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m Chains of subalgebras
m Frobenius map

m Drinfeld map

m  Quantum Fourier transform

Warning : largely textbook material

Some lessons from finite-dimensional Hopf algebras

—p.2/21



Some lessons from finite-dimensional Hopf algebras

m  Structure of algebras
m Basic algebras

m Chains of subalgebras
m Frobenius map

m Drinfeld map

m  Quantum Fourier transform

Warning : largely textbook material

m Verlinde formula for fusion simple x projective [ Cohen &Westreich 2008]
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http://dx.doi.org/10.1016/j.jalgebra.2008.08.025

Some lessons from finite-dimensional Hopf algebras

Conventions:

> A finite-dimensional k-algebra

> k algebraically closed of characteristic 0

> later on: A in addition symmetric Frobenius
> H in addition Hopf

> later on: H in addition quasitriangular ribbon
But: various results valid in more general situation

> modules = left-modules

—p.3/21
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Some lessons from finite-dimensional Hopf algebras

Conventions:

> A finite-dimensional k-algebra

> k algebraically closed of characteristic O

> later on: A in addition symmetric Frobenius
> H in addition Hopf

> later on: H in addition quasitriangular ribbon
But: various results valid in more general situation
> modules = left-modules

Motivation:
> some structures seen in WLM(1,p) models

> “ categories ~» rep categories ~» algebras”
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Structureof A

Some lessons from finite-dimensional Hopf algebras

> has finitely many simple modules S; up to isomorphism
> every simple module S; has a projective cover P;

> every indecomposable projective module is isomorphic to one of the P;

> A as A-module: AA = D7 dim(S;) P;
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Structureof A

Some lessons from finite-dimensional Hopf algebras

> has finitely many simple modules S; up to isomorphism
> every simple module S; has a projective cover P;

> every indecomposable projective module is isomorphic to one of the P;

> A as A-module: AA = P; 7 dim(S;) P; XA = D ic1 Xs; XP;

1
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Structureof A

Some lessons from finite-dimensional Hopf algebras

> has finitely many simple modules S; up to isomorphism
> every simple module S; has a projective cover P;

> every indecomposable projective module is isomorphic to one of the P;

> A as A-module: AA = D7 dim(S;) P;

J(A) Jacobson radical (intersection of all maximal left ideals)

A= A/J(A) — EB@EI dim(Sz-) S,

> AA=_ P.=@P_ Aea e« € A primitive orthogonal idempotents, > eq =1
for each i € Z have dim(S;) values of a s.t. P, = P;

> Cartan matrix: Ca = (¢;,;) with ¢;; =[P : 5]
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Basic algebras

Some lessons from finite-dimensional Hopf algebras

study the rep theory of A — i.e. A-mod as abelian category —
via the rep theory of the basic algebra B = By
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Basic algebras

Some lessons from finite-dimensional Hopf algebras

study the rep theory of A — i.e. A-mod as abelian category —
via the rep theory of the basic algebra B = By

> ei=) cr€ with e; € {eq | Po = P;} for i€Z

> Bj:=eAe reducedform/basic algebra of A
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Basic al gebras Some lessons from finite-dimensional Hopf algebras

study the rep theory of A — i.e. A-mod as abelian category —
via the rep theory of the basic algebra B = By

> ei=) cr€ with e; € {eq | Po = P;} for i€Z
> Bj:=eAe reducedform/basic algebra of A

> Structure of B4 : e.g.
>> By =2 End(Ae) =2 End(,-7 Ae;) as algebras
>> J(Ba) =eJ(A)e
>> Ba 2 @, 7k
>> composition series By = eAje D eAge D --- D eAye D {0}
if A=A1 D A3 D---D Ap D {0}
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Basic al gebras Some lessons from finite-dimensional Hopf algebras

study the rep theory of A — i.e. A-mod as abelian category —
via the rep theory of the basic algebra B = By

> ei=) cr€ with e; € {eq | Po = P;} for i€Z
> Bj:=eAe reducedform/basic algebra of A
> Structure of By : e.g.
>> By =2 End(Ae) =2 End(,-7 Ae;) as algebras
>> J(Ba) =eJ(A)e

