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Logarithmic operators

Logarithmic pair C, D
C A0 C
()= (1 3) (5)

Correlation functions consistent with (and following from)
the Jordan block structure for Lo

C must have zero norm

C and D correlate like
“normal” operato

-2 1S enforced by
conformal invariance




Self-avoiding random walks (SARW)

Wiener-Feynman, ()= ©O)
30-40s: P(t,x) = / Da(t) e~ Jadt

(0)=0

The probability of observing a
particle undergoing Brownian  z2 5
motion at a point x at a time t P(t, .Cl?) ~ ¢ Dt <x > ~ Dt

SARW/polymers: Polymers are penalized energetically when they intersect themselves
(Flory, de Gennes & others, 60s-70s)

x(t)=x
P(tax) _ / Dx(t) 6—% fg dt:ti—g fdtdt’é(a?(t)—:f’(t))
x(0)=0

Hard to solve, but the following scaling ansatz helps

2—n
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These are messy details, but the bottom line is clear: P(t,x) is some sort of a
Green’s function of an interacting critical theory, with w (Fourier of t) a relevant
perturbation




SARW: Effective field theory

x(t)=x
P(t,x) :/ DCIZ‘(t) e D fo dta:' — 2 [ dtdt’ 5(x(t) _”(t))
x(0)=0

Perturbative expansion

—-Lfe--f.-00)

IS reproduced by the expansion of this Green’s function with a random imaginary
potential / V(x) in powers of V(x)
1

T v V@@ =gie-y

[ DD ¢(x) 3(0) ] 7 (P =iV Hiv)s
f D¢DQB ef d*z ¢ (Daa% —iV—I-iw) 0

P(w,x) =




Random potentials: replica approach

P(w,z) =

fD¢D$qb (z) p(0) e fd2$¢( __ZVJFW)(b Random potential

[ DgDGe! T PTa =1V i)

V(z)V(y)) =gd(r—y)

Introduce n replicas

P(w,x) =

[Tl D¢$iDp; p1(x) $1(0 )6Zn L J o (Da__zv+zw)¢

take n to zero

[ DgDGe! Pro(Paz—iVHiv)s

77

P(w,x) = lim /HD@D@ b1 (2) ¢1(0) € D e il (D%—i‘/—l—iw)gbi

n—~0

and finally average over random potential

2r I _ia,u i —twdid; Z Pl i i °
B [ER /HD¢1D¢1 b1 (z ¢1( ) e —|/ d [Zz:l DO, ¢i0, ¢ Gidi+S (7, Pichi) }

n—0

Th|s s the famous O(n) model in the n—0 limit



Random potentials: “supersymmetry
approach”

_ [ D¢pDe ¢(x) $(0) ) a?z $( D2

Plw,z) - [d?2 (D5 —iV+iw)e
[ D¢pDoe e

Introduce fermionic fields Y

P(w,a) = [ DoDGDIDY o(a) d(0) ! 1*(P35

Average over random potential, to find
effective field theory with the action

S = /d2$ {D (8u$au¢ + 3;%; (MD) T g ($¢ o @E@D)Q}

We would like to study CFTs corresponding to the
field theories of this type. All have c=0.




“Supersymmetric” critical theories

® Supersymmetric effective field theories describe a variety
of Interesting critical behavior in 2 dimensions. Most have
not been understood.

® Examples include self-avoiding random walks and
percolation (mostly understood, although not completely)
and quantum motion In random potentials under various
conditions (mostly not understood).

® \ost famous example, the guantum Hall transition, has
been extensively studied, and yet is not understood.




Supersymmetry
A typical action

S= [ @D (0,60, +,50,0) + 5 (30 + 0v)°

()= (7 o) ()
€ az) \VY
Superunitary (more precisely, in this example,
orthosymplectic) group Is the symmetry group of this
action
Strange reducible but indecomposable representations

of the superunitary group

scalar at the bottom



Logarithms and the indecomposable reps

_ogarithmic operators love
iIndecomposable multiplets

/. Masarani, D. Serban, 1996

<C(Z) C(w)> — () Used to be mysterious, now natural 0 <C(z)C(w)> — ()

0 (D(2)¢(w)) = (((2)¢(w)) — (D(2)C(w)) =0
So T are just usual primary fields

1
(z — w)?A

Finally:

<D(Z) D(w)) — Q(Ln(_zuj) ;l;\) because why not??




Stress-energy tensor at c=0: CFT perspective "

Any primary operator with a
nonvanishing norm in a CFT satisfies

Z%\ (1 : QCAT(ZH...)

hus the direct limit c—0 Is problematic.

Any c=0 CFT must contain operators with
dimension 2 distinct from the stress-energy tensor.
At least one of them, called t, must satisfy
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Stress-energy tensor at c=0: supersymmetry

perspective
Stress-energy tensor is always a
part of a reducible but
iIndecomposable multiplet

Sut these are also possible
consistent OPE:

Possible consistent O

_27(0)

T(z)T(0)

24 (0)

Ha)t(0) = =)

2
&
Realized In SUDGF%F?UD-baSGd WZW Makes t logarithmic. Realized in ¢=0 minimal model.
models.




