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Forword
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Historically, sandpile models have been proposed by Bak, Tang &
Wiesenfeld (’87) as prototypes of self-organized critical models (SOC).

Idea was: many critical behaviours (power laws) in nature, but unlikely
to result from fine-tuning −→ it is the dynamics that drives the system
to a critical state, even if the system is prepared in a non-critical state.

Example (BTW) = Abelian sandpile model = ASM, with slow addition
of sand (pile builds up, then avalanches of all sizes).

Many other sandpile models, with deterministic or stochastic toppling
rules, directed or isotropic, more or less complex than ASM.

Being more tractable, 2d ASM is the most studied, though still
challenging ...

[Deepak Dhar, Theoretical studies of self-organized criticality, Physica A 369 (2006) 29-70]
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Important for us:

1. interesting non-equilibrium system, with stationary measure

2. lattice realization of logarithmic CFT, c = −2 (so it seems ...)



Plan
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1. The Abelian sandpile model
recurrent configurations – definition of invariant measure – spanning

trees – boundary conditions

2. Lattice observables in ASM ↔ LCFT (the pros)
dissipation – change of boundary conditions – height variables

3. Difficulties and open problems (the cons)
cylinder or torus partition functions – boundary conditions

4. Conclusions and developments



The sandpile model
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Take a grid Λ with N sites.

Attach a random variable hi = 1, 2, 3, 4 to every site (hi is # grains).

2 3 1 3 4 2 1 4 2 3
4 2 3 1 3 2 4 1 2 1
2 2 1 1 4 3 4 2 3 2
2 2 1 2 4 2 1 3 2 3
3 4 3 2 1 1 3 4 3 4
4 4 3 2 4 3 2 1 2 3
2 3 3 4 4 3 1 1 2 3
2 3 2 4 3 3 4 2 4 3
3 1 3 2 4 2 1 4 4 3
4 3 2 4 3 1 2 3 4 1

# stable configs = 4N



Dynamics
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ASM is a dynamical system in discrete 2 + 1: Ct
T
−→ Ct+1 .

Defined in two steps:

1. on random site i, drop one grain: hi → hi + 1

2. relaxation: all unstable sites topple (avalanche)

If hi ≥ 5, then

{

hi → hi − 4
hj → hj + 1, j = nearest neighbour of i

Until all sites are stable again←− OK BECAUSE DISSIPATION !!
Resulting configuration is Ct+1. (on boundaries)

Potential chain reaction: one grain dropped can trigger a large avalanche.
System spanning avalanches will happen, and induce correlations of
heights over long distances −→ critical state.



Main properties
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• stochastic dynamics → proba distribution Pt(C) on set of configs.

• certain configs, called transient, have a zero probability to occur
after the dynamics has been run for long enough.
The image of the repeated dynamics T shrinks and then stabilizes.

• unique probability measure P ∗ invariant under dynamics

P ∗Λ(C) = P∞(C) = lim
t→∞

T t P0(C)

• P ∗Λ is non-zero, and uniform, on recurrent configs, a tiny fraction
of all stable configs

|R| ≃ 3.21N ≪ 4N

But being recurrent imposes non-local constraints ...



From heights to arrows
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Height variable hi = 1, 2, 3, 4 at every lattice site.
Replace hi by an arrow pointing N, E, S, W (to one of its neighbours)

There are 4N arrow configs.
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There are 4N arrow configs.

If a subset of arrows form a
loop,
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From heights to arrows
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Height variable hi = 1, 2, 3, 4 at every lattice site.
Replace hi by an arrow pointing N, E, S, W (to one of its neighbours)

There are 4N arrow configs.

If a subset of arrows form a
loop, then simply exclude that
arrow configuration !

Keep only arrows without loops

⇓

ROOTED SPANNING TREES

(oriented towards the roots)



Spanning trees
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1. There is a 1-to-1 correspondence between the recurrent configs and
spanning trees.

There is an explicit, non-local, mapping between height configs and
spanning trees (burning algorithm). See later for examples.

2. From Kirchhoff’s theorem, partition function is

ZΛ ≡ # spanning trees = |R| = det ∆ ≃ 3.21N

with ∆ the Laplacian matrix,

∆ij =

{

4 for i = j

−1 for 〈i, j〉

In description by heights, ∆ is the toppling matrix :



Boundaries
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Need for a prescription for boundary sites.

The arrows may be allowed to have all four directions (# h-values = 4)

Such boundary sites are OPEN

(or Dirichlet, dissipative):

sink



Boundaries
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Need for a prescription for boundary sites.

Boundary arrows may be forced to point inwards only (# h-values < 4)

These are called CLOSED

(or Neumann, conservative):

sink



Boundaries

WLCFT – Zürich – May 09 10

Need for a prescription for boundary sites.

