, U0, « = €xp (z Z S(()i)A(b(()z) -+ S&)AQbC(Q) H vy Xref(log &)

=1 =1

(%) Aqbgi) and Ap'):  Expressed in terms of ai'san BF's

(x%) They can be expressed in the extremely useful form, such as

(2(2) — z(3)) (113, 28y (38, 11)

(B7)% = — R =R
(aj(l) — m(z))(m(g) — m(l)) <2_, 3+>

Local information of the global solution %) is written as

(info. about relative positions) X (overlaps of local solutions)
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Moreover,

<1R9 21}) <3R9 11-|:§> . <819 82> <337 81>
(28, 31%) (52, 83)

: computed in Part |

(£ =1)

Substitution of the results for various parts gives

Cw.f.

U, W,y = S S -
(wl _ ;1;2)21 +£5 —£4 (wz _ ;1;3)52 +45 —£, (:B3 _ m1)£3 +£; —4,
3
v (\IJ Xref(o))
(Z! — 32)4+6 4 (32 — 33)E+E - (g8 — 1)+ -4
where

1 . . 1 . .
L = 5(A(Z) _ S(z)) , 0 = 5(A(Z) 1 S(z))

holcorfn-61



log Cw.s. =H_ [h(z,§ = ¢)] + Hy [h(z, & = 1)]

zx/_ > _ b -
/\/_dz—/ V/pdz —|—Z£-logc,
2 d. —
< J=1 J J J
cancel with log A ;v
3
K1+ K2 + K3
Ho [f(2)]=2) £f(k) = (65 + & +65) f(—— )
j=1
—RKi + Kj + K
- > G
(2,9,k)=(1,2,3)+cyclic
h(z,£) = _i oodg’ Ly (1 _ —2m(£"1+£’))
€T 5’2 = og e

O
II

\/H("'ﬂ?k) (1,2,3)+cyclic Slnh(ﬂ-(—’{ﬂ" _|_ K"J _|_ K.’k))
sinh(7 (k1 + K2 + K3))
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In this notation the contribution from the finite part of the action can be written

as

\/X 7\/X
log Ciction= ——Agn=—+ H_ [K(CIZ)]
27 12
1 o0
K(w) = —/ dge—g log (1 _ e—47r:1:cosh0)
T J—00

o0 Final result for the 3-point function of LSGKP string

e Despite the lack of knowledge of V; and X,, one can obtain

a completely explicit result.
e Integrability is quite powerful, beyond the spectral problem.
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3pt function for LSGKP
— E_A\Ijl\Ijz\Ifg
CLSGKP({F%})

[ Lo jops (20 — 2 (@))% 5 b (6) — i(j))EjHj—e;j

3pt coupling
log CUSGKP ((r3) = ~TYA | Z T log

- H (R (@) + Ho b€ = 1)
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where

K (z)

K(x) + h(z,§ = 1)

1 o cosh 260
- — do log (1 — e
27 J_ o cosh 6

—A47max cosh 0)
’

h(x,E =1) = —%log (1 — e *™)

e Corresponding result on the SYM side is not yet available.

e Consistency check: In the limit k3 — 0, ko — k1, the three point

function above reduces to the properly normalized two point function.
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9 Discussions and perspectives

O What have been achieved :

e We have developed a general method to compute semi-classical correlation
functions at strong coupling for non-BPS string states with large quantum num-

bers, when they are describable by the “finite gap method” of integrable systems.

Our method is quite powerful in that it can be applied
to cases where neither the vertex operators nor the

saddle point configurations are explicitly known.

® As an important example, we applied it to the three point function of the
large spin limit of the GKP folded spinning strings and obtained completely finite

answer with the expected dependence of the target space coordinates on A and

S.
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O Some future projects:

¢ Apply our method to correlation functions for other types of strings .

In particular, it is important to study the case of the string in AdS> X S° |
for which the computation on the SYM side, in the SU (2) sector, should be

easier. (Work in progress)

¢ Computation of the 4 point functions . Study how the crossing symmetry

is realized.

Hope to report progress on this and related matters
in the near future
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