The effective theory of type IIA AdS₄ compactifications on nilmanifolds and cosets

Based on: 0804.0614 (PK, Tsimpis, Lüst), 0806.3458 (Caviezel, PK, Körs, Lüst, Tsimpis, Zagermann)

Paul Koerber

Max-Planck-Institut für Physik, Munich

Zürich, 11 August 2008

• Type IIB orientifold with D3/D7-branes on conformal CY: well-studied

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level

2 / 24

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets (Paul Koerber

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems
 - No-go theorem modular inflation: fluxes, D6/O6 *Hertzberg, Kachru, Taylor, Tegmark*

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems
 - No-go theorem modular inflation: fluxes, D6/O6 *Hertzberg, Kachru, Taylor, Tegmark*
 - Way-out: geometric fluxes, NS5-branes, non-geometric fluxes

2 / 24

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems
 - No-go theorem modular inflation: fluxes, D6/O6 *Hertzberg, Kachru, Taylor, Tegmark*
 - Way-out: geometric fluxes, NS5-branes, non-geometric fluxes

2 / 24

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems
 - No-go theorem modular inflation: fluxes, D6/O6 *Hertzberg, Kachru, Taylor, Tegmark*
 - Way-out: geometric fluxes, NS5-branes, non-geometric fluxes
- Geometric fluxes: deviation from Calabi-Yau

2 / 24

- Type IIB orientifold with D3/D7-branes on conformal CY: well-studied
 - stabilization Kähler moduli through non-perturbative effects
 - uplift susy vacuum to dS, models of inflation
- Type IIA compactifications with AdS₄ space-time
 - Early type IIA models on torus orientifolds: Derendinger et al., DeWolfe et al., Cámara et al.
 - All moduli can be stabilized at tree level
 - Uplift susy vacuum to dS, models of inflation: problems
 - No-go theorem modular inflation: fluxes, D6/O6 *Hertzberg, Kachru, Taylor, Tegmark*
 - Way-out: geometric fluxes, NS5-branes, non-geometric fluxes
- Geometric fluxes: deviation from Calabi-Yau
- Other application: type IIA on $AdS_4 \times \mathbb{CP}^3$
 - AdS/CFT Aharony, Bergman, Jafferis, Maldacena M2-branes

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets (Paul Koerber

2 / 24

Inflatio

Conclusions

Type IIA susy vacua with AdS_4 space-time

Lüst, Tsimpis

- RR-forms: Romans mass $F_0 = m$, F_2 , F_4 , NSNS 3-form: H, dilaton: Φ
- SU(3)-structure: J, Ω

Inflatio

Conclusions

Type IIA susy vacua with AdS_4 space-time

Lüst, Tsimpis

• Solution susy equations:

Lüst, Tsimpis

- Solution susy equations:
 - Constant warp factor

Lüst, Tsimpis

- Solution susy equations:
 - Constant warp factor
 - Geometric flux i.e. non-zero torsion classes:

$$dJ = \frac{3}{2} \mathrm{Im} \left(\mathcal{W}_1 \Omega^* \right) + \mathcal{W}_4 \wedge J + \mathcal{W}_3$$
$$d\Omega = \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J + \mathcal{W}_5^* \wedge \Omega$$

Lüst, Tsimpis

- Solution susy equations:
 - Constant warp factor
 - Geometric flux i.e. non-zero torsion classes:

$$\begin{split} dJ &= \frac{3}{2} \mathrm{Im} \left(\mathcal{W}_1 \Omega^* \right) & \mathcal{W}_1 = -\frac{4i}{9} e^{\Phi} f \\ d\Omega &= \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J & \mathcal{W}_2 = -i e^{\Phi} F_2' \end{split}$$

Lüst, Tsimpis

- Solution susy equations:
 - Constant warp factor
 - Geometric flux i.e. non-zero torsion classes:

Form-fluxes:

 AdS_4 superpotential W:

 $H = \frac{2m}{5} e^{\Phi} \operatorname{Re}\Omega$ $F_2 = \frac{f}{9} J + F'_2$ $F_4 = f \operatorname{vol}_4 + \frac{3m}{10} J \wedge J$

 $\nabla_{\mu}\zeta_{-} = \frac{1}{2}W\gamma_{\mu}\zeta_{+} \quad \text{definition}$ $We^{i\theta} = -\frac{1}{5}e^{\Phi}m + \frac{i}{3}e^{\Phi}f$

Bianchi identities

• Automatically satisfied except for

$$dF_2 + HF_0 = -j^6$$

Inflatio

Conclusions

Bianchi identities

• Automatically satisfied except for

$$dF_2 + HF_0 = -j^6$$

• Source j^6 (O6/D6) must be calibrated (here SLAG):

$$j^6 \wedge J = 0$$
 $j^6 \wedge \operatorname{Re}\Omega = 0$

Inflatio

Conclusions

Bianchi identities

• Automatically satisfied except for

$$dF_2 + HF_0 = -j^6$$

• Source j^6 (O6/D6) must be calibrated (here SLAG):

$$j^6 \wedge J = 0$$
 $j^6 \wedge \operatorname{Re}\Omega = 0$ \Rightarrow $j^6 = -\frac{2}{5}e^{-\Phi}\mu\operatorname{Re}\Omega + w_3$

