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Introduction.

LCFTs most naturally appear as

e a scaling limit of nonlocdlattice modelsPearce, Rasmussen, and
Zuber, 2006);

e and in quantum chains with a nondiagonalizable Hamilto(fRaad,
Saleur, 2007).

Generally speaking, a CFT appearing at the limit depends

e 0N a way of taking the limit and
e 0N chosen boundary conditions.



Introduction.

Generally speaking, a CFT appearing at the limit depends wayaof
taking the limit and on chosen boundary conditions.

For proper choice of boundary conditions

the lattice models of PRZ —- Log modelsV LM (p, p’) with
thetriplet W, ,-algebra of symmetry
(FGST, 2006; and forp’ = 1 by Kausch andFHST)

The chiral algebraV, , is an extension of the vacuum module of the
Virasoro algebr&/’, ; with the central charge, ;, = 13 —6p/p’ —6p'/p by
a triplet of the Virasoro primary fields with conformal dinson A 5.



Introduction.
The most investigated models areL M (p, 1).

For this set of models, the representation categories of

e the triplet algebraV,
e and of the finite-dimensional quantum grolUps/(2) with g = e/?
(FGST, 2005)

areequivalentastensor categories (FGST2 (2005), forp = 2; and
by Nagatomo and Tsuchiya (2009),Adamovic and Milas (2009),
as abelian categories)



Introduction.

Categories ofW,- and U,s/(2)-modules aresquivalent as tensor cate-
gories

This is the manifestation of the Kazhdan—Lusztig duality

(1) there is a one-to-one correspondence between repatisaist
(2) fusion rules of a conformal model can be calculated bgdeproducts

of a quantum group representations
(3) and the modular group action generated from chiral dtara coin-

cides with the one on the center of the corresponding quagtoom.

In the logarithmic model$VLM(1, p), the Kazhdan—Lusztig duality is
presented in itéull strength.



Introduction.
For general coprime andp’, the modelsVLM p,p’) also demonstrate
the Kazhdan—Lusztig duality with the quantum group

- Ugsl(2) @ Ugst(2)
8oy = Hopf ideal
but relation between thg, , and thelV, , algebra is more subtle.

. q= ez'7r/p and q/ _ ez'7r/p’

There isno one-to-one correspondence between representations but

e the modular group action on the centergf, (FGST, 06)
coincideswith
e the one on chiral characters in thg, ,, theory

and an open guestion about fusion...



Introduction.
Other choice of boundary conditions in the lattice modelRRE
—-> Log modelsCM(p, p’) with the Virasoro symmetry), ..

Fusion rules for these models were calculated in

(1) Pearce, Rasmussen, 2007 (lattice approach)

and for some cases in

(2) Gaberdiel, Kausch, 1996;
Eberle, Flohr, 2006 (Gaberdiel-Kausch—Nahm algorithm)

(3) Read, Saleur, 2007 — using quantum-group symmetries in XXZ
models at a root of unitgnd fusion procedure of Temperley—Lieb al-
gebra representations.




Introduction.

e \We propose using the Kazhdan—Lusztig duality in calcugatin
the fusion rules for the subsgiM (1, p) of the LM (p, p") models.



Introduction.
We construct a quantum group dual to the Virasoro algépfeom LM(1, p)
as an extension df,s/(2) dual to the triplet algebray,.

e This quantum group is the Lusztig limitU,s/(2) of the usual quan-
tum s£(2) asq — /7 and

e has the set of irreducible representatidffs, wherel <s<p and
a =+ arellys((2) h.w. parameters anid?, r € N, is thes((2) spin.

e The moduleX?, is a tensor product ofdimensional irreducibléys/(2)-
andr-dimensional irreducible/(2)-modules.

e To eachXy,, a projective cove®s, corresponds an@l = X7 .

s,



Introduction.
We construct a quantum group dual to the Virasoro algépfeom LM(1, p)
as an extension df,s/(2) dual to the triplet algebray,.

e The set of irreducibl&’{, and projective moduleB, is closed under
tensor products.

e the Pearce—Rasmussen fusafnirreducible and logarithmid’,-rep-
resentationgoincideswith tensor products o£U,s¢(2) irreducible
and projective modules.




Theorem. Thetensor productsbetweenirreducible LU, s¢(2)-modulesare

min(s;+s9—1,

r1+ro—1 2p—s1—s2—1) P—"9
a N af
xsl ™ ® xé‘z T2 @ ( @ fX: ™ @ TS,T)
r=|ri—ro|+1  s=|s1—s9|+1 s=2p—s1—s9+1
step=2 step=2 step=2

between the irreducible and projective modules are

min(sj+so—1,

ri+ra—1  2p—sj—sg—1) P72 r1+ro M
Q@ I} af af / —af
w00, - @ (D @) O @ o
r=lri—ro|+1 s=|s1—so|+1  $=2p—s1—so+1 r=|ri—ro| $=p—si1+so+1
step=2 step=2 step=2 step=2 step=2

