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N = 4 SYM stress-tensor multiplet in analytic superspace

v N = 4 SYM stress-tensor multiplet in ordinary superspace

X Half-BPS operator made of 6 scalars !, I =1, ...,6:
0L, = tr(®1®7) —1/6 617 tr(dK oK)

X Lowest-weight state of the N = 4 stress-tensor supermultiplet:

T(2,0%,04) =0 +...4+ 0 La—s+ ...+ (06"0) (06N T,y + . ..

X T is not chiral, but depends on 64,04 (A = 1,2, 3,4) in a restricted half-BPS way

v N = 4 analytic (harmonic) superspace and half-BPS shortening (

):
X Break SU(4) — SU(2) x SU(2)" x U(1) with the help of auxiliary harmonic coordinates 3¢,

04 — (p2.02"), with p% = 0% + 0%y,

(0

X half-BPS = Grassmann analyticity:

T =T, p%, 0%, y&) = O(x,y) + ... + (p)* Lar=a(x) + ... + (p"p) (po” p) Ty () + . ..
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N = 4 SYM stress-tensor multiplet in analytic superspace Il

v Lowest weight state has harmonic dependence
O(z,y) = Y1 Yy O (2) = Y7 Y tr (cbfch) |

where Y (y), Y2 = 0 are null vectors of SO(6).

v Restrict the odd expansion to the chiral sector

T(xapaﬁ — an) — O(:C,y) ot (p)4£_/\/‘:4($)

v N =4 SYM action as an integral over 1/4 superspace ( ):

SN=4=/d x Lar=4(T /d4 /d4PTfBP70?J)

X Supersymmetric due to the special properties of the (on-shell) stress-tensor multiplet
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Correlation functions of the N = 4 stress-tensor multiplet

v n—point correlation function of analytic supermultiplets 7 (x, p, 0, y)
Gn = (T(1)... Z Za£+k G (1,...,n),  a=g*N/(4r?)

The ¢—loop correction fo)k ~ (p)** is a homogeneous polynomial in the odd variables

v Consider the four-point case n = 4 = k = 0: no p dependence in the chiral sector. So, we can
replace T (x, p, 0, y) by just the bosonic 1/2-BPS operator O(x, y):

Gi=(O(x1,1)... O(za,ya)) = »_a' Gy (1,2,3,4)
£=0

v Born level (with 22, = (z; — ;)% 2, = (yi — ;)?)

2 2 .2 .2 .2 2 .2 .2 .2 2 .2 .2 2

G(O)(l 2,3,4) = Ng =1 (Y1 Ya3 Y34 Y1 i Y12 Y24 Y34 Y13 i Y13 Y23 Y24 Y11 1 disconnected
4 s (472)4 22 2 22 2 22 12 22 2 22 22 2 2
12 L23 T34 T41 12 L24 *34 13 13 ¥23 T24 L41

v Duality with super-amplitudes/Wilson loops ( ):

i (G /GRY) = [AYTMIY  qJHV treey2

x5 ;410
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Correlation functions Il

v Loop correction via Lagrangian insertions

d
a£G4 = /d4x5 (O(x1,y1) .- O(x4,ya) Lar=a(x5))

X Repeat /¢ times: the {—loop 4-point function is given by the Born-level (4 + ¢)—point function

G2, olpr=.=ps=0 = (O(x1,91) ... O(@a,ya) L(w5) . .. L{a30)) " (p5)* ... (pase)tox af
This is a particular component of the super-correlator of 4 + ¢ stress-tensor multiplets:

(T(p1 =0)...T(pa =0)T(5)...T(4+£))

v Integrand of the 4-point function as a Born-level correlator of stress-tensor multiplets

1
Giﬁ)(172,3,4) = /d4$5 d ZC4_|_£(£' /d4p5 d p4+£ Gz(1+)£ £< ,4—‘—6))

What do we know about this tree-level correlator?
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Correlation functions lli

v Examples at one and two loops

2(N? -1 1
G{"(1,2,3,4,5) = ( c = ) « T .
’ (47) H1§z‘<j§5 Lij
(0) 2 (N2 — 1) % ZJES xg102$3304x3506
Gea(1,2,3,4,5,6) = —<——~ x Tg x 6 :
’ (472) H1§i<j§6 Lij

v Essential ingredient: nilpotent n-point superconformal invariant of Grassmann degree 4(n — 4)

29 2 92 2 92 2 4 4
Tnlpr1=...=pa=0 = (T12T13214T33754234) X R(1,2,3,4) X (p5)" ... (pn)

y2 y2 92 y2 2 2 2 92
R(]., 2,3,4) = %2 33 324 124 ($13$24 — $12$34 — $%4$%3) —|— S|m||ar terms