>> Ba 2 @, 7k
>> composition series By = eAje D eAge D --- D eAye D {0}

if A= A DAQD"‘DAED{O}
> Reptheory: e.g. dimy(Exty(S;,S;)) = dimg(e;J(B)/J?(B)e;)
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Basic algebras

Some lessons from finite-dimensional Hopf algebras

Relevance: Bj-mod ~ A-mod as abelian categories

> Interpolating bimodules: Ae and eA, i.e. equivalence functor given by

T: Ba-mod — A-mod: M +— Ae®p, M

> Left adjoint and quasi-inverse to 1': Restriction functor Res: A-mod — B4-mod

M — eM, Homg (M,N) > f— fl|_ i
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Basic al gebras Some lessons from finite-dimensional Hopf algebras

Relevance: Bj-mod ~ A-mod as abelian categories

> Interpolating bimodules: Ae and eA, i.e. equivalence functor given by

T: Ba-mod — A-mod: M +— Ae®p, M

> Left adjoint and quasi-inverse to 1': Restriction functor Res: A-mod — B4-mod

M — eM, Homg (M,N) > f— fl|_ i

Warning: Ba-mod in general not monoidal

H =B, abasic Hopf algebra — M ® P(N) =2 P(M®N) for M, N € H-mod
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Basic algebras

Some lessons from finite-dimensional Hopf algebras

Relevance: Bj-mod ~ A-mod as abelian categories

> Interpolating bimodules: Ae and eA, i.e. equivalence functor given by

T: Ba-mod — A-mod: M +— Ae®p, M

> Left adjoint and quasi-inverse to 1': Restriction functor Res: A-mod — B4-mod

M — eM, Homg (M,N) > f— fl|_ i

Warning: Ba-mod in general not monoidal

H =B, abasic Hopf algebra — M ® P(N) =2 P(M®N) for M, N € H-mod

NB: B = kQ@p/I bound quiver algebra = path algebra of (Qp,I)

> quiver @Qp with vertices {i} in bijection with complete set {e;} of idempotents

and arrows i — j in bijection with a basis of e; (J(A)/J?(A))e;

> [ an (admissible) ideal contained in ideal generated by paths of length > 2

- p.6/21



Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Certain chains of subalgebras in the center correspond
to chains of subalgebras in the space of central forms
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Certain chains of subalgebras in the center correspond
to chains of subalgebras in the space of central forms

Ingredient: characters

> character Xy, of A-module M = (M,p): z — daro(p®ida+)o (xQbar)
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Certain chains of subalgebras in the center correspond
to chains of subalgebras in the space of central forms

Ingredient: characters

> character Xy, of A-module M = (M,p): z — daro(p®ida+)o (xQbar)
M/-}\

Xur = dyo(p®idas+)o (ida ®bar) =

e’
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Certain chains of subalgebras in the center correspond
to chains of subalgebras in the space of central forms

Ingredient: characters

> character Xy, of A-module M = (M,p): z — daro(p®ida+)o (xQbar)
M/-}\

Xur = dyo(p®idas+)o (ida ®bar) =

e’

dlm(M) — XM on A
Notation: A = Hom(k, A) = Hom(1,A) and A* = Hom(A,k) = Hom(A,1)
Warning: picturesin lect, (notin A-mod)
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Ingredient: symmetric Frobenius algebras (assumed from now on)

> A symmetric <= existence of a symmetrizing form te A*

S.t. tom =tomocy 4

> A Frobenius <= existence of te A* s.t. tom non-degenerate
<= also a coalgebra, with coproduct a bimodule morphism

< P a+— t~—a Isomorphism

with — right action of A on the dual A* : p

p4i—a = PolLg = e A*
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

Ingredient: symmetric Frobenius algebras (assumed from now on)

> A symmetric <= existence of a symmetrizing form te A*

S.t. tom =tomocy 4

> A Frobenius <= existence of te A* s.t. tom non-degenerate
<= also a coalgebra, with coproduct a bimodule morphism

