String Junctions, Abelian Fibrations and Flux-Geometry Duality

Peng Gao University of Toronto Pre-strings '08, ETH Zurich

Based on work with R. Donagi and M. B. Schulz, arXiv:0808.ABCD.

Flux-Geometry Duality

Peng Gao (UofT) – 1 / 27

/

Overview

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

IIB T^6/\mathbb{Z}_2 orientifold w. $\mathcal{N} = 2$ flux \equiv IIA CY duals with no flux. Goal: Construct the dual manifolds explicitly

- Many properties deduced by classical sugra dualities (Schulz [hep-th/0412270])
- **X** We have found two explicit constructions:
 - $\checkmark \quad {\sf Monodromy/string-junction \ description}$

analogous to F-theory description of K3, but with T^4 rather than T^2 fibers.

- Explicit algebro-geometric construction
 via relative Jacobian of genus-2 fibered surface.
- Relation of CYs to one another? Construction of new CYs.

Motivation

Motivations

More motivations

Supergravity analysis

Warm-up: IIB on T^2/\mathbb{Z}_2

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Motivation

Flux-Geometry Duality

Peng Gao (UofT) – 3 / 27

Motivations

Overview

Motivation

Motivations

More motivations

Supergravity analysis

Warm-up: IIB on $\mathrm{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Fate of non-perturbative dualities in the presence of flux.
 Example of open-closed, strong-weak (& RR-NS) duality.

IIB T^6/\mathbb{Z}_2 orientifold one of the simplest IIB flux compactifications (e.g., Kachru et.al. [hep-th/0201028]). May still lead to insight on flux vacua duality in general.

- ✓ IIA CY duals $X_{m,n}$ have $\pi_1 = \mathbb{Z}_n \times \mathbb{Z}_n$ w. n = 1, 2, 3, 4. ⇒ useful for Heterotic phenomenology. Few CYs with nontrivial π_1 are known (work in progress by Donagi, Saito.).
- ✓ D3 instantons dualize to WS instantons wrapping P¹ sections.
 ⇒ Exact results on D-instantons w. background flux & O-planes. (work in progress with Schulz.)

More motivations

Overview

Motivation

Motivations

More motivations

Supergravity analysis

/

Warm-up: IIB on $\mathrm{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

✓ Studying the moduli space of CY duals in IIA⇒ Can in principle deduce warped KK reduction of the flux compactification in IIB. (e.g., Douglas et.al. [0805.3700])

Connection to D(imensional)-duality? (via relative Jacobian of second construction for CYs). (Silverstein; Green et.al.)

Motivation

Supergravity analysis Chasing the duality chain Properties of $X_{m,n}$

Properties of $X_{m,n}$

Warm-up: IIB on T^2/\mathbb{Z}_2

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Supergravity analysis

Flux-Geometry Duality

Peng Gao (UofT) – 6 / 27

Chasing the duality chain

Overview

Motivation

Supergravity analysis Chasing the duality chain

Properties of $X_{m,n}$ Properties of $X_{m,n}$

Warm-up: IIB on $\mathrm{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

' Snapshot: 3 T-duals (IIB \rightarrow IIA) and M-theory lift & drop

X Starting point: Warped product $M_4 \times_w T^6/\mathbb{Z}_2$ w. D3/O3.

✓ Finer structure: $T^6 = T^2{}_{(1)} \times T^4$, T^4 is a $T^2{}_{(2)}$ fiber. over $T^2{}_{(3)}$ base w. flat connections.

★ Step one: T-dualize along $S^1 \subset T^2_{(1)}$ and $T^2_{(2)}$, result in: $(M_4 \times T^3_{fib}) \times_w T^3_{base} / \mathbb{Z}_2$ w. D6/O6 (IIA).

✓ Fate of NS flux: $H_3 \rightarrow 1$ st Chern class of dual fibration $\widetilde{T^2}_{(2)} \subset T^3_{fib} \propto n.$

✓ Fate of RR flux: $F_3 \to F_2 = dC_1$ captures the distribution of D6/O6 and curvature ($\propto m$) over T_{base}^3 .