And we can make some open and some others closed:

Mix of OPEN and CLOSED

sink



Boundary conditions
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Yields two boundary conditions for every boundary site: open or closed,

−→ Open or closed boundary (or portion of).

Number of spanning trees
depends on number of open
sites.

Kirchhoff’s theorem still holds
(# spanning trees = det ∆)
with appropriate Laplacian
matrix.



Boundary conditions
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Yields two boundary conditions for every boundary site: open or closed,

−→ Open or closed boundary (or portion of).

In the spanning tree description,
all arrows point towards a root:
the tree grows from the roots.

As many potential roots as
open boundary sites.



Open bulk sites
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Note that bulk sites can also be made open/dissipative by allowing their
arrow to point towards the sink (when toppling, one grain is lost)
−→ # h-values = 5

sink

Note that at least one open site (boundary or bulk) is required (one
needs dissipation !)

if all sites are open/dissipative,
the model ceases to be critical.



Other b.c.’s
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• force boundary arrows (in spanning tree variables).
Trees are constrained to contain certain boundary bonds.
Direction matters −→ directional boundary conditions !!

t � � t - -

• periodic boundary condition
Cylindrical or toric geometry can be considered provided open sites
are present (must be bulk sites for torus).

• others ???



ASM summary
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1. Steady state behaviour of sandpile is controlled by invariant measure

P ∗Λ = limt→∞ Pt.

2. For fixed lattice shape and size, and fixed number of open sites, the
invariant measure P ∗Λ is unique, and uniform on the set of rooted
spanning trees (= recurrent configs).
Non-local degrees of freedom !

3. P ∗Λ explicitly depends on type of lattice, size of lattice, boundary
conditions, number of dissipative sites, dissipation rates, ...
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1. Steady state behaviour of sandpile is controlled by invariant measure

P ∗Λ = limt→∞ Pt.

2. For fixed lattice shape and size, and fixed number of open sites, the
invariant measure P ∗Λ is unique, and uniform on the set of rooted
spanning trees (= recurrent configs).
Non-local degrees of freedom !

3. P ∗Λ explicitly depends on type of lattice, size of lattice, boundary
conditions, number of dissipative sites, dissipation rates, ...

Is the scaling limit lim|Λ|→∞ P ∗Λ of the invariant measure the quantum

field theoretic measure of a (logarithmic) conformal field theory ???
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dissipation – change of boundary conditions – height variables
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cylinder or torus partition functions – boundary conditions

4. Conclusions and developments



Among testable issues
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To confirm the relevance of conformal description, ask questions that
have an answer in CFT:

1. Effect of introducing additional dissipation/roots (*)

2. Effect of changing the boundary conditions (**)

3. Correlations of height variables (***)

4. Combine previous three (*******)

Note that we need lattice correlators in infinite volume.

Here : we take the infinite volume limit of finite volume results.



Isolated dissipation = adding roots
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sink

Change from usual Laplacian

∆ii = 4, ∆〈ij〉 = −1,

to new one with only change at z:

∆′zz = 5, ∆′〈zj〉 = −1.

New Laplacian:

∆′ = ∆ + B, Bij = δi,z δj,z.

The effect of introducing dissipation can be measured by the fraction by
which the number of recurrent configurations increases:

Z(with dissip. at z)

Z
=

det ∆′

det ∆
=

# recurrent configs in new model

# recurrent configs in original model
scalim
←→ 〈ω(z, z)〉 ??
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Same on closed boundary (open boundary is already dissipative), and at
more than one site, ∆′ = ∆ + B1 + B2 + . . .,

Z(with dissip. at z1, z2, . . .)

Z
=

det ∆′

det ∆
scalim
←→ 〈ω1ω2 . . .〉 ??

with ωi bulk or boundary (chiral) field.

Not difficult to see that above ratio contains logarithms (+ lower).

Since ∆′ −∆ = B has finite rank,

det ∆′

det ∆
=

det[∆ + B]

det ∆
=

det∆[I + ∆−1B]

det ∆
= det[I + ∆−1]z1,z2,...

dominated by logarithms ...
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In the scaling limit, it was found to be consistent to identify the insertion
of isolated dissipation at a closed site with the insertion of a dimension 0
logarithmic field ω, partner of the identity.

[Dissipation at open sites leads to scale dimension 2 field, less relevant.]

Checked :

X insertion of dissipation at different points, both bulk and boundary

X bulk to boundary OPE (ωbulk → ωboundary)

X insertion of boundary and change of b.c. (see later)

X dissipation at all sites : system no longer critical (expon. decays)

Pertubation of CFT by m2
∫

ω(z, z̄) ∼ m2
∫

θ̃θ (mass term)



(Realized by fermions)
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The ω’s have a realization in terms of symplectic fermions.