Nonlogarithmic t: free field theory

5~ / 2 (0,6 0,6 + 0,0 9,0)]
8B0osonNs  Fermions

Stress-tensor multiplet
T = 09O + OO
t = 0pOp — OYOY
¢ = 09y

O In this case Is the central charge of the

b= 2
bosonic part of the theory




Nonlogarithmic t: Kac-Moody algebras

U(1]|1) Kac-Moody algebra with the generators J, j, n, 7

sort of like U(2), but with different:
Js n
Js 1
{n, 7

24— kj
T = (Jj+ng—mm)+k JJ

8
kK 4 — k.
§= 7 i+ gn) +k——=nJ
t=—jj+k*

4(
ko 14—k,

1 T L (Jj+ 17— nn)
VG, 1999

J commutes with  C. Chamon, C. Mudry, X.-G.
everybody Wen, 1996




t'(0) |

t(0) [1 — 4log z] — T'(0) [log z + 2 log® z|
t(0) + T'(0) log 2

1 §'(0)

ZT(Z)f(O) — T (2)&(0) log 2 A 5, T

These follow from the assumption of logarithmic t by
conformal invariance only

_— ¢ ~ Yet they automatically form the
- e ¢ indecomposable represgntat'on

shown on the left




Example of a derivation

£(2)E0) = aT()T(0) + - + L)+ T(0)In>

224

~2

Don’t know « at the moment. o 1 2)(Es — )

(21 — 23)(22 — 24)

G = (&(21)€(22)€(23)€(21))  Let’s compute it

This Is a rational function:

Gumod = (€(1)E(2)E(20)6(20)) — 5 (T()T(2)E(25)(20)) In

Reconstruct it by its singularities!

(z1 — 22)% (23 — 24) 4(x —1) (1 —x)?

Only works if x=1/4.

G —

1 [($+1)(2m2+b(x—1)2(1+:v2)) :132(1—:13+a:2)1n:c}




Extended algebra?

In the same way how Virasoro algebra can be derived

from t

ne O

exten

D

ded a

=S (as well as extended W-algebras), can an

gebra of dimension 2 operators follow from
the logarithmic OPES”

The answer to this question Is not known. But there exist
partial examples which show that this may work.

2t(0) + T(0)  #(0)

t(0) [12—41112] —T(0) [Inz + 2In* 2]

t(0) + T(0)In z + %T?ZO)

1) = 26(0)lnz 30

z 4z




Attempts to construct extended algebra

Conformal invariance predicts:

A

(z —w1)?(z — wg)? (w1 — w2)2>\—2

(I'(2) A(w1) A(wz)) =

Mln [ = L } + const

(z—w1 )(z—w2)

(z — w1)?(z — wo)?(wy — wg)?r—2

\
—log(z — wy) (T'(2)A(w1) A(wz))

We recognize that this must be true:

—T(2)A(w)log(z — w) + regular stuff




Logarithmic algebra

Logarithms in the OPE of t and A (A - arbitrary primary
operator with nonzero dimension) can be removed:

t(2)A(0) = 0)Inz + Z (0
Logarlthms are
captured by this term

0, A(0) = 7{ zd—zi (t(z
s L] =

+In(2)T(2)) 2"t A(0)

(2)
dzdw (t(2) + In(2)T(2)) T(w) 2" T tw™

gn(n2 — 1)dnt+mo + (n —m)lpim — mLyim

Logarithmic commutation relations

Generalization of these to other components of the stress tensor multiplet were not yet found.




Logarithmic t: minimal model at ¢c=0

2
3

Differential equations give

<A(Z1)A(Z2)A(23)A(Z4)> — 1

(Zl _ Z2)2>\(Z3 _ 24)2)\ (1




Algebraic approach to compute b

a— 1 [(ZL’+1)(2$2—|—[)($—1)2(1+x2)) x2(1—$+w2)lnm]

(21 — 22)* (23 — 24)4 4(x —1) B (1 —x)?

Satisfies appropriate equations at the appropriate values of b

(2n — 3m)?* — 1
24

Monwhea Jeng: correct
up to at least the
degeneracy level 15




Operators with vanishing dimension

An operator of dimension O at ¢c=0 which Is primary and
not identity plays a special role in Cardy’s theory of
percolation...

QUQ)> =

A(wl - ”UJQ)2

(z —w1)? (2 — wa)?

(t(2)O0(w1)O(wz)) =

t(2)O(0) = —(1 — €)T(2)O(0) In z + regular stuff

5(7€ — 5)
12

3
62(L2+2L )\o>_o h =




Difficulties if one tries to go further

® Commu

ration relations depend on what the operators

act on (bu

® \\Vnat If t

- isn’t it similar to the parafermions)?

he operators that the stress-tensor multiplet acts

on are themselves parts of multiplets?

® Substracting logarithms may or may not be possible in
all the cases.

e \Vhat if gluing left and right sector is not a trivial task®




Cardy’s explanation of the logarithms

7 = / _— [—50 _ / det(x)E(x)] . zr= / . :—;n;so,n I / Pz Ea(x)Eb(x): |

(E(2)E£(0)) = lim (Eq(2)Er (2)) N z”:E

. 1
E,=E,— ~-FE
T

% < BE(z) E(o)> = (E1(2)E1(0)) 4 (n — 1) (E1(z)E2(0)) = ;1@) ?rtweesaec 2!;
B (n) “reasonable”

) = (B1(2)E1(0)) — (Ei(2) Bx(0)) = —xos oonforma

n—0 n—0 N

(E(2)E(0)) = lim (Ey()E; (0)) = lim — ) ( )  In(z)

Logarithms at disordered critical points are inevitable!



Conclusions

Logarithmic operators at critical points with quenched
disorder are inevitable, control the structure of the CFT,

and are not understood. The need to be understood Iif we
are to develop a general theory of such critical points.