✓ Note: non-trivial dilaton profile, as is generic in T-dualizing.

X Step two: Lift to M-theory, result in $M_4 \times S^1_{(1)} \times CY3$ w. CY3 = $((S^1_{10} \rtimes_w \widetilde{T^2_{(2)}} \ltimes_{w'} S^1_{(1)})_{\sim T^4} \times_{w'} T^2_{(3)}/\mathbb{Z}_2)$

✓ **Purely** geometric: C_1 identified as A_{10} , D6/O6 → TN/GH. (color conservation 123. $\xrightarrow{\text{step3}}$ IIA')

Peng Gao (UofT) – 7 / 27

Properties of $X_{m,n}$

Overview

Motivation

Supergravity analysis Chasing the duality chain

Properties of $X_{m,n}$ Properties of $X_{m,n}$

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

We can learn the following additional information:

- ✓ Abelian surface (T⁴) fibration over \mathbb{P}^1 , has 8 + N singular fibers of nodal type, N = number of D3-branes in T⁶/Z₂.
- ✓ Hodge # of $X_{m,n}$: $h^{11} = h^{21} = N + 2$, N + 4mn = 16. Follows from massless spectrum, including open string moduli $F_3 \sim 2m$, $H_3 \sim 2n$, $N_{D3} + \int H \wedge F = \frac{1}{4}N_{O3}$ in IIB.
- ✓ Generic D_N lattice of sections (mod torsion) Follows from N D-branes + O-plane giving rise to SO(2N).
- ✓ Fundamental group and discrete isometries $\pi_1 = \mathbb{Z}_n \times \mathbb{Z}_n$, isometry $= \mathbb{Z}_m \times \mathbb{Z}_m$. For flux $m, n \neq 1$, partial higgsing of U(1)s in IIB.

Properties of $X_{m,n}$

Overview

Motivation

- Supergravity analysis Chasing the duality chain
- Properties of $X_{m,n}$

Properties of $X_{m,n}$

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Approximate metric, harmonic forms, recall isometry along M-th circ. (small parameter = fiber/base $\propto R^{11}$).

Polarization: $J_{\rm fiber} \propto m dy^1 \wedge dy^2 + n dy^3 \wedge dy^4$.

Non-vanishing triple intersections: $H^2 \cdot A = 2mn, \quad H \cdot \mathcal{E}_I \cdot \mathcal{E}_J = -m\delta_{IJ}$ Computed using explicit (approximate) harmonic forms.

✓ $H \cdot c_2 = 8 + N$, and esp. $\chi(A) = A \cdot c_2 = 0$ → Abelian surface fibration (Oguiso). Follows from $F_1 = \sum_{\alpha=1}^{h^{1,1}(X)} (D_{\alpha} \cdot c_2) t^{\alpha} \sim (N+8) \tau_{dil}$ (Dasgupta et.

al.) and $g_s^{\mathrm{IIB}}
ightarrow J_A$ in IIA CY dual.

Motivation

Supergravity analysis

Warm-up: IIB on ${
m T}^2/{
m \mathbb{Z}}_2$

IIB on T^2/\mathbb{Z}_2 Monodromy description

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Warm-up: IIB on T^2/\mathbb{Z}_2

Flux-Geometry Duality

Peng Gao (UofT) – 10 / 27

IIB on T^2/\mathbb{Z}_2

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathrm{T}^2/\mathbb{Z}_2$

IIB on T^2/\mathbb{Z}_2

Monodromy description

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Recall IIB encoding of elliptic fibration over \mathbb{P}^1 (e.g., K3):

IIB: 7-brane

✓ $\oint_{\gamma} F_1 = 1$ unit RR charge \Rightarrow monodromy $\tau_{dil} \rightarrow \tau_{dil} + 1$

(
$$p,q$$
) 7-brane = where (p,q)-string ends, e.g. D7 brane=(1,0) 7-brane.