< P a+— t~—a Isomorphism

oy = € Hom(A, A*)
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Chains of subal gebras Some lessons from finite-dimensional Hopf algebras

> pair of dual bases of A w.r.t. t:

subsets {a;} and {b;} s.t. > ;a;(toLy,) =ida = > ;(tora;) by

> tracemap 7: x — Y ;bxza

>> 7 iszeroon J(A)

>> Ae simple A-module iff 7(e) not nilpotent

—p.9/21



Chains of subalgebras

> pair of dual bases of A w.r.t. t:

subsets {a;} and {b;} s.t. > ;a;(toLy,) =ida = > ;(tora;) by

> tracemap 7: x — Y ;bxza

> Chain of ideals in Z(A): Zo(A) C Hig(A) C Rey(A) C Z(A)

>> Reynolds ideal Rey(A) = Soc(A)N Z(A)
>> Higman ideal / projective center Hig(A) = im(7)

>> Zo(A) = span of those central primitive idempotents e for which Ae is simple

Some lessons from finite-dimensional Hopf algebras
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

> pair of dual bases of A w.r.t. t:

subsets {a;} and {b;} s.t. >, a;(toLy,) =ida = > ;(toRrg;) by

> tracemap 7: x — Y ;bxza

> Chain of ideals in Z(A): Zo(A) C Hig(A) C Rey(A) C Z(A)

> Chain of subalgebrasin A*: Co(A) C I(A) C R(A) C CA)

>> central forms / class functions / symmetric linear functions
C(A)={z€A*|[zom=zomocy 4}

>> R(A) = span of characters of all A-modules

>> [(A) = span of characters of all projective A-modules

>> Co(A) = span of characters of all simple projective A-modules
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Chains of subalgebras

> pair of dual bases of A w.r.t. t:

Some lessons from finite-dimensional Hopf algebras

subsets {a;} and {b;} s.t. >, a;(toLy,) =ida = > ;(toRrg;) by

> tracemap 7: x — Y ;bxza

> Chain of ideals in Z(A):

Zo(A) C Hig(A) C Rey(A) C Z(A)

> Chain of subalgebrasin A*:

Co(A) C I(A) C R(A) C C(A)

>> central forms / class functions / symmetric linear functions

CA)={xzcA*|[rom=xomocy 4}

> dim(C(A)) = dim(A/[A, A])
> R(A) = R(A) = C(A) = C(A)

dim(/(A)) = rank(C,4)
N{peA*|[poJ(A)=0}

> [M]+— Xps is group homomorphism from Grothendieck group of A-mod to C(A)
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

> pair of dual bases of A w.r.t. t:
subsets {a;} and {b;} s.t. >, a;(toLy,) =ida = > ;(toRrg;) by

> tracemap 7: x — Y ;bxza

> Chain of ideals in Z(A): Zo(A) C Hig(A) C Rey(A) C Z(A)

> Chain of subalgebrasin A*: Co(A) C I(A) C R(A) C CA)

>> central forms / class functions / symmetric linear functions

CA) ={xcA"|[rom=xz0omocy 4}

> any of the inclusions in these chains an equality —> A semsimple
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Chains of subalgebras

Some lessons from finite-dimensional Hopf algebras

pair of dual bases of A w.r.t. t:
subsets {a;} and {b;} s.t. >, a;(toLy,) =ida = > ;(toRrg;) by

tracemap 7: x — Y ;b xa

Chain of ideals in Z(A): Zo(A) C Hig(A) C Rey(A) C Z(A)

Chain of subalgebrasin A*: Co(A) C I(A) C R(A) C CA)

>> central forms / class functions / symmetric linear functions

CA) ={xcA"|[rom=xz0omocy 4}

any of the inclusions in these chains an equality — A semsimple
: L P )
®; furnishes bijections Zo(A) —1 Co(A) Hig(A) =5 I(A)

Rey(A) —L R(A) 74y 24 o)
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Frobenius map

Some lessons from finite-dimensional Hopf algebras

For Hopf algebras there are algebra maps between

subalgebras in the center and in the space of central forms
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Frobenius map

