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Context

» Minimal models describe the local observables at the critical
point

» Non-local observables (crossing probabilities, fractal dimensions)
appear to probe representations outside the Kac table

[Arguin-Lapalme-Saint-Aubin-Duplantier-Saleur-Bauer-Bernard]



Context

» Minimal models describe the local observables at the critical
point

» Non-local observables (crossing probabilities, fractal dimensions)

appear to probe representations outside the Kac table

[Arguin-Lapalme-Saint-Aubin-Duplantier-Saleur-Bauer-Bernard]

» Problem considered here:

how to deform the irreducible modules to probe (by fusion) the
exterior of the Kac table

guided by physical considerations

» Focus: percolation and the Cardy’s formula



Percolation: the Cardy formula

for crossing probability



Bound percolation and crossing probabilities

Bound open (p) or closed (1 —p):

Pc = mih = f(r) (r = aspect ratio)

NI =




Percolation as a limiting Q-state Potts model

» Q-state Potts model: o; €{1,---,Q}

E=-J) .
i)

2= [T(@-pI+pso)

where

Z=) p%(1—p)PBQm
B: # bonds; Bo: # open bonds; N¢: #clusters
» Percolation:

Q=1 = Z=1 = c¢=0



Percolation as a CFT withc =0

Continuum version of the Q-state Potts model is CFT with

6
=l mmrD
with
_ 2 S
Q =4cos <(m+1)>
and



Crossing probability

Count the configurations
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Crossing probability

Subtract

free

free



Crossing probability

Equivalently: subtract (with 3 # «: excludes crossing)

free

free



Crossing probability as a four-point function

Introduce fields

$f(wy) free GBf (wy)
[ 2
o B
[ 4
¢ (wy) free $"P (ws)



Crossing probability as a four-point function

Cardy: crossing probability (mapped to UHP) is

7Ih(r) = (yTl (Zococ - Zocﬁ)

where
Zap = (0"(21) 0 (22) 0P (23)dP" (24)) Z4



Physical imput (Cardy)

» Scale invariance of Z,./Zs requires that

$'* has h=0

» Boundary changing operator in Q-state Potts models:

' =Py

» SVatlevel2 = ODEfor(---) = fixesmy(r)
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(1997)



Test of the Cardy formula

» Match perfectly the numerical data
[Langlands—Pouliot—Saint-Aubin]

» “The striking agreement between simulation and theory is one of
the most convincing confirmations to date of the validity of the
hypothesis of local conformal invariance in two-dimensional
critical systems.”

(1997)

» Proved by Smirnov and by SLE techniques (2001)



Percolation as a logaritmic

conformal field theory



Cardy formula does not fit within a minimal model

Module content of M(2,3)

0

0) =[dp1,1) = [d1,2)
In fact the M(2,3) model is trivial: only has |0)

L 40) =L 5/0)=0 = L_p0)=0 ¥n>0



Minimal deformation of M(2,3) that fits Cardy’s result

To make the theory non-trivial, need to break

Ip1,1) = Id1,2)

Need to modify the structure of the modules

But what needs to be kept?
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Minimal deformation of M(2,3) that fits Cardy’s result

To make the theory non-trivial, need to break

Ip1,1) = Id1,2)

Need to modify the structure of the modules

But what needs to be kept?
> |$1,1) must have a vanishing SV at level 1:

L_1ld1,1) =0

(global conformal invariance of the vacuum)
» |b12) must have a vanishing SV at level 2:
3
(Lz — 5L21) p11) =0

(SV = ODE for the 4-pt function)



New modules .7 : reducible but indecomposable

Minimal deformation of the modules (red SV =+ 0)

Mg #

T(z)#0



Constructing the deformed M(2,3) model

Building the theory:

» Take multiple fusions of the two basic modules .#; 1 and .Z »
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Constructing the deformed M(2,3) model
Building the theory:

» Take multiple fusions of the two basic modules .#; ; and .# »

» Need an algebraic method to calculate fusion rules that
distinguishes the fact that a SV is set to 0 or not

Nahm-Gaberdiel-Kausch algorithm




Fusion rules

> <%1,1 X ,///1‘1 = ,///1‘1

> ‘///l,l X .//1‘2 = .//1‘2

1 1 still acts as the identity
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Fusion rules

> M X M= M
> M1 X M= M2

1 1 still acts as the identity
> Mo X M= M1 D M3

with h]_‘g = %

The presence of .#; 3

0

this deformation forces us to leave the Kac table



» Consider .#1  x .4 3; natural guess
My} My 3= M2 D Mg

with h1‘4 =1
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» Consider .#1  x .4 3; natural guess
My} My 3= M2 D Mg

with h1‘4 =1

» Wrong: the correct result is
My X M 3= I14
where .#; 4 is indecomposable  ([7 4lv.s & A1 2B M1 4)
The action of Ly displays a Jordan cell structure:

Lold1,4) =|d1,4) +L_1ld12)

... the defining property of a logarithmic CFT



The module .77 4

L1

lby1 2)
L_1ldy 2)
m

[d1 4)

Lold1,4) =Id1.4) +L_1ld12)

Lild14) #0




The module .77 4

L1

lby 2)
L_1ldy 2)
m

[d1 4)

Lold1,4) =Id1.4) +L_1ld12)

Lild1a) =—31b12)




Scalar products in .7 4

» Normalization:

(P12ld12) =1

> L,1|d)1‘2> isa SV (75 O) but:

(P12l 1ld12) =0

» More generally

(WIL_1]d12) =0 V) €.

the SV is orthogonal to all states in .#; » (as usual)



» The ‘linking relation’

1
Ll ,4) =*§|¢1,2>

implies that

1
(b1.4ll_1]d12) = -3

i.e., L_1|¢1 2) is not orthogonal to states in .#; 4

This is the where the effect of having a SV # 0 enters



» The two linking relations:

1
Lold1,4) =Id1.4) +L_1ld12) and Lildp1,4) = —§\¢1,2>

imply

1 dao(w) | P1a(W)+0dro(W)  Odga(w)
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T(z)Ppralw)=
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» The two linking relations:

1
Lold1,4) =Id1.4) +L_1ld12) and Lildp1,4) = —§\¢1,2>

imply

1 dao(w) | P1a(W)+0dro(W)  Odga(w)
2(z—w)3 (z—w)? Z—w

T(z)Ppralw)=

» With global conformal invariance this implies

(207 +Wow +2)(b1.4(2) b1 a(W)) =

(z—w)2
with solution

| _
(P1,4(2)Ppra(w)) = W

+...



(p14(2)d1a(wW)) = A+In(z —w)

(z—w)?

» Correlation functions contain logs: a genuine LCFT




| _
(P1,4(2) b1 a(W)) = w

» Correlation functions contain logs: a genuine LCFT

» A is arbitrary — we can set A =0 in using a gauge transformation



A+In(z —w)
z w))=———-—
($1,4(z)Pp1alw)) Z_wp
» Correlation functions contain logs: a genuine LCFT
» Ais arbitrary — we can set A =0 in using a gauge transformation

» The scalar product diverges

(b1,4ld1,4) = Z"j[]o 2%(d1.4(2) b1 4(0))

— 0



Fusion rules up to this point

v

.//1,1 X L//l‘l = L//l‘l

v

.//1,1 X L//l‘z = L//l‘z

v

M1 X M= M1 1D M3

v

.//1,2 X %1‘3 = f1,4



Another fusion rule

Mz x M 3= M3PI5

where
[(A15lvs. = M 1PB M5
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Another fusion rule

Mz x M 3= M3PI5

where
[(A15lvs. = M 1PB M5

> |$15) is coupled to the energy-momentum tensor

Lold1,5) = 2|d1,5) +L_2[0)

» Also 5
Lold15) = —§\0>



The module .7 5

L_110)

Lold1,5) =2/ 5) +L_2/0)

Lol s) =—310)




Logarithmic couplings



Logarithmic coupling 31 4

[x1,2) =L 1ld12) #0 The module . 4

The linking relation

[bg

1
Lildpya) = *§|¢1,2>

implies
1
(b12lL1ld14) = *§<¢1,2|<b1,2>
_ 1
)

1
(X1,2ld1,4) =B1a= 5



1.4 is gauge invariant
B1,4=(X1,2lP1,4)
is invariant under the gauge transformation

lb1,4) =[] 4) = |d1,4) + xIx1,2)

that preserves the Jordan cell structure

Lold1,4) = d1.4) +L_1]d12)
(8
Lold1 4) =Ib1 4) +L ald12)



Gauge invariance and correlators

A is arbitrary in

(b1,4(Z)Pp1a(W)) = W

We can set A =0 in using a gauge transformation

Ib1,4) = |1 4) = |d1,4) +lx1,2)



Logarithmic coupling 31 5

The module .77 5 [x1,1) =L_2ld11) #0

The linking relation

5
Laoldys5) = —§|¢1,1>
implies

5
(b1.1lold15) = —§<¢1,1|¢1,1>
°
8

5
(X1,1lb15) =B15= ~3



315 is gauge invariant

Similarly

B1,5=(x1,1ld15)
is invariant under

lb15) = |1 5) = |d15) +alxa,1)



Gauge transformation

General gauge transformation (module dependent)

|¢1,s> — |¢1s> = “bl,s> + M’>

preserves the Jordan cell structure

Lold1,s) =h1sldbas) +[Log partner)