F-theory: singular elliptic fiber

- ✓ $\tau = \text{cplx mod. of } T^2 \text{ fiber, } \tau \to \tau + 1 \text{ about } \gamma$ ✓ $a\alpha + b\beta$ cycle in T^2 : $\binom{a}{b} \to K\binom{a}{b}$, $K = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ monodromy matrix. ✓ $p\alpha + q\beta$ (instead of α) cycle shrinks: $K_{[p,q]} = \begin{pmatrix} 1+pq & -p^2 \\ a^2 & 1-pq \end{pmatrix}$.
- ✓ Other cplx structure moduli∼7-brane moduli.

Peng Gao (UofT) – 11 / 27

Monodromy description

Overview

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

IIB on T^2/\mathbb{Z}_2 Monodromy description

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Let (p,q) charges A = (1,0), B = (1,-1) and C = (1,1).

- Nonperturbative description: each O7 resolves to BC pair.(Sen) Up to equivalences K_{O7} factorizes uniquely into $(K_{[1,1]}K_{[1,-1]})$.
 - So, F-theory on the manifold K3: Base $\mathbb{P}^1 \cong \mathrm{T}^2/\mathbb{Z}_2$, 24 singular fibers $A^{16}(BC)^4$, with monodromies

$$K_A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad K_B = \begin{pmatrix} -1 \\ 1 & 2 \end{pmatrix}, \quad K_C = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

✓ These nonperturbative IIB data define the topology of K3.

/

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

IIB on T^6/\mathbb{Z}_2 : Abelian fibration Monodromy for T^4 fibers Dual interpretation of RR tadpole

Construction I: String-junctions

Construction II: Relative Jacobian

Construction I: Monodromy of singular fibers

Flux-Geometry Duality

Peng Gao (UofT) – 13 / 27

IIB on T^6/\mathbb{Z}_2 : Abelian fibration

Overview

Motivation

Supergravity analysis

/

V

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

IIB on $\overline{T^6}/\mathbb{Z}_2$: Abelian fibration

Monodromy for T^4 fibers Dual interpretation of RR tadpole

Construction I: String-junctions

Construction II: Relative Jacobian

CY duals $X_{m,n}$ are T^4 fibration over \mathbb{P}^1 . But Why?

Another point of view: • No flux: (m = n = 0)

> T^6/\mathbb{Z}_2 orientifold \leftrightarrow IIA on K3 \times T² (K3 = T² fibration over \mathbb{P}^1)

(both dual to type I or het-SO on T^6).

X With $\mathcal{N} = 2$ flux $F_3 \sim 2m, H_3 \sim 2n$:

 T^6/\mathbb{Z}_2 orientifold \leftrightarrow IIA on CY $X_{m,n}$ $(X_{m,n} = T^4 \text{ fibration over } \mathbb{P}^1)$

Rougly flux induces twists mixing T^2 factor with T^2 fiber of K3.

Flux-Geometry Duality

Monodromy for T^4 fibers

Overview

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib. IIB on T^6/\mathbb{Z}_2 : Abelian fibration Monodromy for T^4 fibers Dual interpretation of RR tadpole

Construction I: String-junctions

Construction II: Relative Jacobian

$$N \text{ D3s} + \text{O3s of } \text{T}^6/\mathbb{Z}_2 \iff A^N B_1 C_1 B_2 C_2 B_3 C_3 B_4 C_4$$

singular T^4 fibers of $X_{m,n}$.

$$K_{A} = \begin{pmatrix} 1 & -1 & | & \\ & 1 & | & \\ & -- & -- & -- \\ & | & 1 & \\ & | & 1 & 1 \end{pmatrix} = (\text{old } K_{A}) \oplus (\text{identity}) \text{ on } \mathrm{T}^{2} \times \mathrm{T}^{2},$$

but B_i, C_i differ for i = 1, 2, 3, 4. For example,

 $K_{B_1} = \begin{pmatrix} -1 & | & -m \\ 1 & 2 & | & m \\ --n & -n & | & 1 & -m \\ -n & -n & | & 1 & -m \\ | & 1 & 1 \end{pmatrix} = (\text{old } K_B) \oplus (\text{identity}) \text{ on } T^2 \times T^2 + m, n \text{ twists.}$

The monodromies uniquely determine the topology of $X_{m,n}$.