and between the projective modules are

min(s{+so—1,

ri+ro—1  2p—si—se—1) p—"72
e s af af
(‘])81,7‘1 ® (‘])82,7”2 =2 @ ( @ (‘PSJ” +2 @ :PSJ‘)
r=[ri—ro|+1  s=[s;—sg|+1 s=2p—s1—52F1
step=2 step—2 step=2
min(p—s1+s9—1,
r1+r2 ptsi—sg—1) =M r1+ra+l P=72
aﬁ —af 7
2@ (@ e B ) d P
r=|ri—ro| s=|p—si—so|+1 s=min(p—s1+so+1, r=|ri—rq|—1 s=s1+s2+1
step=2 step=2 p+si—so+1) step=2 step=2

wherewe set v; = (s1 + s + 1)mod 2, 79 = (s1+ s2 + p + 1)mod 2.



Introduction. We thus have

o the LU, s¢(2) representation category ésjuivalentas a tensor cate-
gory to the category of Virasoro algebra representatiopgsafng in
LM(1,p).

Irreducible and projective modules are identified in théolwing way

— (2r, s),

— R5,., 1<s<p, r=1,

Xio 1 — (2r —1,5), X
T+2r—1 — ]29;517 P

S,

where(r, s) are the irreducible Virasoro modules with the heighest vsig

Aps = ((pr — 3)2 —(p— 1)2)/4]7
and theR? are logarithmic Virasoro modules frodM(1, p).

5,21

p—Ss,2r



Quantum groups as centralizers of chiral algebras.
The QGs dual to Log models M(1,p) as well aswWwLM(1,p) can be
constructed in the Coulomb gas picture

p(2)p(w) = log(z — w)
with the energy-momentum tensor

T = ;awagp + %82%
where the background charge = o, + a_ = /2p — \/2/p.

e Chiral algebras and corr. QGs are mutaaximal centralizers of
each other on a chiral space of states.
e There are two screening operators (“long” and “short”)

2
e = %eﬂ_p@(z)dz and [ = %e_\/;gp(z)dz

commuting with)),,.



The centralizer of W),

The quantum group(,s¢(2) commuteswith the triplet algebra/V, action
on “full” chiral space of states.

e the chiral algebraiV, realized in theV LM (1, p) models admit/(2)-
action by symmetries:

W=(z) = e VP(2), Wo%z2):=le, W (2)], WH(z):=[e, W),

wheree is the long screening operatﬁre@@dz (seeFHST, 2004)

e the short screenin§’ commutes with the chiral algebi#&,

e and generates the lower-triangular part ofthe/(2) with the relation
FP=0.



The centralizer of W),
Construction ofll;s/(2):
2
(1) Hopf algebra of the short screenifg= § e_\/;*p(z>dz and the Kartan
K = e m2=¥0, whereyp, is the zero-mode aby(z).

Hopf-algebra structure is found from the action of theserajoes on
fields: comultiplication is calculated from the action df and K on
OPE of fields.

(2) Drinfeld double —= contour-removal operataf (dual to F') and
additional Kartank'.

(3) the quantum groupl,s¢(2) is realized as a quotient of the Drinfeld
double



The centralizer of W),

The “restricted” quantum grould,s¢(2) with q = ¢/™/? and the three gen-
eratorsty, F', andK satisfying the standard relations
KEK ' =q¢’E, KFK'=q°F, [BEF]=""1
with some additional constraints,
EP=F'=0, K?=1,
and the Hopf-algebra structure is given by
ANE)=1FE+EQ®K, AF)=K'9@F+F®1, AK)=K®K,
S(E)=—-EK', S(F)=-KF, SK)=K"
e(F)=¢F)=0, €eK)=1.



The centralizer of V.

To construct a QG dual to the Virasoro algebygrom LM(1, p), we first
note that

e Irreducible representations of the triplet algebvg admit two com-
muting actionss/(2)- and),-actions EGST, 2006):
Considering the deformation

—/246)0(z . F?
Fezfe( \/;Jr 2@, — f=lim —,

e—0 €

The operators = § eV?%dz and f generate the usual(2).



The centralizer of V.

We thus have the/(2)-generators

>
||
S~

©o, e = j{e\/%“p(z)dz, and f=lim—.

e Invariants of thes¢(2)-action is the universal enveloping of the Vira-
soro algebrd/,,.

These points suggest a construction of the maximal cergrefior ), as
an extensiorof the centralizefll,s¢(2) for the triplet algebraV, by the
sl(2) triplet (e, h, f).



The centralizer of V.

To obtain a Hopf-algebra structure d@ril,s¢(2), we use the purely alge-
braic approach following Lusztig:

e the quantum groupU,s/(2) is a limit of the quantum groufy, (s¢(2))
asq — cr.
e There is an evident limit in whicl”, F? and K¥ become central



The centralizer of V.