All calculations are exactly compatible with following identifications :

ωbulk(z, z̄) ≡ (insertion of dissipation at bulk z) =
1

2π
θθ̃ + γ0 I

ωcl(x) ≡ (insertion of dissipation at closed x) =
1

2π
θθ̃ + (2γ0 −

5

4
) I

computed from Wick contractions.

On open boundary, dissipation is compatible with

(insertion of dissipation at open x) =
2

π
∂θ∂θ̃



Change of boundary conditions
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• set B = {α} of conformally invariant b.c.’s.



Change of boundary conditions
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• set B = {α} of conformally invariant b.c.’s. For now, only four.

Open, closed, left arrows, right arrows:

sink

t � �

t - -



Change of boundary conditions
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• set B = {α} of conformally invariant b.c.’s. For now, only four.

• B can be finite or infinite (supposedly our case).

• a change of boundary condition at a point x, from α to β is
realized by the insertion of a (chiral) boundary field φα,β

s

φα,β(x)

α β

Consistency : b.c.c.f. φα,β are primary fields satisfying a boundary fusion
algebra (composition law) with identity φα,α = I :

lim
x→y

φα,β(x) ⋆ φβ,γ(y) ≃ φα,γ(y) s s

α β γ



Open ↔ closed
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To turn open into closed, remove dissipation: ∆′ = ∆− B1 −B2 − . . .

1 nclop op

Similar to previous,

det ∆′

det ∆
=

det[∆− B]

det ∆
= det[I−∆−1]1≤i,j,≤n ≃ An1/4 ↔ 〈µ(0)µ(n)〉

plus many others checks lead to:

The change of boundary condition from open to closed, and vice-versa,
is effected, in the scaling limit, by the insertion of a chiral, boundary
primary field φop,cl = φcl,op ≡ µ with conformal dimension −1

8
.



Fixed arrows
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t � �

1 n
t��

1 n

Same idea as before: insert a string of n consecutive arrows (→
perturbed Laplacian ∆′ = ∆ + B) and measure the effect by the ratio:

#{spanning trees with n prescribed arrows}

#{spanning trees}
= det[I + ∆−1B].

Remember : left and right arrows are not identical → oriented b.c.’s

Appropriate B allows to pick the spanning trees with the prescribed arrows;
always of finite rank, leads to determinant of size n≫ 1.
In good cases, asymptotic value can be computed exactly (Szegö).



B.c. changing fields: summary
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Present understanding leads to following table (from 2pt, 3pt, 4pt, fusion)

φα,β open closed → ←

open id. [−1
8 ] ∈ V1,2 [0] ∈ V1,3 [0] ∈ R2,1

closed [−1
8 ] ∈ V1,2 id. [−1

8 ] ∈ V1,2 [38 ] ∈ V2,2

→ [0] ∈ R2,1 [38 ] ∈ V2,2 id.
[0] ∈ R2,1 (op)
[1] ∈ R3,1 (cl)

← [0] ∈ V1,3 [−1
8 ] ∈ V1,2 [0] ∈ V1,3 id.

• Vr,s is highest weight (null at rs), and Rr,1 are rank 2 staggered modules
• all b.c.c.f. are primary (highest weight of subrepresentation if in a R)

• note φ→
cl,← 6= φ→

op, ← (not so for outgoing arrows)



Height variables
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Most natural but hardest !

Idea = compute joint probas P ∗[hz1
= a, hz2

= b, . . .] on lattice and
make the correspondence

δ(hz − a)− P ∗(a) ←→ field ha(z) ∈ LCFT

so that in the scaling limit,
{

P ∗[hz1
= a, hz2

= b]− P ∗(a) P ∗(b)
}

=
〈

[δ(hz1
− a)− P ∗(a)][δ(hz2

− b)− P ∗(b)]
〉

= 〈ha(z1) hb(z2)〉

and for all higher point functions.

Number of orientations of arrow at z = number of height values :
4 for bulk or open boundary sites, 3 for closed boundary sites.



Height variables

WLCFT – Zürich – May 09 26

The identification of scaling fields ha requires computing lattice
correlation functions of height variables ...

Fine for heights 1 (boundary or bulk)

More difficult for heights 2,3,4 on boundary (open or closed)

Still harder for heights 2,3,4 in bulk !

Why ??



Trees, branches, leaves
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Need to translate arrows into heights ...

Height at z determined by number of neighbours pointing eventually to z !



Trees, branches, leaves
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Need to translate arrows into heights ...

Height at z determined by number of neighbours pointing eventually to z !

height 1 height 2 height 3 height 4

Height 1 : reference site is a leaf = local constraint

Height ≥ 2 : have to control long paths across whole lattice −→ non-local !!



Trees, branches, leaves
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Need to translate arrows into heights ...

Height at z determined by number of neighbours pointing eventually to z !

height 1 height 2 height 3 height 4

Height 1 : reference site is a leaf = local constraint

Height ≥ 2 : have to control long paths across whole lattice −→ non-local !!