Flux-Geometry Duality

Peng Gao (UofT) – 15 / 27

Dual interpretation of RR tadpole

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib. IIB on T^6/\mathbb{Z}_2 : Abelian fibration Monodromy for T^4 fibers Dual interpretation of RR tadpole

Construction I: String-junctions

Construction II: Relative Jacobian

✓ On the base of $X_{m,n}$, a \mathbb{P}^1 , the loop that encloses all singular fibers is contractible (to the point at '∞').

 \Rightarrow Total monodromy must be unity:

$$1 = K_{\text{total}} = K_{C_4} K_{B_4} \dots K_{C_1} K_{B_1} K_A^N = \begin{pmatrix} 1 & 0 & 0 & 0 \\ & 1 & -Q & 0 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix},$$

where Q = N - 16 + 4mn.

Purely topological constraint reproduces T^6/\mathbb{Z}_2 D3 charge condition Q = 0.

\sim		
Οv	erv	lew

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

String junctions & Mordell-Weil lattice MW and junction lattice for $X_{m,n}$ Relations between CYs

Construction II: Relative Jacobian

Conclusions

Construction I: (contd.) String-junctions

Flux-Geometry Duality

Peng Gao (UofT) – 17 / 27

String junctions & Mordell-Weil lattice

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions String junctions & Mordell-Weil lattice MW and junction lattice for $X_{m,n}$ Relations between CYs

Construction II: Relative Jacobian

Conclusions

String junctions:

(Sen; Gaberdiel et.al. ;DeWolfe...) are W-bosons of 7-brane gauge theory,
 encode homology of F-theory elliptic fibration,
 equivalence classes (charges) form a lattice.

 $H_2(S)$ generated by:

✓ generic fiber, $\leftarrow H^0(\mathbb{P}^1, R^2\pi_*\mathbb{Z}) \rightarrow$ ✓ irred. components of singular fibers; (Kodaira) ✓ sections. \leftarrow string junctions, $H^1(\mathbb{P}^1, R^1\pi_*\mathbb{Z})$

Mordell-Weil lattice of sections = junction lattice/null loops (Fukae et al.).

Peng Gao (UofT) - 18 / 27

MW and junction lattice for $X_{m,n}$

Overview

Motivation

Supergravity analysis

Warm-up: IIB on T^2/\mathbb{Z}_2

Construction I: Monodromy of fib.

Construction I: String-junctions String junctions & Mordell-Weil lattice MW and junction lattice for $\overline{X_m, n}$ Relations between CYs

Construction II: **Relative Jacobian**

Conclusions

In CY $X_{m,n}$: a (p,q,r,s) 1-cycle in T^4 fiber shrinks at each A, B_i , C_i on \mathbb{P}^1 .

✓ Obtain 2-cycles in $X_{m,n}$ from $S^1_{[p,q,r,s]} \sim S^1_{10}$ fibration over (p, q, r, s) junction graphs in base \mathbb{P}^1 . (further leads to θ -divisors.)

 \checkmark Again, MW lattice of (rational) sections = junction lattice/null loops.

 $A^{N} \prod_{i=1}^{4} B_{i}C_{i} \Rightarrow \qquad \text{Again } D_{N} \text{ from } A^{N}B_{i}C_{i} \quad (A+A=B_{i}+C_{i})$ but NOT E_{N+1} from $A^{N}B_{i}C_{i}C_{i} \quad (C_{i} \neq C_{i})$ but NOT E_{N+1} from $A^N B_i C_i C_j$ ($C_i \neq$ C_i).

 D_N = free part of MW lattice.