[} is a linear combination of terms of dimension hj g

Above cases (s =4,5): p) is ‘unique’ (= «[x1s))



The module %3 7 D .41 3 % 91 5

[$1,7)

Lold1,7) =3ld1,7) +A_3ld15)

A =L g—L oL 1 +2L%,




B17: gauge invariant definition

Look for B3

Bsld1,7) = B1,7ld15)

with
Bz =Lg+viLilo+vy, L3

such that (3 7 is invariant under

lb1,7) = |b17) =Id17) +1b)

where
W) = (L g+ogL ol g +0oL3;)d1s)



B17: gauge invariant definition

Gauge invariance forces

Bsld1,7) = Bsld1 7) =Ba(lb1,7) + b))

or

Bshp) =0

N)> =(Lz+oqL oL 1+ Lil)‘d)1,5>



B17: gauge invariant definition

Gauge invariance forces

Bsld1,7) = Bsld1 7) =Ba(lb1,7) + b))

or

Bshp) =0

W)= (L 3+agl oL 1+apLl>;)dys)
Since Bsl) € 41 5:

(b1,5Bshp)y =0



B17: gauge invariant definition

Gauge invariance forces

Bsld1,7) = Bsld1 7) =Ba(lb1,7) + b))

or

Bslp) =0

W)= (L 3+agl oL 1+apLl>;)dys)
Since Bsl) € 41 5:

(b1,5Bshp)y =0

Solution:

Bs=(A 3)"  sothat (db15/Bs=(x1sl

since
(X1,510) =0 Vo, o0



Logarithmic coupling : gauge invariant definition
|¢1,s’>

lp1,s)

Bis=(x1,s'lP1s) = <¢1,s’|AT|¢l,S>

B1,s is fixed by the normalization of [x1 ¢/) (L n+ ol (gL 1 +:)
Existence of p’s: [Gaberdiel-Kausch and Eberle-Flohr]



Logarithmic coupling : gauge invariant definition
|¢1,s’>

\

|X1,s’>< |¢1,s>

Bis = (X1s/P1s) = (d1.s/|ATD1 )

41 s Staggered module [Roshiepe]
Kytdla—Ridout: “On Staggered Indecomposable Virasoro Modules”



Logarithmic couplings: new definition via SV (%7 4)

L1

lby 2)
L_1ldy 2)
Lp—1

[d1 4)

1&1,4)




Logarithmic couplings: new definition via SV (%7 4)
£2,) = (L4 ST LIS %L“l) Pr4)

+ (alL,S tasl 4l q+asl sl o+ a4L§2L,1) d1.2)

and let 31 4 be free:

Lilb14) =PB1ald1,2)



Logarithmic couplings: new definition via SV (%7 4)

5 1
[&1,4) = (L4 —Loal L%, + §L72L2,1 — ZL41) Ip1,4)

+ (alL,S tasl 4l q+asl sl o+ a4L§2L,l) d1.2)

and let 31 4 be free:

Lilb14) =PB1ald1,2)

Impose
L1l&1,4) =L2l&14) =0



Logarithmic couplings: new definition via SV (%7 4)

5 1
[&1,4) = (L4 —Loal L%, + §L72L2,1 — ZL41) Ip1,4)

+ (alL,S tasl 4l q+asl sl o+ a4L§2L,1) d1.2)

and let 31 4 be free:

Lilb14) =PB1ald1,2)

Impose
L1l&1,4) =L2l&14) =0

N =

B14=—



Logarithmic couplings: new definition via SV (%7 4)

L1

lby 2)
Loqldg o)
m

[d1 4)

e Lil&14)=L2l&14)=0

= Bra=—3




Percolation: spectrum

of the theory



Spectrum of the theory

Multiple fusions of .#; » generate all .#; s for s > 1 as:

> M1 3n

v

41 s With s # 3n and

s—2 ifs=1mod3

Y ~ M My s Where s’'=
(A1 slvs. 1sDA1s {3_4 ifs=2mod 3

v

All exponents h; s with s > 1 appear

{hl,r}: {ovov%)l)z)%)5)7)%v12v“'}

v

This is the minimal spectrum that fits the Cardy’s formula



Spectrum extension: no-go theorem

Can we add more fields/modules in the theory?

e.g.. .51 with
2
<L2 - §L21> |p21) =0



Spectrum extension: no-go theorem

Can we add more fields/modules in the theory?

e.g.. .51 with
2
<L2 — §L21> lp2,1) =0
Fusion rules
Mo X Moy = I3
where

(F31lvs. = M1 1B M31
with h3‘1 =2 and
5
Lolds 1) = B3,110) = €|0>



Evaluate the 2-point function

(b15(2) b3 1(W))