To obtain a Hopf-algebra structure d@ril,s¢(2), we use the purely alge-
braic approach following Lusztig:

e but we consider another limit in which the relations
EP=F'=0, K?=1

are imposed but the generators

EY Fr -
= — _ — — 9 —4
T M o MEEe

are kept in the limit.

In the limitq — e7, we havelp]! = 0 and the ambiguity, is solved in
such a way that theand f become generators of the ordinaify2).



The centralizer of V.

We thus obtain a Hopf algebisll,s/(2) that contains the quantum group
U,s/(2) as a Hopf ideal and the quotient is thEs/(2)), the universal
enveloping of thes/(2).



The centralizer of V.

The Hopf-algebra structure oblU,s/(2) is the following. The defining
relations between the, F, and K generators are the same adligs/(2)
and the usuad/(2) relations between the f, andh:

hel=e, b fl==f e f]=2h,
and the “mixed” relations
[h, K] =0, [E,e] =0, [K,e] =0, [F, f] =0, K, f]=0,
[Foel~(qK —q 'K~ B,
B, fl~ (K —q 'K Fr,
h, E] — %EA, h, F] = —%AF,

whereA is a projector.



The centralizer of V.

The comultiplication inCU,s¢(2) is

Pl (o)

_ p 1
Al)=e@l+ K @e+ Lo 5

K'E'" @ E'K,
p—1 q—S(p—S)

Af)y=fol+Kre f+ 0" B

[p—1]!

Kp+st R Fp—s’

an explicit form ofA(h) =
it here.

DN —

The antipode5 and the counity are
Sle) = —Kre,  S(f)=—-K"f,  S(h)=—h,
e(e) =€(f) =e(h) =0.



Indecomposablell,s¢(2)-modules and Feigin—Fuchs modules.

= -(n): The moduléW;, (n) has the following subquotient structure

9 r—|—2 9 r—|—2n

\/\/\/

p s,r+1 p $,r+3 p s,r+2n—1
[ [ [

wheren is the number of the bottom modules (filled dejs

M;L:r(n): The moduléM;,(n) has the following subquotient structure

F +
xp_sﬂq_l xp—s,r—i—?)

2 A N SN
xi”" x{’o ° ° °

wheren is the number of the top modules (open dotsThe M, (n)
modules are contragredient to th&;, (n) modules.



Indecomposablell,s¢(2)-modules and Feigin—Fuchs modules.

Irreducible modules are identified in the following way
DC;%_l — (2r —1,s), Xyo — (21, 5),

where(r, s) are the irreducible Virasoro modules with the heighest tvsig
Ay = ((pr — 3)2 —(p— 1)2)/4]7-



Indecomposablell,s¢(2)-modules and Feigin—Fuchs modules.

N;t,r(n): The moduleN;,(n) has the following subquotient structure

wheren is the number of the top modules (open defsand at the
same time the number of the bottom modules (filled @dts
N .-(n): The moduleﬂi .(n) has the following subquotient structure

+
s 7“—!—2 xs ,r+2n—2
\ / \ / \ / o \x*
:F
p s,r+1 p $,r+3 SR p s,r+2n—3 xp—s,r+2n—1
J 0 [ L

wheren is the number of the bottom modules (filled dejsand at the
same time the number of the top modules (open dpts

The introduced four infinite series of indecomposable mesW;, (1),
M2, (n), Ny ,(n), andN:T(n) can be used in construction of the Felder type
resolutions and projective resolutions.



Projective LU,s¢(2)-modules.

The projective c:oveiP;f1 for the irreducible modulécif1 has the subquo-
tient structure:

+
xs,l
[ J

|

:F
xp—s,2

@)

|

+
xs,l
[ J



Projective LU,s¢(2)-modules.

The projective cove‘ﬁ’gfr for the irreducibléxir has the subquotient struc-
ture:



Conclusions.
Relations to Virasoro fusion algebra:

e We identify LU,s¢(2) irreducible and projective modules with irre-
ducible and logarithmic modules of the Virasoro algeBsa

e Under this identification, tensor productsot(,s¢(2)-modules coin-
cide with the fusion of the corresponding modules of Galatraind
Kausch, and from Pearce and Rasmussen works; and also fcemtre
works of Read and Saleur.

e There exists a tensor functor from “our” category to the gatg of
V,-modules with dimension af, Jordan cells not greater than



Conclusions.
Relations to Virasoro fusion algebra:

e There exists a tensor functor from “our” category to the gatg of
V,-modules with dimension af, Jordan cells not greater than

e The functor establishes a 1-to-1 correspondence betwe®iesob-
jects of two categories bus not an equivalence because the Vira-
Soro category contains more indecomp objects. In particviliaasoro
Verma modules have no counterpart on the QG sij&lso admits a
class of modules with two dimension&) Jordan cells enumerated by
a projective parameter. All these modules have the samaustibgt
structure nevertheless are parawise different and onlyuhesdvith a
special value of the parameter has a counterpart on the @G sid