Some lessons from finite-dimensional Hopf algebras

For Hopf algebras there are algebra maps between
subalgebras in the center and in the space of central forms

from now on consider Hopf algebras H

> thereis anisomorphism WV : H — H* ofleft H-modules and right H*-modules
st. A=coW~! isaleftintegral for H

and A\ = WYon isarightintegral for H*

—p.10/21



Frobenius map

Some lessons from finite-dimensional Hopf algebras

For Hopf algebras there are algebra maps between

subalgebras in the center and in the space of central forms

from now on consider Hopf algebras H

> thereis anisomorphism WV : H — H* ofleft H-modules and right H*-modules
st. A=coW~! isaleftintegral for H

and A\ = WYon isarightintegral for H*

>> called Frobenius map (inverse also called Radford map)

>> unique up to scalar

> Ingredient: integrals
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|ntegrals on Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe
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|ntegrals on Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe

> Right integral :
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|ntegrals on Hopf algebras

> Leftintegralon H: A€ H s.t.

> Rightintegralon H*: A€ H*

Some lessons from finite-dimensional Hopf algebras

mo(idg ® A) = Aoe

A T

st. (A®idyg)oA =noA

A l
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| ntegr alson H Opf cl gebras Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe

]
> Rightintegralon H*: Ae H* st (A®idg)oA =nol

A l

> Theorem (Radford): exist (and are non-zero) and are unique up to scalar
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| ntegr alson H Opf cl gebras Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe

]
> Rightintegralon H*: Ae H* st (A®idg)oA =nol

A l

> Theorem (Radford): exist (and are non-zero) and are unique up to scalar

> normalize suchthat Ao A =1
—p.11/21



|ntegrals on Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe
> Rightintegralon H*: A€ H* st (A®idg)oA =nol

> one application: oA #0 <= H semisimple

—p.12/21



|ntegrals on Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe
> Rightintegralon H*: A€ H* st (A®idg)oA =nol

> one application: oA #0 <= H semisimple

> distinguished group-like elements / right/left modular elements / comodulus/modulus
g EGH)={aeH|Aoca=a®a}\ {0} and
g EGH*)={peH*|pom=pRp}\ {0} st

A
A

= and = ég
A ) I

> one application: (P(k:))Y = P(kg)

module dual to projective cover of the one-dim. H-module associated to the counit
— projective cover of the one-dim. module associated to §
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|ntegrals on Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> Leftintegralon H: A€ H st mo(ida ®A) =Aoe
> Rightintegralon H*: A€ H* st (A®idg)oA =nol

> one application: oA #0 <= H semisimple

> distinguished group-like elements / right/left modular elements / comodulus/modulus
g €EGH)={aeH|Aoca=a®a}\ {0} and
g €EGH*)={peH*|[pom=pep}\{0} st

A

= and = \
¥ I
A

>~ another one: Radford formula S* = ady o ad?

> balancing element: if a square root of g existsin H

then have group-like element bc H st S? =ad, and b* =g
—p.12/21



Frobenius map

Some lessons from finite-dimensional Hopf algebras

> Frobenius map and its inverse:
V: H— H*: h+— A—=S(h) =h—AX\
v—l: H* = H: p— A~p

H*

U — € Hom(H, H*)
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Frobenius map

Some lessons from finite-dimensional Hopf algebras

> Frobenius map and its inverse:
V: H— H*: h+— A—=S(h) =h—AX\
v—l: H* = H: p— A~p

v-1 — € Hom(H*, H)
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Frobenius map Some lessons from finite-dimensional Hopf algebras

> Frobenius map and its inverse:
V: H— H*: h+— A—=S(h) =h—AX\
vl H* - H: pw— A—p

> W morphism of left H-modules and of right H*-modules:
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Frobenius map Some lessons from finite-dimensional Hopf algebras

> Frobenius map and its inverse:
V: H— H*: h+— A—=S(h) =h—AX\
vl H* - H: pw— A—p

> ¥ and W1 inverse to each other:

SO
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Frobenius map Some lessons from finite-dimensional Hopf algebras

> Frobenius map and its inverse:
V: H— H*: h+— A—=S(h) =h—AX\
v—l: H* = H: p— A~p