 \checkmark $\mathbb{Z}_m \times \mathbb{Z}_m$ = torsion part of MW lattice = isometry group.

Peng Gao (UofT) – 19 / 27

Relations between CYs

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions String junctions & Mordell-Weil lattice MW and junction lattice for $X_{m,n}$

Relations between CYs

Construction II: Relative Jacobian

Conclusions

✓ N + 4mn = 16. Complete set of 8 $X_{m,n}$ is { $X_{1,1}, X_{m,1}, X_{1,n}, X_{2,2}$ }.

✓ Relations:

- **X** IIB S-duality $H_3 \leftrightarrow F_3$ imples $X_{m,n} \leftrightarrow X_{n,m}$ via fiberwise T-dualizing T⁴, $X_{1,1}, X_{2,2}$ invariant.
- ★ Topologically $X_{m,1}/(\mathbb{Z}_m \times \mathbb{Z}_m) = X_{1,m}$ Discrete isometry \leftrightarrow non-trivial π_1
- Similarly $X_{4,1}/(\mathbb{Z}_2 \times \mathbb{Z}_2) = X_{2,2}$ with diagonal $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset \mathbb{Z}_4 \times \mathbb{Z}_4$.

Is $X_{1,1}$ a good parent for all $X_{m,n}$? descending by quotienting: When singular fibers coalesce, additional isometries can develop, adds to MW torsion from "weakly integral" junctions, e.g., a (1,0)string ending on a collapsed A^2 pair: "(1/2,0) on each." Quotient by new isometry, changes polarization, but only $\pi_1 = \mathbb{Z}_n$.

✓ Positive side: leads to new CYs with non-trivial π_1 .

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian Relative Jacobian of a surface Finding the surface S Identity checks More ID checks

Conclusions

Construction II: Relative Jacobian of a surface or "Seeing is Believing."

Flux-Geometry Duality

Peng Gao (UofT) – 21 / 27

Relative Jacobian of a surface

Overview

Motivation

Supergravity analysis

1

Warm-up: IIB on T^2/\mathbb{Z}_2

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian Relative Jacobian of a surface Finding the surface S

Identity checks More ID checks

Conclusions

Restrict to m, n = 1, 1 (principle polarization).

Idea: complex surface much easier than 3-fold. Economical description for simple singular fibers.

 To every genus-g curve, can associate a principally polarized Jacobian

torus T^{2g} with the same H_1 (same space of 1-cycles (p, q, r, s)):

So, try to realize CY $X_{1,1}$ as the fiberwise Jacobian, i.e. relative Jacobian

of a surface S, where S is itself a genus-2 fibration over \mathbb{P}^1 .

Peng Gao (UofT) – 22 / 27

Finding the surface S

Overview

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian Relative Jacobian of a surface Finding the surface S

Identity checks More ID checks

Conclusions

• A genus-2 curve = double cover of \mathbb{P}^1 with 6 branch points.

 $\Rightarrow S \equiv \text{genus-2 fibration over } \mathbb{P}^1_{(1)}$

= branched double cover of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$.

- Observe of branch curve $B \subset S$ is (d, 6)(6 branch pts in generic fiber of $S \to \mathbb{P}^1_{(2)}$, i.e., for genus-2). Can view as S as 2-fold section \sqrt{P} of $\mathcal{O}(d/2, 3)$, where $B = \{P = 0\}.$
- For d = 2, found a candidate for $X_{1,1}$ from $Jacobian(S/\mathbb{P}^1)$ A simple construction! Is it what we are looking for?

Peng Gao (UofT) – 23 / 27

Identity checks

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian Relative Jacobian of a surface Finding the surface S

Identity checks More ID checks

Conclusions

$$\begin{array}{l} \mathbf{c_1}(X_{1,1}) = \mathbf{0}, \quad \text{consider } K_{X_{1,1}|\mathbb{P}^1} = K_{\mathbb{P}^1} \otimes \det(N^*_{\mathbb{P}^1}) \\ K_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(-2), \text{ can show } N^*_{\mathbb{P}^1} = \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1). \end{array}$$

✓ $h^{1,1} = h^{2,1} = 14$, $h^{2,1}$ from cplx deform, $h^{1,1}$ from # of sections... Notice also the Euler character χ vanishes.

