Percolation as a LCFT: logarithmic couplings and dualities

Pierre Mathieu

with

David Ridout

Context

 Minimal models describe the local observables at the critical point

 Non-local observables (crossing probabilities, fractal dimensions) appear to probe representations outside the Kac table

[Arguin-Lapalme-Saint-Aubin-Duplantier-Saleur-Bauer-Bernard]

Context

Minimal models describe the local observables at the critical point

 Non-local observables (crossing probabilities, fractal dimensions) appear to probe representations outside the Kac table

[Arguin-Lapalme-Saint-Aubin-Duplantier-Saleur-Bauer-Bernard]

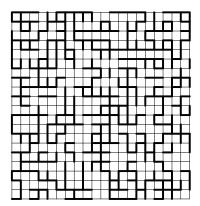
- Problem considered here:
 how to deform the irreducible modules to probe (by fusion) the exterior of the Kac table
 guided by physical considerations
- ► Focus: percolation and the Cardy's formula

Percolation: the Cardy formula for crossing probability

Bound percolation and crossing probabilities

Bound open (p) or closed (1-p):

$$p_c = \frac{1}{2}$$
: $\pi_h = f(r)$ $(r = \text{aspect ratio})$



Percolation as a limiting Q-state Potts model

▶ Q-state Potts model: $\sigma_i \in \{1, \dots, Q\}$

$$E = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j}$$

•

$$Z = \sum_{\{\sigma\}} \prod_{\langle ij \rangle} \left((1 - \rho) + \rho \delta_{\sigma_i, \sigma_j} \right)$$

where

$$p = 1 - e^{-\beta J}$$

•

$$Z = \sum \rho^{B_0} (1 - \rho)^{B - B_0} Q^{N_c}$$

B: # bonds; B_o : # open bonds; N_c : #clusters

Percolation:

$$Q=1 \Rightarrow Z=1 \Rightarrow c=0$$

Percolation as a CFT with c = 0

Continuum version of the Q-state Potts model is CFT with

$$c=1-\frac{6}{m(m+1)}$$

with

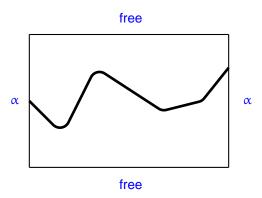
$$Q = 4\cos^2\left(\frac{\pi}{(m+1)}\right)$$

and

$$Q = 1 \leftrightarrow m = 2 \Rightarrow c = 0$$

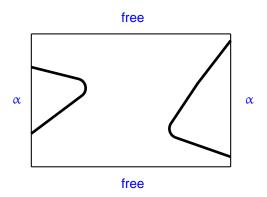
Crossing probability

Count the configurations



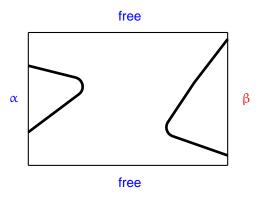
Crossing probability

Subtract



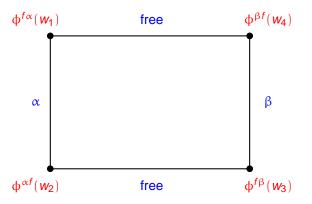
Crossing probability

Equivalently: subtract (with $\beta \neq \alpha$: excludes crossing)



Crossing probability as a four-point function

Introduce fields



Crossing probability as a four-point function

Cardy: crossing probability (mapped to UHP) is

$$\pi_h(r) = \lim_{Q \to 1} (Z_{\alpha\alpha} - Z_{\alpha\beta})$$

where

$$Z_{\alpha\beta} = \langle \varphi^{f\alpha}(\mathbf{Z}_1) \varphi^{\alpha f}(\mathbf{Z}_2) \varphi^{f\beta}(\mathbf{Z}_3) \varphi^{\beta f}(\mathbf{Z}_4) \rangle Z_f$$

Physical imput (Cardy)

• Scale invariance of $Z_{\alpha\alpha}/Z_f$ requires that

$$\Phi^{f\alpha}$$
 has $h=0$

Boundary changing operator in Q-state Potts models:

$$\phi^{f\alpha} = \phi_{1,2}$$

▶ SV at level 2 \Rightarrow ODE for $\langle \cdots \rangle$ \Rightarrow fixes $\pi_h(r)$

$$\pi_h(r) = \frac{3\Gamma(\frac{2}{3})}{\Gamma(\frac{1}{3})^2} x^{\frac{1}{3}} F(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}; x)$$

Test of the Cardy formula

 Match perfectly the numerical data [Langlands—Pouliot—Saint-Aubin]

Test of the Cardy formula

► Match perfectly the numerical data [Langlands—Pouliot—Saint-Aubin]

"The striking agreement between simulation and theory is one of the most convincing confirmations to date of the validity of the hypothesis of local conformal invariance in two-dimensional critical systems." (1997)

Test of the Cardy formula

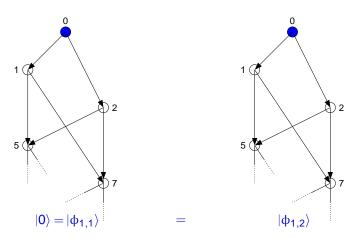
► Match perfectly the numerical data [Langlands—Pouliot—Saint-Aubin]

- "The striking agreement between simulation and theory is one of the most convincing confirmations to date of the validity of the hypothesis of local conformal invariance in two-dimensional critical systems." (1997)
- Proved by Smirnov and by SLE techniques (2001)

Percolation as a logaritmic conformal field theory

Cardy formula does not fit within a minimal model

Module content of M(2,3)



In fact the M(2,3) model is trivial: only has $|0\rangle$

$$L_{-1}|0\rangle = L_{-2}|0\rangle = 0$$
 \Rightarrow $L_{-n}|0\rangle = 0$ $\forall n > 0$

Minimal deformation of M(2,3) that fits Cardy's result

To make the theory non-trivial, need to break

$$|\phi_{1,1}\rangle = |\phi_{1,2}\rangle$$

Need to modify the structure of the modules

But what needs to be kept?