This is fixed by the global conformal invariance



Evaluate the 2-point function

(b15(2) b3 1(W))

This is fixed by the global conformal invariance

L_1 and Ly Ward identities (for translation and scale invariance) yield

C—(B1s5+B31)In(z—w)
(z—w)4

(b15(z)Pp31(W)) =



Evaluate the 2-point function

(b15(2)d31(W))

This is fixed by the global conformal invariance

L_1 and Ly Ward identities (for translation and scale invariance) yield

C—(B1s5+B31)In(z—w)
(z—w)4

(b15(z)Pp31(W)) =

L, Ward identity (special conformal transformation) is satisfied only if

B31=1PR15



Evaluate the 2-point function

(b15(2) b3 1(W))

This is fixed by the global conformal invariance

L_1 and Ly Ward identities (for translation and scale invariance) yield

C—(B1s5+B31)In(z—w)
(z—w)4

(b15(z)Pp31(W)) =

L, Ward identity (special conformal transformation) is satisfied only if

B31=1PR15

Since
5

5
(53,1—6 # (51,5——5

= the addition of .#> i in the theory violates conformal invariance



» Gurarie-Ludwig-type argument:
Logarithmic extension of the Virasoro algebra:

T(z)and t(z) s.t.

b (effective central charge) is unique

b=pis0rb=pR31
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» Gurarie-Ludwig-type argument:
Logarithmic extension of the Virasoro algebra:

T(z)and t(z) s.t.

b (effective central charge) is unique
b=pis0orb=p31
» More basic statement:

A1 o and 4, 1 are mutually exclusive

» This conclusion holds for a BCFT



Need for extension: Watts’ formula for 7y,

Ridout’s proposal: 4-pt correlation of a field of h = 0 and with

0




Need for extension: Watts’ formula for 7y,

Ridout’s proposal: 4-pt correlation of a field of h = 0 and with

0

This fixes .75 5. fusion generates fields with hy (5, 11) /2

A5 5,2 C arank-two staggered module containing |0) with (0|0).=0



Dualities



Percolation and SLE

» Percolation (minimal) = theory generated by fusions of .#; »
This is a logarithmic deformation of M(2,3), call it LM(2,3)

[#£ LM(2,3) model of Pearce-Rasmussen-Zuber]
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Percolation and SLE

» Percolation (minimal) = theory generated by fusions of .#; »
This is a logarithmic deformation of M(2,3), call it LM(2,3)

[#£ LM(2,3) model of Pearce-Rasmussen-Zuber]

» Cardy’s formula is proved by SLE and LM (2, 3):

LM(2,3) ~ SLE (6)

[in LM(2,3): it probes only .71 o x A1 » = M1 1 M1 3]

» Kytdla: From SLE to the operator content of percolation

confirms the resulting structure from the SLE point of view



Percolation: dual version
» Recall: .7, » and .#> 1 are mutually exclusive
» L*M(2,3) = theory generated by fusions of .#5 ;:

» LM(2,3) and L*M(2,3) are dual to each other
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SLE(8/3) = Self-avoiding walks
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Percolation: dual version
» Recall: .7, » and .#> 1 are mutually exclusive
» L*M(2,3) = theory generated by fusions of .#5 ;:
» LM(2,3) and L*M(2,3) are dual to each other
» The SLE duality SLE (k) +» SLE (16/«) suggests:

L*M(2,3) ~ SLE(8/3)

SLE(8/3) = Self-avoiding walks
Recall: SLE «+ CFT is via a SV(k) at level 2

SLE(6) &> ¢12  SLE(8/3) ¢ 21

» Column-row duality: [Read-Saleur]
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Percolation: boundary vs bulk

» Integrable perturbation of the Q-state Potts model

Ag(T) =AcFT(Q) +TJ¢2,1(Z) $2,1(2)d?x

» Suggests to define the bulk percolation via

TIILnOQ“LnlAQ(T) [t0O(p—pc)]

» This is (expected to be) a (bulk) LCFT

bulk
(bz,l ~ ///2,1

— Integrability requires the SV at level 2

— ¢2 1 is outside the Kac table: the modules cannot be irreducible



» Gurarie-Ludwig type “no-go theorem”;

d3Uk  present = UMK absent
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» Gurarie-Ludwig type “no-go theorem”;

d3Uk  present = UMK absent

But
(@59 (2) 5L (w)) #0

» Spectrum (percolation):

boundary {h; s} bulk: {h; 1}

bdry _ bulk _

5
15 ~ g P31 = 6
[GL orginal claim is ok]
Similar proposal [Simmons-Cardy]

» Dual version for self-avoiding walks (with ¢4 3 perturbation)