> one application: H is Frobenius

EFr = A

Ap, = [idH X (mo [(So\lf_l) ®1dH])] X (bH ®1dH)
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Frobenius map

> Frobenius map and its inverse :
V: H— H*: h+— A—=S(h) =h—AX\
vl H* - H: pw— A—p

> one application: H is Frobenius

> another one: express trace of an endomorphism of H through integrals

A

S f ;
tr(f) = =\ = &

Some lessons from finite-dimensional Hopf algebras
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> unimodular Hopf algebra: leftintegral A also a right integral
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> unimodular Hopf algebra: leftintegral A also a right integral
> Radford formula for unimodular H: S* = ad,

> Hunimodular <= £0S?=¢ <= S? a Nakayama automorphism

> H unimodular

— right integral of H* satisfies

— Z(H)=U"1(Og(H)) with Og(H) = {pe H*|p(ab) =p((S2(b))a)Va,be H}
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> unimodular Hopf algebra: leftintegral A also a right integral
> Radford formula for unimodular H: S* = ad,

> Hunimodular <= £0S?=¢ <= S? a Nakayama automorphism

> H unimodular

SO

—

—> [(H) anideal of C'(H) and stable under the antipode of H*
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> H unimodular and S? inner <= H symmetric

Take now H symmetric and set S? = ad;

—> symmetrizing form on H given by A
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> H unimodular and S? inner <= H symmetric
Take now H symmetric and set S? = ad;
—> symmetrizing formon H givenby t= A+

S—l
> Dual bases with respectto t given by I

> nan®bp = (idg ® (r,_; 05)) o Ao A

—> trace map 1 —1

= S 20 /lady o R,_1(a)
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> H unimodular and S? inner <= H symmetric
Take now H symmetric and set S? = ad;
—> symmetrizing formon H givenby t= A+

> Dual bases with respectto t given by

> nan®bp = (idg ® (r,_; 05)) o Ao A

— trace map

T =S"20/ady o R,_;  With lad, left adjoint action

—  Hig(H) = fada (H)
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Unimodular Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> H unimodular and S? inner <= H symmetric
Take now H symmetric and set S? = ad;

—> symmetrizing formon H givenby t= A+
> Dual bases with respectto t given by

> nan®bp = (idg ® (r,_; 05)) o Ao A

— trace map

T =S"20/ady o R,_;  With lad, left adjoint action

—> Hig(H) = fadp(H)
> based on this characterization of Hig(H) get W(fada(H)) = I(H)

with modified Frobeniusmap V¥ : H — H* h — t~—S~1(h)
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

from now on: H quasitriangular

> thus R-matrix Re HR® H
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

from now on: H quasitriangular

> thus R-matrix Re HR® H

invertible and satisfying A°P = adp oA and

I J 4L
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

from now on: H quasitriangular

> thus R-matrix Re HR® H

> monodromy matrix @ = Ro1- R
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

from now on: H quasitriangular

> thus R-matrix Re HR® H

> monodromy matrix @ = Ro1- R

> Drinfeldmap fo = (dg ®idg) o (idygv ® Q) /\
H* - H

JQ
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

from now on: H quasitriangular

> thus R-matrix Re HR® H

> monodromy matrix @ = Ro1- R

> Drinfeld map fo = (dy ®idy) o (idyv ® Q)
H* - H

equivalently —
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Drinfeld map

from now on: H quasitriangular

> thus R-matrix Re HR® H

> monodromy matrix @ = Ro1- R
> Drinfeld map fo = (dg ®idg) o (idygv ® Q)
H* — H
>> restrictionto Og2(H) isisomorphismto Z(H) as associative algebras

fQ’OS2(H) : Og2(H) — Z(H)

Some lessons from finite-dimensional Hopf algebras
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Drinfeld map

> R-matrix Re HR H
> monodromy matrix @ = Ro1-R
> Drinfeld map fo = (dg ®idg) o (idgv ® Q)

> for semisimple H: S-matrix S; ; = X, o (fo(X;))

Some lessons from finite-dimensional Hopf algebras
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

> R-matrix REHQH

)