Minimal deformation of M(2,3) that fits Cardy's result

To make the theory non-trivial, need to break

$$|\phi_{1,1}\rangle = |\phi_{1,2}\rangle$$

Need to modify the structure of the modules

But what needs to be kept?

▶ $|\phi_{1,1}\rangle$ must have a vanishing SV at level 1:

$$L_{-1}|\phi_{1,1}\rangle = 0$$

(global conformal invariance of the vacuum)

Minimal deformation of M(2,3) that fits Cardy's result

To make the theory non-trivial, need to break

$$|\phi_{1,1}\rangle = |\phi_{1,2}\rangle$$

Need to modify the structure of the modules

But what needs to be kept?

▶ $|\phi_{1,1}\rangle$ must have a vanishing SV at level 1:

$$L_{-1}|\phi_{1,1}\rangle = 0$$

(global conformal invariance of the vacuum)

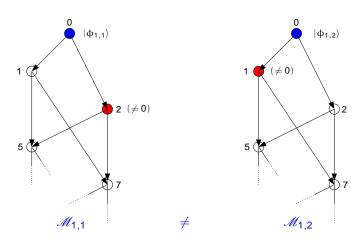
▶ $|\phi_{1,2}\rangle$ must have a vanishing SV at level 2:

$$\left(L_{-2} - \frac{3}{2}L_{-1}^2\right)|\phi_{1,1}\rangle = 0$$

(SV \Rightarrow ODE for the 4-pt function)

New modules $\mathcal{M}_{1,r}$: reducible but indecomposable

Minimal deformation of the modules (red SV \neq 0)



 $T(z) \neq 0$

Constructing the deformed M(2,3) model

Building the theory:

▶ Take multiple fusions of the two basic modules $\mathcal{M}_{1,1}$ and $\mathcal{M}_{1,2}$

Constructing the deformed M(2,3) model

Building the theory:

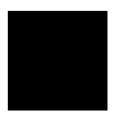
- ► Take multiple fusions of the two basic modules M_{1,1} and M_{1,2}
- Need an algebraic method to calculate fusion rules that distinguishes the fact that a SV is set to 0 or not

Constructing the deformed M(2,3) model

Building the theory:

- ▶ Take multiple fusions of the two basic modules $\mathcal{M}_{1,1}$ and $\mathcal{M}_{1,2}$
- Need an algebraic method to calculate fusion rules that distinguishes the fact that a SV is set to 0 or not

Nahm-Gaberdiel-Kausch algorithm



Fusion rules

- $\mathcal{M}_{1,1} \times \mathcal{M}_{1,1} = \mathcal{M}_{1,1}$
- $\mathcal{M}_{1,1} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,2}$

 $\mathcal{M}_{1,1}$ still acts as the identity

Fusion rules

- $\mathcal{M}_{1,1} \times \mathcal{M}_{1,1} = \mathcal{M}_{1,1}$
- $\mathcal{M}_{1,1} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,2}$

 $\mathcal{M}_{1,1}$ still acts as the identity

► $\mathcal{M}_{1,2} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,3}$ with $h_{1,3} = \frac{1}{3}$

Fusion rules

$$M_{1,1} \times \mathcal{M}_{1,1} = \mathcal{M}_{1,1}$$

•
$$\mathcal{M}_{1,1} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,2}$$

 $\mathcal{M}_{1,1}$ still acts as the identity

•
$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,3}$$

with $h_{1,3} = \frac{1}{3}$

The presence of $\mathcal{M}_{1,3}$

this deformation forces us to leave the Kac table

▶ Consider $\mathcal{M}_{1,2} \times \mathcal{M}_{1,3}$; natural guess

$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,2} \oplus \mathcal{M}_{1,4}$$

with
$$h_{1,4} = 1$$

▶ Consider $\mathcal{M}_{1,2} \times \mathcal{M}_{1,3}$; natural guess

$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,2} \oplus \mathcal{M}_{1,4}$$
 with $h_{1,4} = 1$

Wrong: the correct result is

$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{I}_{1,4}$$

where $\mathscr{I}_{1,4}$ is indecomposable $([\mathscr{I}_{1,4}]_{v.s} \approx \mathscr{M}_{1,2} \oplus \mathscr{M}_{1,4})$

▶ Consider $\mathcal{M}_{1,2} \times \mathcal{M}_{1,3}$; natural guess

$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,2} \oplus \mathcal{M}_{1,4}$$
 with $h_{1,4} = 1$