LoLo3L34L7y

X T, can be constructed by using the odd part of PSU (2, 2|4) to restore p1, ..., p4.
X I, has SU(4) and conformal weights matching those of O(x, y)

X Crucial property: Z,,(1, ..., n) is fully permutation invariant.
v In summary: the (4 + ¢)—point tree-level correlator has the general form

0 2(N? —1)
Gi_ﬁe;e(l, o4+ f) = (47T62)4+£ X Lyyp X f(e)(ajl, - ,$4_|_g>
1 is a permutation invariant function of z1, . . . , T4+ ¢ With conformal weight (4-4) at each point.
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Hidden permutation symmetry of the integrand

v We predict the form of the four-point correlator at ¢ loops:

2(N? —1)

\91,2,3,4) = ¢ % R(1,2,3,4) x F®  fore>1

4 ( ) (47'('2)4 ( ) -
2 a2, x2, 22,22, 2

F(e)($1,$2,$3,$4) — 12 136' 225; 24734 /d4az5...d4az4+g f(g)(:cl,...,:c4+g)
P(E)(azl,...,x4+g)

f(g)(xl7'°'7x4—|—£): 5

H1§i<j§4—}—£ L5
X The form of the denominator is dictated by the tree-level OPE of
(O1)...0M4)L5) ... L(A+0) D ~ R(1,2,3,4) (2327357, 23325,4234) O ()
X The numerator PY) is a homogeneous polynomial in :cfj of conformal weight —(¢ — 1) at
each point, invariant under S, , permutations of z;.
X Examples at 1 and 2 loops:
1 2 2

— 2
T To(1)o(2)%o(3)0(4) o (5)0(6)
o€ Sg

PW(zy,. . z5) =1,  P®(a1,... )

v Loop corrections in all SU(4) channels given by single function F(©): partial non-renormalization

( )
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Three-loop correlator

The 3-loop 4-point correlator has so far resisted all attempts to be calculated from Feynman
graphs. Here we show how to do it by just drawing pictures!

v A graph-theoretical problem: How to construct permutation invariant numerators?

v P graphs at 3 loops:

) 5 5 5

-8 A -~ o

4 .77 T 6 TN 4,77 N6 N
’ ! L@ 0 SN
ll \‘ \\ // Se” 7 6
’ ‘b \v dl (’—-\o
‘\ -t ”
3\ ST 3 7 3/‘\ 4 T3
\v—-—-o’/ i\::::o - % (::—:)
2 1 2 1 2 1 2 1

(a) (b) (c) (d)

(a) (b) (C) (d) ETH, Aug. 21st 2012 - p. 9/19



Three-loop correlator Il

v We found 4 permutation-symmetric classes of graphs, but only graph (b) is planar, in the sense

of the tree-level correlator

Gy o1, 4+ 0) ~ Tagp x fO (a1, wase)

It is also planar in the sense of the 4-gluon amplitude, after restricting to the light cone

v Choose 4 external and 3 internal (integration) points:

(a) (b) (c) (d)

v Finally, add the prefactor in

2 2 2 .9 2 9
L1oL13L14L33Lo4L3y

3! (472)3

[F(3)]integrand —

These steps break the permutation symmetry of the integrand.

x f3 (a1, 27)
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Three-loop correlator Il

We find two types of 4-point 3-loop integrals:

v Those which survive in the light-cone (or on-shell) limit %, = 3, = 23, = 2%, = 0:

T(1,3;2,4) L(1,3;2,4) g xh(1,3;2,4)
T and L are dual to the “tennis court" and “ladder" diagrams in the on-shell 4-gluon amplitude

v Those which vanish in the light-cone limit (thus not seen in the 4-gluon amplitude):

E(1;2,4;3) H(1,2;3,4)

These integrals are new. They are conformal, hence depend on two cross-ratio variables. Who
can tell what the functions (symbols) look like? Are they maximally transcendental?

ETH, Aug. 21st 2012 - p. 11/19



Fixing the coefficients

v We found the general form of the /—loop integrand

N (£)
Pa (xz)
F @) = ca
az::l H1§i<j§4—|—£ x?j

where the sum goes over all permutation invariant topologies. How to fix the coefficients ¢, ?
v Softening of the singularity of In G4 in the light-cone limit x§7i+1 — 0 (u,v — 0):
1 1
InGy4 ~ In (1 + 2 Z o' F¢) (.:cl)) = (——a + §a2C2) Inulnov 4+ Z () [(aln u)t + (aln v)q +...