Heights 1 are easier, while heights 2, 3, 4 are much harder !!



Height variables
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On UHP, compute 1-site probability to have height 1,2,3,4 at a distance m

from boundary, open or closed.

Asymptotic analysis for m large yields dominant contributions in SL :

P
op
i (m) = Pi +

1

m2
(ai +

bi

2
+ bi log m) + . . . ,

P cl
i (m) = Pi −

1

m2
(ai + bi log m) + . . . ,

with coefficients ai, bi known exactly : b1 = 0, but b2, b3, b4 6= 0.

a1 =
π − 2

2π3
, b1 = 0

a2 =
π − 2

2π3

(

γ +
5

2
log 2

)

−
11π − 34

8π3
, b2 =

π − 2

2π3

a3 =
8− π

4π3

(

γ +
5

2
log 2

)

+
2π2 + 5π − 88

16π3
, b3 =

8− π

4π3
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On UHP, compute 1-site probability to have height 1,2,3,4 at a distance m

from boundary, open or closed.

Asymptotic analysis for m large yields dominant contributions in SL :

P
op
i (m) = Pi +

1

m2
(ai +

bi

2
+ bi log m) + . . . ,

P cl
i (m) = Pi −

1

m2
(ai + bi log m) + . . . ,

with coefficients ai, bi known exactly : b1 = 0, but b2, b3, b4 6= 0. These
results allow to conclude :

• The height 1 field h1 is a primary field with weights (1,1).

• Up to normalization, the others three h2, h3, h4 are equal to the logarithmic
partner of h1. They belong to a non-chiral indecomposable R2,1.
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On UHP, compute 1-site probability to have height 1,2,3,4 at a distance m

from boundary, open or closed.

Asymptotic analysis for m large yields dominant contributions in SL :

P
op
i (m) = Pi +

1

m2
(ai +

bi

2
+ bi log m) + . . . ,

P cl
i (m) = Pi −

1

m2
(ai + bi log m) + . . . ,

with coefficients ai, bi known exactly : b1 = 0, but b2, b3, b4 6= 0. These
results allow to conclude :

• The height 1 field h1 is a primary field with weights (1,1).

• Up to normalization, the others three h2, h3, h4 are equal to the logarithmic
partner of h1. They belong to a non-chiral indecomposable R2,1.

!!!!! These log fields do not seem to belong to the triplet theory !!!!!
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Partition functions
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Most natural definition of partition function is

ZΛ = # of spanning trees = det ∆.

First finite-size corrections give correct central charge, c = −2.

But leads to trouble on cylinder and torus ...

Cylinder with open-open b.c.

Zop,op = det ∆op,op = η2(q) =
∑

k≥1

(−1)k+1k χ(1,2k+1)(q)

= χ0 − 2χ1 + 3χ3 − 4χ6 + 5χ10 − . . .

in terms of irreducible Virasoro characters.
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Cylinder with open-closed b.c.

Zop,cl = det ∆op,cl =
θ4(q)

η(q)
=

∑

k≥1

(−1)k+1k χ(1,2k)(q)

= χ−1/8 − 2χ3/8 + 3χ15/8 − 4χ35/8 + 5χ63/8 − . . .

Cylinder with closed-closed b.c.

Zcl,cl = det ∆cl,cl = 0 !

unless we introduce dissipation by hand (on one boundary f.i.), then

Z∗cl,cl = det∗∆cl,cl = 2(Im τ) η2(q)

Same on torus ...



Boundary conditions
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Closed b.c. is peculiar :

it may be imposed on whole boundary if dissipation somewhere else,
i.e. it cannot be imposed on all boundaries !

Left or right arrow b.c.’s are worse :

they cannot be imposed on the whole of a boundary component !

(because the so-constrained spanning trees would contain a loop)

so they may be imposed on portions of boundaries only ...



Conclusions

WLCFT – Zürich – May 09 33

Good number of features well understood :

• 4 boundary conditions identified, leading to b.c. changing fields
with conformal weights 0,−1

8
, 3

8
, 1 (some belong to indecomposables)

• isolated dissipation, on boundary or in bulk, with and without
change of b.c.; bulk, boundary and bulk-boundary fusions checked

• boundary height variables on closed and open boundaries (not log)

• bulk height variables properly identified (log fields), with and
without change of b.c.

• fully dissipative model, no longer critical, described by massive
perturbation of c = −2



WLCFT – Zürich – May 09 34

Also strange issues :

• proper interpretation of partition functions in terms of chars ?

• peculiar boundary conditions ? indecomposable ?

Open problems :

• look for other boundary conditions and new bulk observables

• relevant LCFT likely to be non-rational (and not triplet) : which
one ?

• description in terms of and relation with SLE ?
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