Wrong: the correct result is

$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{I}_{1,4}$$

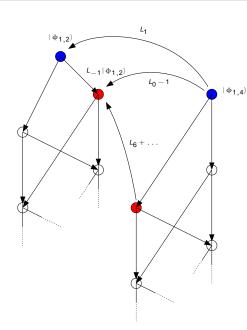
where
$$\mathscr{I}_{1,4}$$
 is indecomposable $([\mathscr{I}_{1,4}]_{v.s} \approx \mathscr{M}_{1,2} \oplus \mathscr{M}_{1,4})$

The action of L_0 displays a Jordan cell structure:

$$L_0|\phi_{1,4}\rangle = |\phi_{1,4}\rangle + L_{-1}|\phi_{1,2}\rangle$$

... the defining property of a logarithmic CFT

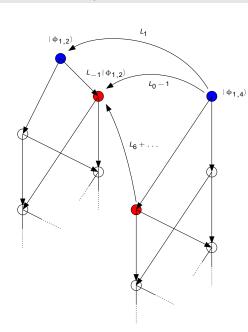
The module $\mathcal{I}_{1,4}$



$$L_0|\varphi_{1,4}\rangle = |\varphi_{1,4}\rangle + L_{-1}|\varphi_{1,2}\rangle$$

$$\textit{L}_1|\varphi_{1,4}\rangle\neq 0$$

The module $\mathcal{I}_{1,4}$



$$L_0|\varphi_{1,4}\rangle = |\varphi_{1,4}\rangle + L_{-1}|\varphi_{1,2}\rangle$$

$$L_1|\varphi_{1,4}\rangle = -\frac{1}{2}|\varphi_{1,2}\rangle$$

Scalar products in $\mathcal{I}_{1,4}$

Normalization:

$$\langle \varphi_{1,2} | \varphi_{1,2} \rangle = 1$$

► $L_{-1}|\phi_{1,2}\rangle$ is a SV ($\neq 0$) but:

$$\langle \varphi_{1,2}|L_1L_{-1}|\varphi_{1,2}\rangle=0$$

More generally

$$\langle \psi | L_{-1} | \phi_{1,2} \rangle = 0 \qquad \forall | \psi \rangle \in \mathscr{M}_{1,2}$$

the SV is orthogonal to all states in $\mathcal{M}_{1,2}$ (as usual)

► The 'linking relation'

$$L_1|\phi_{1,4}\rangle = -\frac{1}{2}|\phi_{1,2}\rangle$$

implies that

$$\langle \phi_{1,4} | L_{-1} | \phi_{1,2} \rangle = -\frac{1}{2}$$

i.e., $L_{-1}|\phi_{1,2}\rangle$ is not orthogonal to states in $\mathcal{M}_{1,4}$

This is the where the effect of having a SV \neq 0 enters

▶ The two linking relations:

$$L_0|\varphi_{1,4}\rangle=|\varphi_{1,4}\rangle+L_{-1}|\varphi_{1,2}\rangle$$
 and $L_1|\varphi_{1,4}\rangle=-\frac{1}{2}|\varphi_{1,2}\rangle$ imply

$$T(z)\varphi_{1,4}(w) = -\frac{1}{2}\frac{\varphi_{1,2}(w)}{(z-w)^3} + \frac{\varphi_{1,4}(w) + \partial \varphi_{1,2}(w)}{(z-w)^2} + \frac{\partial \varphi_{1,4}(w)}{z-w} + \dots$$

The two linking relations:

$$L_0|\varphi_{1,4}\rangle=|\varphi_{1,4}\rangle+L_{-1}|\varphi_{1,2}\rangle$$
 and $L_1|\varphi_{1,4}\rangle=-\frac{1}{2}|\varphi_{1,2}\rangle$ imply

$$T(z)\varphi_{1,4}(w) = -\frac{1}{2}\frac{\varphi_{1,2}(w)}{(z-w)^3} + \frac{\varphi_{1,4}(w) + \partial \varphi_{1,2}(w)}{(z-w)^2} + \frac{\partial \varphi_{1,4}(w)}{z-w} + \dots$$

With global conformal invariance this implies

$$(z\partial_z + w\partial_w + 2)\langle \phi_{1,4}(z)\phi_{1,4}(w)\rangle = \frac{1}{(z-w)^2}$$

with solution

$$\langle \phi_{1,4}(z)\phi_{1,4}(w)\rangle = \frac{A + \ln(z - w)}{(z - w)^2}$$

$$\langle \Phi_{1,4}(z)\Phi_{1,4}(w)\rangle = \frac{A+\ln(z-w)}{(z-w)^2}$$

Correlation functions contain logs: a genuine LCFT

$$\langle \Phi_{1,4}(z)\Phi_{1,4}(w)\rangle = \frac{A+\ln(z-w)}{(z-w)^2}$$

- Correlation functions contain logs: a genuine LCFT
- ▶ A is arbitrary we can set A = 0 in using a gauge transformation

$$\langle \Phi_{1,4}(z)\Phi_{1,4}(w)\rangle = \frac{A+\ln(z-w)}{(z-w)^2}$$

- Correlation functions contain logs: a genuine LCFT
- ▶ A is arbitrary we can set A = 0 in using a gauge transformation
- The scalar product diverges

$$\langle \phi_{1,4} | \phi_{1,4} \rangle = \lim_{z \to \infty} z^2 \langle \phi_{1,4}(z) \phi_{1,4}(0) \rangle$$