>1 4 £>2

v Example at 2 loops:

2 .2
N
InGy — a? (.75(2) — (.73(1))2) — a® /d4x5d4x6 55 5 5 132 242 5 5
e O O 000y (S0 v ) -y )
15253545716 726*"36*7467 56

2 2 2 2 2).2 (2 2 2 2 2).2 (2 2 2 2
X [(?) = 2)atsz34a36 + P ats (235056 + i5a56) + P ad, (215236 + 23576)]

Divergences come from integration over z5 (or xg) approaching a light-like edge, e.g., [z1, z2]:

:cg — (1 — oz):c’f + aaz’g = CCZ25 — (1 — a)x%i + aaz%i

v Requiring that the numerator vanish in this limit fixes ¢(?) = 1
X This criterion fixes all coefficients ¢, in the planar sector
X Checked to 6 loops, see also up to 7 loops for the amplitude
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Four-loop correlator (planar)

We can play the same game at higher loops. At four loops we find

v 3 planar numerator topologies P(4)

ey L7 2.
L T SR
2¢7 N _»5 N4 8 N
L&l 3 3y T
1'—---—¥ 6\\,'§‘\\ i \“ //,’ i \\\ ,//
A o
-7 S \ 2 S~ -7 8
AR 5 % 4
8 e 4 1
Py Pp Pc
v and the corresponding permutation invariant integrands f(4)
8 8 3 5
8
,. /N
4
L 4 7 4 L4
1 4 1 4 1 7
fa /B fe
v The light-cone limit fixes c4 = cg = —cc = 1, exactly as in the amplitude.
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Five loops (planar)

v We find only 7 planar f—graphs:

P B
e

v All coefficients are fixed by the log singularity criterion.
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Six loops (planar)

v 23 rung-rule six-loop f—graphs
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Six loops (planar) Il

v 13 potential non-rung-rule six-loop f—graphs

&
YV

008
9 @ ¢ 4
>

34 35
v In fact, only fég), 2(3) and fétls) contribute.

v All coefficients are fixed by the log singularity criterion.
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Konishi anomalous dimension

v OPE of half-BPS operators

4 4 2
O(@1,41)0(w2,y2) = 12T + exc(@) —5 12— K(w2) + co 752 Og0/ (w2, y2) + (84 + 105 + 175)
L9 (279) 7K T2

with the unprotected Konishi operator K = tr (& ®7).

v K has the minimal scaling dimension among the unprotected operators, so it dominates the
double short-distance expansion of the log of the correlator:

In (1 + 622523, Z ot O (:Bz)) vy §'ylg(a) Inu + In (¢ (a)) + O(u) + O((1 — v))
>1

v The values of fy,(cl) and fy,(f) were extracted from the explicit form of F(1) and F(2)

( )

v We propose a new method which bypasses the evaluation of the higher-loop 4-point integrals in
F®) Instead, we need to compute only standard two-point propagator type integrals.
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Konishi anomalous dimension |l

v Idea of the method:
X At one loop, in the double coincidence Euclidean limit z%, = 23, = § — 0 we have

4 4
FO = lim o4, FO = _LQ lim / 13 d2$52 N PR
x12,2£34—0 44 x12,234—0 XTS5 L5 Tyx 2

X Different regulator: identify the points in the 4-point integral and regularize dimensionally:

~ 2e¢ 4 d4—2€$ 1 1
Fe(l):—'u /5’513 5 _ (.2 2—e<_ L0 2)
42 x%5$§5 (@73/1) ¢ + 2 +O(€%)

X Both singular limits give the same value for

d A d A
W 12— —g——_FM =3
dlné d1n p?2

v At higher loops the log of the correlator always has a simple pole, e.g., at two loops

R A 1 3
in Gy ~ BP — 3 (EO)2 = (a3, w22 (- - 2 1 0(0))
€ 4

v Two-point integrals of propagator type can be computed by standard methods up to five loops =
Full agreement with integrability ( ).
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Conclusions

v Using only known basic properties of the four-point correlator of ' = 4 stress-tensor multiplets,
we unveiled a hidden, highly symmetric structure.

v This structure allows to find the off-shell integrand of G4 at any loop level.

v Two ingredients were essential for this:

X N = 4 SUSY. It is known that the 2-loop correlator in a generic N' = 2 conformal theory
does not posses the permutation symmetry of the integrand.

X The number of point is 4. For n > 4 the nilpotent superconformal invariant Z,, is not unique,

so we have to find many functions F(©) and the full permutation symmetry is lost. Still, we
might be able to make some limited predictions in this case.

v The recently discovered triality ( )

Iim InG, =2InA, =2InW,,

2 —0

Tii4+1
between correlators in the singular light-cone limit, on-shell scattering amplitudes and light-like
Wilson loops allows us to predict the integrand of the four-gluon amplitude .44. The results are
the same as in the momentum twistor approach ( ). It would be interesting to
understand the intimate connection between the two, seemingly very different constructions.

v The highly predictable structure of G4 is undoubtedly related to the integrability of N' = 4 SYM.
In particular, the 4-point integrals that we find should have some hidden structure, at the level of
their symbols, for example.
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