> monodromy matrix @ = R21-R S;

> Drinfeld map fo = (dy ®idy) o (idyv ® Q)

{

> for semisimple H: S-matrix S; ; = X, o (fo(X;))

)

{
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Drinfeld map Some lessons from finite-dimensional Hopf algebras

> R-matrix REHQH

)

> monodromy matrix ¢ S,

> Drinfeld map fo =

I
<
<
O
-
O
&

> for semisimple A
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Drinfeld map Some lessons from finite-dimensional Hopf algebras

> R-matrix REHQH

> monodromy matrix ¢ S,

> Drinfeld map fo =

> for semisimple A
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Drinfeld map

Some lessons from finite-dimensional Hopf algebras

> R-matrix Re HR H

> monodromy matrix @ = Ro1-R

> Drinfeld map fo = (dg ®idg) o (idgv ® Q)

> for semisimple H: S-matrix S; ; =X, o (fo(Xi))
> diagonalizes the fusion rules of H-mod

>> relation with RCFT Verlinde formula: new braiding on H-mod

by combining the symmetric braiding (flip) of ect, with R
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Ribbon Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> canonical element / Drinfeld elementof H: w =mo (S®idy) o Ra1

s> S2 = ady,
>> ady =S2 — t =1+t xu with ¢ an invertible central element
>> St =ad; with g= (Sou1)*u

>>  H unimodular — g =g
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Ribbon Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> canonical element / Drinfeld elementof H: w =mo (S®idy) o Ra1

> Ribbon Hopf algebra: existence of ve€ Z(H) s.t.

Sov =1 gov=1 Aov=(v®v)*Q1! (ribbon element )
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Ribbon Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> canonical element / Drinfeld elementof H: w =mo (S®idy) o Ra1

> Ribbon Hopf algebra: existence of ve€ Z(H) s.t.

Sov =1 gov=1 Aov=(v®v)*Q1! (ribbon element )

D> vk v =u*x(Sou)
>> v invertible

>> H ribbon = H-mod a ribbon category: actingwith v—1 is the twist

>> b=~ !%u balancing element, b? =g

—p.18/21



Ribbon Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> canonical element / Drinfeld elementof H: w =mo (S®idy) o Ra1

> Ribbon Hopf algebra: existence of ve€ Z(H) s.t.

Sov =1 gov=1 Aov=(v®v)*Q1! (ribbon element )

> factorizable ribbon Hopf algebra: Drinfeld map fo invertible
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Ribbon Hopf algebras

Some lessons from finite-dimensional Hopf algebras

> canonical element / Drinfeld elementof H: uw=mo (S®idgy) o Ra1

> Ribbon Hopf algebra: existence of ve€ Z(H) s.t.

Sov =1 gov=1 Aov=(v®v)*Q1! (ribbon element )

> factorizable ribbon Hopf algebra: Drinfeld map fo invertible

from now on: H factorizable

> fo intertwines the left coadjoint and adjoint actions

> Hig(H) contains a non-zero idempotent

—> existence of a simple projective module

> H unimodular
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g-characters

Some lessons from finite-dimensional Hopf algebras

> for any Hopf algebra H-mod is (equivalentto) a sovereign monoidal category
and has absolutely simple tensor unit 1 = k.

> categorical dimension g-dim(M)
of a H-module M is morphism 1 — M@ MY —1

—> if g-dim(P) # 0 for a projective P
then 1 is aretract of P and thus itself projective

—> every projective module P over non-semisimple H has g-dim(P) =0

> in particular ordinary (ect, -) dimension / trace / dualities
and categorical ( H-mod-) dimension / trace / dualities differ
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g-characters

Some lessons from finite-dimensional Hopf algebras

for any Hopf algebra H-mod is (equivalentto) a sovereign monoidal category
and has absolutely simple tensor unit 1 = k.