 $\to \infty$

Fusion rules up to this point

•
$$\mathcal{M}_{1,1} \times \mathcal{M}_{1,1} = \mathcal{M}_{1,1}$$

•
$$\mathcal{M}_{1,1} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,2}$$

•
$$\mathcal{M}_{1,2} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,3}$$

$$\qquad \qquad \mathcal{M}_{1,2} \times \mathcal{M}_{1,3} = \mathcal{I}_{1,4}$$

Another fusion rule

•

$$\mathcal{M}_{1,3} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,3} \oplus \mathcal{I}_{1,5}$$

where

$$[\mathcal{I}_{1,5}]_{v.s.} \approx \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,5}$$

Another fusion rule

١

$$\mathcal{M}_{1,3} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,3} \oplus \mathcal{I}_{1,5}$$

where

$$[\mathscr{I}_{1,5}]_{v.s.} \approx \mathscr{M}_{1,1} \oplus \mathscr{M}_{1,5}$$

 $ightharpoonup |\phi_{1,5}\rangle$ is coupled to the energy-momentum tensor

$$L_0|\varphi_{1,5}\rangle=2|\varphi_{1,5}\rangle+L_{-2}|0\rangle$$

Another fusion rule

•

$$\mathcal{M}_{1,3} \times \mathcal{M}_{1,3} = \mathcal{M}_{1,3} \oplus \mathcal{I}_{1,5}$$

where

$$[\mathscr{I}_{1,5}]_{v.s.} \approx \mathscr{M}_{1,1} \oplus \mathscr{M}_{1,5}$$

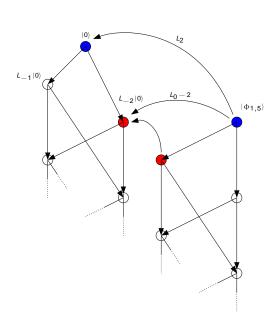
 $\blacktriangleright |\phi_{1,5}\rangle$ is coupled to the energy-momentum tensor

$$L_0|\phi_{1,5}\rangle = 2|\phi_{1,5}\rangle + L_{-2}|0\rangle$$

Also

$$L_2|\varphi_{1,5}\rangle = -\frac{5}{8}|0\rangle$$

The module $\mathcal{I}_{1,5}$



$$L_0|\phi_{1,5}\rangle = 2|\phi_{1,5}\rangle + L_{-2}|0\rangle$$

$$L_2|\varphi_{1,5}\rangle=-rac{5}{8}|0
angle$$

Logarithmic couplings

Logarithmic coupling $\beta_{1,4}$

$$|\chi_{1,2}\rangle \equiv L_{-1}|\phi_{1,2}\rangle \neq 0$$

The linking relation

$$L_1|\phi_{1,4}\rangle = -\frac{1}{2}|\phi_{1,2}\rangle$$

implies

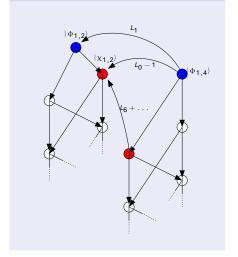
$$\langle \phi_{1,2} | L_1 | \phi_{1,4} \rangle = -\frac{1}{2} \langle \phi_{1,2} | \phi_{1,2} \rangle$$

= $-\frac{1}{2}$

i.e.,

$$\langle \chi_{1,2} | \varphi_{1,4} \rangle \equiv \beta_{1,4} = -\frac{1}{2}$$

The module $\mathcal{I}_{1,4}$



$\beta_{1,4}$ is gauge invariant

$$\beta_{1,4} = \langle \chi_{1,2} | \varphi_{1,4} \rangle$$

is invariant under the gauge transformation

$$|\varphi_{1,4}\rangle \rightarrow |\varphi_{1,4}'\rangle = |\varphi_{1,4}\rangle + \alpha |\chi_{1,2}\rangle$$

that preserves the Jordan cell structure

$$\begin{split} L_0|\varphi_{1,4}\rangle &= |\varphi_{1,4}\rangle + L_{-1}|\varphi_{1,2}\rangle \\ & \qquad \qquad \downarrow \\ L_0|\varphi_{1,4}'\rangle &= |\varphi_{1,4}'\rangle + L_{-1}|\varphi_{1,2}\rangle \end{split}$$

Gauge invariance and correlators

A is arbitrary in

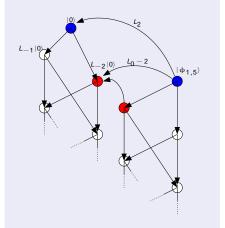
$$\langle \phi_{1,4}(z)\phi_{1,4}(w)\rangle = \frac{A + \ln(z-w)}{(z-w)^2}$$

We can set A = 0 in using a gauge transformation

$$|\varphi_{1,4}\rangle \rightarrow |\varphi_{1,4}'\rangle = |\varphi_{1,4}\rangle + \alpha |\chi_{1,2}\rangle$$

Logarithmic coupling $\beta_{1,5}$

The module $\mathcal{I}_{1.5}$



$|\chi_{1,1}\rangle \equiv L_{-2}|\varphi_{1,1}\rangle \neq 0$

The linking relation

$$L_2|\phi_{1,5}\rangle = -\frac{5}{8}|\phi_{1,1}\rangle$$

implies

$$\langle \phi_{1,1} | L_2 | \phi_{1,5} \rangle = -\frac{5}{8} \langle \phi_{1,1} | \phi_{1,1} \rangle$$

= $-\frac{5}{8}$

i.e.