✓ Branch curve \Rightarrow 20 nodal genus-2 fibers \Rightarrow same # of singular T⁴ fibers.

 $c_2 = 20$ elliptic curves (singular loci of fibers are codim. 2).

\checkmark Sections of S

2nd projection $S \to \mathbb{P}^1_{(2)}$ has genus-0 fibers $C_0 = (2\mathbb{P}^1 - 2 \text{ br pts})$ w. 12 degenerations, where the 2 br pts overlap, and $C_0 \to 2 \mathbb{P}^1$ s Pairs ℓ_I, ℓ'_I meeting at a point (I = 1, ..., 12).

 $\Rightarrow 2 \times 12$ sections of genus-2 fibration (w. relations $\ell_I + \ell'_I = C_0$). \mathbb{Z}_2

More ID checks

Overview

Motivation

Supergravity analysis

Warm-up: IIB on $\mathbb{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: <u>Relative Jacobian</u> Relative Jacobian of a surface Finding the surface S Identity checks

More ID checks


```
Sections of X_{1,1}

Given a fixed choice of zero section \sigma_0 \in \{\ell_I, \ell'_I\},

MW(X_{1,1}) \cong \langle \sigma_0, f_2 \rangle^{\perp} (with S intersection pairing).

\Rightarrow 12 dimensional lattice, w. D_{12}^- matrix.

Intersections:
```

 $\bigstar \quad \ell_I \subset S \quad \mapsto \quad \text{``theta surface''} \quad \Theta_I \subset X_{1,1}.$

✗ Identify

 $A = \text{abelian fiber}, \quad \mathcal{E}_I = \frac{1}{2} (\Theta_I - \Theta'_I), \quad H = \frac{1}{2} (\Theta_I + \Theta'_I) - \frac{1}{6} A,$ gives the desired intersections for $X_{1,1}$.

 $-\frac{1}{6}A$? Only effects self-intersection of [H] \Rightarrow Basis for H from sugra harmonic form has small mismatch w. $H_2(\mathbb{Z})$.

✓ Wall's classification theorem for 3 folds:(Wall; Žubr) (c_1 , c_2 , C_{IJK}) ⇒ unique CY up to homotopy type.

Conclusions

Overview

Motivation

Supergravity analysis

Warm-up: IIB on ${\rm T}^2/{\mathbb Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions Conclusions

- ' Two complimentary constructions of the IIA duals of T^6/\mathbb{Z}_2 :
 - 1. Monodromy/string-junction (analog of F-theory for T^4 fibers),
 - 2. Relative Jacobian of a genus-2 fibered surface S (for m, n = 1, 1).
- We have constructed the Mordell-Weil lattice of rational sections, to obtain the required D_N lattice.
 - **X** In Case 1, D3 tadpole condition \Leftrightarrow total monodromy = 1.
 - × All criteria for Wall's theorem (c_1, c_2, C_{IJK}) satisfied in Case 2.
- Stage set for studying related issues in this setting:
 e.g., warped KK reduction, D-instantons, attractor bhs(Hsu et.al.)...
- ✓ Future studies: duality with other $\mathcal{N} = 2$ string vacua, w.(o.) fluxes, e.g. Heterotic-IIA; More generic CY orientifolds with flux; connecting to $\mathcal{N} = 1$ flux vacua.

\sim			
()	NA	r\/I	P1A
\sim	vC		C V V

Motivation

Supergravity analysis

Warm-up: IIB on $\mathrm{T}^2/\mathbb{Z}_2$

Construction I: Monodromy of fib.

Construction I: String-junctions

Construction II: Relative Jacobian

Conclusions

Conclusions

Thank You!

Flux-Geometry Duality

Peng Gao (UofT) – 27 / 27