categorical dimension g-dim(M)

of a H-module M is morphism 1 —-M @ MY —1

—> if g-dim(P) # 0 for a projective P

then 1 is aretract of P and thus itself projective

—> every projective module P over non-semisimple H has g-dim(P) =0

>

in particular ordinary (lect, -) dimension / trace / dualities
and categorical ( H-mod-) dimension / trace / dualities differ

for a ribbon Hopf algebra with balancing element 6: g-trace obtained by twisting
with b=1: qg-tr(f) =tr(prpro (b=t ® f)) for f € End(M)

e.g. g-character X’j\zl =Q-try(pm) =Xm oL, 1 =Xum b1
space of g-characters coincides with Og2 (H)
ring homomorphism [M] —— X’j\zl from the Grothendieck ring of H-mod to Og2(H)
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F=fgoV: H—H
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F == fQ O \If . H—> H
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F=fgoV: H—H

> F' commutes with left adjoint action

> F2’Z(A) =5
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F == fQ O \If . H—> H

> modified Drinfeld map: f’é(p) = fo(p—b~1)
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F == fQ O \If . H—> H

> modified Drinfeld map: f’é(p) = fo(p—b~1)
> amounts to replacing characters by g-characters: fQ(XM) = fQ(X’j\Zl)

> modifications of Drinfeld and Frobenius maps cancel: F = fooW = f oW
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Quantum Fourier transform

Some lessons from finite-dimensional Hopf algebras

> Quantum Fourier transform F': composition of Frobenius and Drinfeld maps
F == fQ O \If . H—> H

> modified Drinfeld map: fé(p) = fo(p—b~1)
> amounts to replacing characters by g-characters: fQ(XM) = fQ(X’j\Zl)

> modifications of Drinfeld and Frobenius maps cancel: F = fooW = f oW
= 2

> (Pofy) |C’(H) =5

> fQ is algebra isomorphism C'(H) =, Z(H)

> Hig(H) is stable under the quantum Fourier transform
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Cohen-Westreich formula

Some lessons from finite-dimensional Hopf algebras

> two generalizations S and S of the S-matrix:
Si,; = Xj o (Jo(X2))

Sij = (¥(Soej)) o (fo(Xs))
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Cohen-Westreich formula

Some lessons from finite-dimensional Hopf algebras

> two generalizations S and S of the S-matrix:
Sij = Xj o (Jo (X)) s m

Sij = (¥(Soej)) o (fo(Xs))
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Cohen-Westreich formula

Some lessons from finite-dimensional Hopf algebras

> two generalizations S and S of the S-matrix:
Sij = X;j o (Jo(xi)
Sij = (¥(Soe;)) o (Jpxa)
> define F = matrix for the basis transformation between bases
{]?Q(ij)}m and {7(e;)}7, of Hig(H) (recall m =rank(Cgy))

j=1

> define coefficients N, * by Xs, Xp, = >/ N,' Xp,

for i€Z and j,ke{l,2,....,m} =: 71,

> denote by M],,, the matrix obtained from a |Z| x |Z|-matrix M
by deleting rows and columns with labels in Z\Z,
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Cohen-Westreich formula

Some lessons from finite-dimensional Hopf algebras

> two generalizations S and S of the S-matrix:

A

Sii = X5 0 (fa (X))
Si; = (¥(Soej)) o (folxs))
> define F = matrix for the basis transformation between bases

{]?Q(ij)};?;l and {7(e;)}7, of Hig(H) (recall m =rank(Cgy))

> define coefficients N, * by Xs, Xp, = >/ N,' Xp,

for i€eZ and j,ke{l,2,....,m} =: I;

> denote by M],,, the matrix obtained from a |Z| x |Z|-matrix M
by deleting rows and columns with labels in Z\Z,

AN

Then F=(Cgly,)~* (CH§)|m diagonalizes the matrices N,

—p.21/21



	{}
	Plan
	Plan
	Structure of ,{�oldmath $A$}
	Basic algebras
	Basic algebras
	Chains of subalgebras
	Chains of subalgebras
	Chains of subalgebras
	Frobenius map
	Integrals on Hopf algebras
	Integrals on Hopf algebras
	Frobenius map
	Unimodular Hopf algebras
	Unimodular Hopf algebras
	Drinfeld map
	Drinfeld map
	Ribbon Hopf algebras
	q-characters
	Quantum Fourier transform
	Cohen-Westreich formula