$$\langle \chi_{1,1}|\varphi_{1,5}\rangle \equiv \beta_{1,5} = -\frac{5}{8}$$

$\beta_{1,5}$ is gauge invariant

Similarly

$$\beta_{1,5} = \langle \chi_{1,1} | \phi_{1,5} \rangle$$

is invariant under

$$|\varphi_{1,5}\rangle \rightarrow |\varphi_{1,5}'\rangle = |\varphi_{1,5}\rangle + \alpha |\chi_{1,1}\rangle$$

Gauge transformation

General gauge transformation (module dependent)

$$|\phi_{1,s}\rangle \rightarrow |\phi_{1,s}'\rangle = |\phi_{1,s}\rangle + |\psi\rangle$$

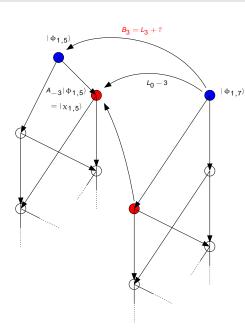
preserves the Jordan cell structure

$$L_0|\phi_{1,s}\rangle = h_{1,s}|\phi_{1,s}\rangle + |\text{Log partner}\rangle$$

 $|\psi\rangle$ is a linear combination of terms of dimension $h_{1,s}$

Above cases
$$(s = 4,5)$$
: $|\psi\rangle$ is 'unique' $(= \alpha |\chi_{1,s}\rangle)$

The module $\mathscr{I}_{1,7}\supset\mathscr{M}_{1,3}\times\mathscr{I}_{1,5}$



$$L_0|\phi_{1,7}\rangle = 3|\phi_{1,7}\rangle + A_{-3}|\phi_{1,5}\rangle$$

$$A_{-3} = L_{-3} - L_{-2}L_{-1} + \frac{1}{6}L_{-1}^3$$

Look for B₃

$${\color{red}B_{3}|\varphi_{1,7}\rangle=\beta_{1,7}|\varphi_{1,5}\rangle}$$

with

$$B_3 = L_3 + \gamma_1 L_1 L_2 + \gamma_2 L_1^3$$

such that $\beta_{1,7}$ is invariant under

$$|\varphi_{1,7}\rangle \rightarrow |\varphi_{1,7}'\rangle = |\varphi_{1,7}\rangle + |\psi\rangle$$

where

$$|\psi\rangle = (L_{-3} + \alpha_1 L_{-2} L_{-1} + \alpha_2 L_{-1}^3) |\phi_{1,5}\rangle$$

Gauge invariance forces

$${\color{red}B_{3}|\varphi_{1,7}\rangle=B_{3}|\varphi_{1,7}'\rangle=B_{3}(|\varphi_{1,7}\rangle+|\psi\rangle)}$$

or

$$B_3|\psi\rangle=0$$

$$|\psi\rangle = (L_{-3} + \alpha_1 L_{-2} L_{-1} + \alpha_2 L_{-1}^3) |\phi_{1,5}\rangle$$

Gauge invariance forces

$$B_3|\phi_{1,7}\rangle = B_3|\phi_{1,7}'\rangle = B_3(|\phi_{1,7}\rangle + |\psi\rangle)$$

or

$$B_3|\psi\rangle=0$$

$$|\psi\rangle = (L_{-3} + \alpha_1 L_{-2} L_{-1} + \alpha_2 L_{-1}^3) |\phi_{1,5}\rangle$$

Since $B_3|\psi\rangle\in\mathcal{M}_{1,5}$:

$$\langle \varphi_{1,5}| {\color{red} B_3}| \psi \rangle = 0$$

Gauge invariance forces

$${\color{red}B_3|\varphi_{1,7}\rangle=B_3|\varphi_{1,7}'\rangle=B_3(|\varphi_{1,7}\rangle+|\psi\rangle)}$$

or

$$B_3|\psi\rangle=0$$

$$|\psi\rangle = (L_{-3} + \alpha_1 L_{-2} L_{-1} + \alpha_2 L_{-1}^3) |\phi_{1,5}\rangle$$

Since $B_3|\psi\rangle\in\mathcal{M}_{1,5}$:

$$\langle \phi_{1.5} | \underline{B_3} | \psi \rangle = 0$$

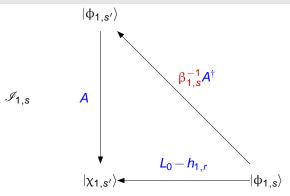
Solution:

$$B_3 = (A_{-3})^{\dagger}$$
 so that $\langle \phi_{1,5} | B_3 = \langle \chi_{1,5} |$

since

$$\langle \chi_{1,5} | \psi \rangle = 0 \qquad \forall \alpha_1, \alpha_2 \ \text{for all } \ \text{for a$$

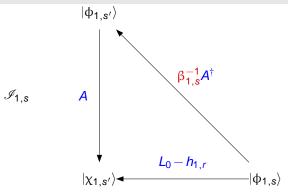
Logarithmic coupling: gauge invariant definition



$$\beta_{1,s} = \langle \chi_{1,s'} | \phi_{1,s} \rangle = \langle \phi_{1,s'} | A^{\dagger} | \phi_{1,s} \rangle$$

 $\beta_{1,s}$ is fixed by the normalization of $|\chi_{1,s'}\rangle$ ($L_{-n} + \alpha L_{-(n-1)}L_{-1} + \cdots$) Existence of β 's: [Gaberdiel-Kausch and Eberle-Flohr]

Logarithmic coupling : gauge invariant definition

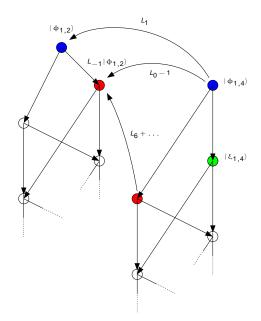


$$\beta_{1,s} = \langle \chi_{1,s'} | \varphi_{1,s} \rangle = \langle \varphi_{1,s'} | A^\dagger | \varphi_{1,s} \rangle$$

 $\mathscr{I}_{1,s}$: Staggered module [Roshiepe]

Kytölä-Ridout: "On Staggered Indecomposable Virasoro Modules"

Logarithmic couplings: new definition via SV ($\mathcal{I}_{1,4}$)



Logarithmic couplings: new definition via SV $(\mathcal{I}_{1,4})$

$$\begin{split} |\xi_{1,4}\rangle &= \left(L_{-4} - L_{-3}L_{-1} - L_{-2}^2 + \frac{5}{3}L_{-2}L_{-1}^2 - \frac{1}{4}L_{-1}^4\right)|\phi_{1,4}\rangle \\ &+ \left(a_1L_{-5} + a_2L_{-4}L_{-1} + a_3L_{-3}L_{-2} + a_4L_{-2}^2L_{-1}\right)|\phi_{1,2}\rangle \end{split}$$

and let $\beta_{1,4}$ be free:

$$L_1|\phi_{1,4}\rangle = \beta_{1,4}|\phi_{1,2}\rangle$$

Logarithmic couplings: new definition via SV $(\mathscr{I}_{1,4})$

$$\begin{split} |\xi_{1,4}\rangle &= \left(L_{-4} - L_{-3}L_{-1} - L_{-2}^2 + \frac{5}{3}L_{-2}L_{-1}^2 - \frac{1}{4}L_{-1}^4\right)|\varphi_{1,4}\rangle \\ \\ &+ \left(a_1L_{-5} + a_2L_{-4}L_{-1} + a_3L_{-3}L_{-2} + a_4L_{-2}^2L_{-1}\right)|\varphi_{1,2}\rangle \end{split}$$

and let $\beta_{1,4}$ be free:

$$L_1|\phi_{1,4}\rangle = \beta_{1,4}|\phi_{1,2}\rangle$$

Impose

$$L_1|\xi_{1,4}\rangle = L_2|\xi_{1,4}\rangle = 0$$

Logarithmic couplings: new definition via SV ($\mathcal{I}_{1,4}$)

$$\begin{split} |\xi_{1,4}\rangle &= \left(L_{-4} - L_{-3}L_{-1} - L_{-2}^2 + \frac{5}{3}L_{-2}L_{-1}^2 - \frac{1}{4}L_{-1}^4\right)|\phi_{1,4}\rangle \\ &+ \left(a_1L_{-5} + a_2L_{-4}L_{-1} + a_3L_{-3}L_{-2} + a_4L_{-2}^2L_{-1}\right)|\phi_{1,2}\rangle \end{split}$$

and let $\beta_{1,4}$ be free:

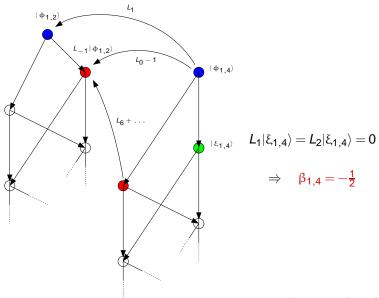
$$L_1|\phi_{1,4}\rangle = \beta_{1,4}|\phi_{1,2}\rangle$$

Impose

$$L_1|\xi_{1,4}\rangle = L_2|\xi_{1,4}\rangle = 0$$

$$\beta_{1,4} = -\frac{1}{2}$$

Logarithmic couplings: new definition via SV ($\mathcal{I}_{1,4}$)



Percolation: spectrum of the theory

Spectrum of the theory

Multiple fusions of $\mathcal{M}_{1,2}$ generate all $\mathcal{M}_{1,s}$ for $s \ge 1$ as:

- ► M_{1 3n}
- $\mathcal{I}_{1,s}$ with $s \neq 3n$ and

$$[\mathscr{I}_{1,s}]_{v.s.} \approx \mathscr{M}_{1,s} \oplus \mathscr{M}_{1,s'} \quad \text{where} \quad s' = \begin{cases} s-2 & \text{if } s = 1 \text{ mod } 3\\ s-4 & \text{if } s = 2 \text{ mod } 3 \end{cases}$$

▶ All exponents $h_{1,s}$ with $s \ge 1$ appear

$$\{h_{1,r}\} = \{0,0,\frac{1}{3},1,2,\frac{10}{3},5,7,\frac{28}{3},12,\cdots\}$$

► This is the minimal spectrum that fits the Cardy's formula

Spectrum extension: no-go theorem

Can we add more fields/modules in the theory?

e.g.:
$$\mathcal{M}_{2,1}$$
 with

$$\left(L_{-2} - \frac{2}{3}L_{-1}^2\right)|\phi_{2,1}\rangle = 0$$

Spectrum extension: no-go theorem

Can we add more fields/modules in the theory?

e.g.: $\mathcal{M}_{2,1}$ with

$$\left(L_{-2}\!-\!\frac{2}{3}L_{-1}^2\right)|\varphi_{2,1}\rangle=0$$

Fusion rules

$$\mathcal{M}_{2,1} \times \mathcal{M}_{2,1} = \mathcal{I}_{3,1}$$

where

$$[\mathscr{I}_{3,1}]_{v.s.} \approx \mathscr{M}_{1,1} \oplus \mathscr{M}_{3,1}$$

with $h_{3,1} = 2$ and

$$L_2|\varphi_{3,1}\rangle\equiv\beta_{3,1}|0\rangle=\frac{5}{6}|0\rangle$$

$$\langle \varphi_{1,5}(z) \varphi_{3,1}(w) \rangle$$

This is fixed by the global conformal invariance

$$\langle \varphi_{1,5}(\textbf{\textit{z}}) \varphi_{3,1}(\textbf{\textit{w}}) \rangle$$

This is fixed by the global conformal invariance

L_{−1} and L₀ Ward identities (for translation and scale invariance) yield

$$\langle \phi_{1,5}(z)\phi_{3,1}(w)\rangle = \frac{C - (\beta_{1,5} + \beta_{3,1})\ln(z - w)}{(z - w)^4}$$

$$\langle \varphi_{1,5}(z) \varphi_{3,1}(w) \rangle$$

This is fixed by the global conformal invariance

L_{−1} and L₀ Ward identities (for translation and scale invariance) yield

$$\langle \varphi_{1,5}(z) \varphi_{3,1}(w) \rangle = \frac{C - (\beta_{1,5} + \beta_{3,1}) \ln(z - w)}{(z - w)^4}$$

L₁ Ward identity (special conformal transformation) is satisfied only if

$$\beta_{3,1}=\beta_{1,5}$$

$$\langle \varphi_{1,5}(z) \varphi_{3,1}(w) \rangle$$

This is fixed by the global conformal invariance

L_1 and L_0 Ward identities (for translation and scale invariance) yield

$$\langle \phi_{1,5}(z)\phi_{3,1}(w)\rangle = \frac{C - (\beta_{1,5} + \beta_{3,1})\ln(z-w)}{(z-w)^4}$$

L1 Ward identity (special conformal transformation) is satisfied only if

$$\beta_{3,1} = \beta_{1,5}$$

Since

$$\beta_{3,1} = \frac{5}{6} \neq \beta_{1,5} = -\frac{5}{8}$$

 \Rightarrow the addition of $\mathcal{M}_{2,1}$ in the theory violates conformal invariance

Gurarie-Ludwig-type argument:

Logarithmic extension of the Virasoro algebra:

T(z) and t(z) s.t.

$$\langle T(z)t(w)\rangle = \frac{b}{(z-w)^4}$$

b (effective central charge) is unique

$$b = \beta_{1,5} \text{ or } b = \beta_{3,1}$$

Gurarie-Ludwig-type argument:

Logarithmic extension of the Virasoro algebra:

T(z) and t(z) s.t.

$$\langle T(z)t(w)\rangle = \frac{b}{(z-w)^4}$$

b (effective central charge) is unique

$$b = \beta_{1,5} \text{ or } b = \beta_{3,1}$$

More basic statement:

 $\mathcal{M}_{1,2}$ and $\mathcal{M}_{2,1}$ are mutually exclusive

Gurarie-Ludwig-type argument:

Logarithmic extension of the Virasoro algebra:

T(z) and t(z) s.t.

$$\langle T(z)t(w)\rangle = \frac{b}{(z-w)^4}$$

b (effective central charge) is unique

$$b = \beta_{1,5}$$
 or $b = \beta_{3,1}$

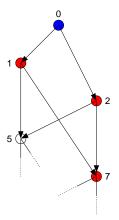
More basic statement:

 $\mathcal{M}_{1,2}$ and $\mathcal{M}_{2,1}$ are mutually exclusive

This conclusion holds for a BCFT

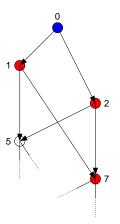
Need for extension: Watts' formula for π_{hv}

Ridout's proposal: 4-pt correlation of a field of h = 0 and with



Need for extension: Watts' formula for $\pi_{h\nu}$

Ridout's proposal: 4-pt correlation of a field of h = 0 and with



This fixes $\mathcal{M}_{2,5/2}$: fusion generates fields with $h_{2,(2k+1)/2}$

 $\mathcal{M}_{2.5/2} \subset \text{a rank-two staggered module containing } |0\rangle \text{ with } \langle 0|0\rangle = 0$

Dualities

Percolation and SLE

▶ Percolation (minimal) = theory generated by fusions of $\mathcal{M}_{1,2}$

This is a logarithmic deformation of M(2,3), call it LM(2,3)

 $[\neq LM(2,3) \text{ model of Pearce-Rasmussen-Zuber}]$

Percolation and SLE

Percolation (minimal) = theory generated by fusions of $\mathcal{M}_{1,2}$ This is a logarithmic deformation of M(2,3), call it LM(2,3)

 $[\neq LM(2,3) \text{ model of Pearce-Rasmussen-Zuber}]$

► Cardy's formula is proved by SLE and *LM*(2,3):

$$LM(2,3) \sim SLE(6)$$

[in LM(2,3): it probes only $\mathcal{M}_{1,2} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,3}$]

Percolation and SLE

- Percolation (minimal) = theory generated by fusions of $\mathcal{M}_{1,2}$ This is a logarithmic deformation of M(2,3), call it LM(2,3)[$\neq LM(2,3)$ model of Pearce-Rasmussen-Zuber]
- ► Cardy's formula is proved by SLE and LM(2,3):

$$LM(2,3) \sim SLE(6)$$

[in LM(2,3): it probes only $\mathcal{M}_{1,2} \times \mathcal{M}_{1,2} = \mathcal{M}_{1,1} \oplus \mathcal{M}_{1,3}$]

 Kytölä: From SLE to the operator content of percolation confirms the resulting structure from the SLE point of view

Percolation: dual version

- ► Recall: M_{1,2} and M_{2,1} are mutually exclusive
- ► $L^*M(2,3)$ = theory generated by fusions of $\mathcal{M}_{2,1}$:
- ► LM(2,3) and $L^*M(2,3)$ are dual to each other

Percolation: dual version

- ▶ Recall: $\mathcal{M}_{1,2}$ and $\mathcal{M}_{2,1}$ are mutually exclusive
- ▶ $L^*M(2,3)$ = theory generated by fusions of $\mathcal{M}_{2,1}$:
- ► LM(2,3) and $L^*M(2,3)$ are dual to each other
- ▶ The SLE duality $SLE(\kappa) \leftrightarrow SLE(16/\kappa)$ suggests:

$$L^*M(2,3) \sim SLE(8/3)$$

SLE(8/3) = Self-avoiding walks

Recall: SLE \leftrightarrow CFT is via a SV(κ) at level 2

$$SLE(6) \leftrightarrow \varphi_{1,2}$$
 $SLE(8/3) \leftrightarrow \varphi_{2,1}$

Percolation: dual version

- ▶ Recall: M_{1,2} and M_{2,1} are mutually exclusive
- ► $L^*M(2,3)$ = theory generated by fusions of $\mathcal{M}_{2,1}$:
- ► LM(2,3) and $L^*M(2,3)$ are dual to each other
- ▶ The SLE duality $SLE(\kappa) \leftrightarrow SLE(16/\kappa)$ suggests:

$$L^*M(2,3) \sim SLE(8/3)$$

SLE(8/3) =Self-avoiding walks

Recall: SLE \leftrightarrow CFT is via a SV(κ) at level 2

$$SLE(6) \leftrightarrow \varphi_{1,2}$$
 $SLE(8/3) \leftrightarrow \varphi_{2,1}$

Column-row duality: [Read-Saleur]



Percolation: boundary vs bulk

Integrable perturbation of the Q-state Potts model

$$A_{Q}(\tau) = A_{CFT(Q)} + \tau \int \varphi_{2,1}(z) \,\bar{\varphi}_{2,1}(\bar{z}) d^2x$$

Percolation: boundary vs bulk

Integrable perturbation of the Q-state Potts model

$$A_{Q}(\tau) = A_{CFT(Q)} + \tau \int \Phi_{2,1}(z) \,\bar{\Phi}_{2,1}(\bar{z}) d^{2}x$$

Suggests to define the bulk percolation via

$$\lim_{\tau \to 0} \lim_{Q \to 1} A_Q(\tau) \qquad [\tau \propto (p - p_c)]$$

Percolation: boundary vs bulk

Integrable perturbation of the Q-state Potts model

$$A_{Q}(\tau) = A_{CFT(Q)} + \tau \int \Phi_{2,1}(z) \,\bar{\Phi}_{2,1}(\bar{z}) d^{2}x$$

Suggests to define the bulk percolation via

$$\lim_{\tau \to 0} \lim_{Q \to 1} A_Q(\tau) \qquad [\tau \propto (\rho - \rho_c)]$$

This is (expected to be) a (bulk) LCFT

$$\varphi_{2,1}^{bulk} \sim \mathscr{M}_{2,1}$$

- Integrability requires the SV at level 2
- $-\phi_{2,1}$ is outside the Kac table: the modules cannot be irreducible

Gurarie-Ludwig type "no-go theorem":

$$\phi_{2,1}^{\text{bulk}}$$
 present \Rightarrow $\phi_{1,2}^{\text{bulk}}$ absent

Gurarie-Ludwig type "no-go theorem":

$$\varphi^{\text{bulk}}_{2,1} \quad \text{present} \quad \Rightarrow \quad \varphi^{\text{bulk}}_{1,2} \quad \text{absent}$$

But

$$\langle \varphi_{3,1}^{\text{bulk}}(z) \varphi_{1,5}^{\text{bdry}}(w) \rangle \neq 0$$

Gurarie-Ludwig type "no-go theorem":

$$\varphi^{\text{bulk}}_{2,1} \quad \text{present} \quad \Rightarrow \quad \varphi^{\text{bulk}}_{1,2} \quad \text{absent}$$

But

$$\langle \varphi_{3,1}^{\text{bulk}}(z) \varphi_{1,5}^{\text{bdry}}(w) \rangle \neq 0$$

Spectrum (percolation):

boundary
$$\{h_{1,s}\}$$
 bulk: $\{h_{r,1}\}$

$$\beta_{1,5}^{\text{bdry}} = -\frac{5}{8}$$
 $\beta_{3,1}^{\text{bulk}} = \frac{5}{6}$

[GL orginal claim is ok]

Similar proposal [Simmons-Cardy]

► Dual version for self-avoiding walks (with φ_{1,3} perturbation)