 $w_3 \text{ simple (1,2)+(2,1)}$

Conclusions

Bianchi identities

Automatically satisfied except for

$$dF_2 + HF_0 = -j^6$$

• Source j^6 (O6/D6) must be calibrated (here SLAG):

$$j^6 \wedge J = 0$$
 $j^6 \wedge \operatorname{Re}\Omega = 0$ \Rightarrow $j^6 = -\frac{2}{5}e^{-\Phi}\mu\operatorname{Re}\Omega + w_3$

 $w_3 \text{ simple } (1,2)+(2,1)$

• $\mu > 0$: net orientifold charge, $\mu < 0$: net D-brane charge

0

Conclusions

Bianchi identities

Automatically satisfied except for

$$dF_2 + HF_0 = -j^6$$

• Source j^6 (O6/D6) must be calibrated (here SLAG):

$$j^6 \wedge J = 0$$
 $j^6 \wedge \operatorname{Re}\Omega = 0$ \Rightarrow $j^6 = -\frac{2}{5}e^{-\Phi}\mu\operatorname{Re}\Omega + w_3$

 $w_3 \text{ simple (1,2)+(2,1)}$

- $\mu > 0$: net orientifold charge, $\mu < 0$: net D-brane charge
- Bianchi:

$$e^{2\Phi}m^{2} = \mu + \frac{5}{16} \left(3|\mathcal{W}_{1}|^{2} - |\mathcal{W}_{2}|^{2} \right) \geq w_{3} = -ie^{-\Phi}d\mathcal{W}_{2}\Big|_{(2,1)+(1,2)}$$

• Warp factor constant \Rightarrow only smeared orientifolds

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds:

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4

Smeared orientifolds

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4
- $\bullet\,$ We will introduce orientifolds to obtain $\mathcal{N}=1$

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4
- $\bullet\,$ We will introduce orientifolds to obtain $\mathcal{N}=1$
- Smearing:

 $j^6 = T_{O6}\,\delta(x^4,x^5,x^6)\,dx^4 \wedge dx^5 \wedge dx^6 \rightarrow T_{Op}\,c\,dx^4 \wedge dx^5 \wedge dx^6$

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4
- $\bullet\,$ We will introduce orientifolds to obtain $\mathcal{N}=1$
- Smearing:

 $j^6 = T_{O6}\,\delta(x^4,x^5,x^6)\,dx^4 \wedge dx^5 \wedge dx^6 \rightarrow T_{Op}\,c\,dx^4 \wedge dx^5 \wedge dx^6$

• We will still associate orientifold involution:

$$O6:$$
 $dx^4 \rightarrow -dx^4$, $dx^5 \rightarrow -dx^5$, $dx^6 \rightarrow -dx^6$

The effective theory of type IIA ${\sf AdS}_4$ compactifications on nilmanifolds and cosets ${\sf (Paul Koerber}$

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4
- $\bullet\,$ We will introduce orientifolds to obtain $\mathcal{N}=1$
- Smearing:

 $j^6 = T_{O6}\,\delta(x^4,x^5,x^6)\,dx^4 \wedge dx^5 \wedge dx^6 \rightarrow T_{Op}\,c\,dx^4 \wedge dx^5 \wedge dx^6$

• We will still associate orientifold involution:

 $O6: \qquad dx^4 \to -dx^4\,, \quad dx^5 \to -dx^5\,, \quad dx^6 \to -dx^6$

• Write j^6 as sum of decomposable forms

- Warp factor constant \Rightarrow only smeared orientifolds
- Solutions without orientifolds: possible!
 - No-go theorem Maldacena, Núñez only for Minkowski, not AdS4
- $\bullet\,$ We will introduce orientifolds to obtain $\mathcal{N}=1$
- Smearing:

 $j^6 = T_{O6}\,\delta(x^4,x^5,x^6)\,dx^4 \wedge dx^5 \wedge dx^6 \rightarrow T_{Op}\,c\,dx^4 \wedge dx^5 \wedge dx^6$

• We will still associate orientifold involution:

 $O6: \qquad dx^4 \rightarrow -dx^4\,, \quad dx^5 \rightarrow -dx^5\,, \quad dx^6 \rightarrow -dx^6$

- Write j^6 as sum of decomposable forms
- $B, H, F_2, \operatorname{Re}\Omega$ odd, $F_0, F_4, \operatorname{Im}\Omega$ even

Conclusions

Calabi-Yau solution

• Calabi-Yau solution Acharya, Benini, Valandro

$$j^{6} = -\frac{2}{5}e^{-\Phi}\mu \text{Re}\Omega + w_{3}$$
$$e^{2\Phi}m^{2} = \mu + \frac{5}{16}\left(3|\mathcal{W}_{1}|^{2} - |\mathcal{W}_{2}|^{2}\right)$$

Calabi-Yau solution

 Calabi-Yau solution Acharya, Benini, Valandro Put W₁ = 0, W₂ = 0 ⇒ w₃ = 0

$$j^{6} = -\frac{2}{5}e^{-\Phi}\mu \text{Re}\Omega + w_{3}$$
$$e^{2\Phi}m^{2} = \mu + \frac{5}{16}\left(3|\mathcal{W}_{1}|^{2} - |\mathcal{W}_{2}|^{2}\right)$$

Calabi-Yau solution

 Calabi-Yau solution Acharya, Benini, Valandro Put W₁ = 0, W₂ = 0 ⇒ w₃ = 0

e

$$j^6 = -\frac{2}{5}e^{-\Phi}\mu \text{Re}\Omega$$
$$^{2\Phi}m^2 = \mu$$

Inflation

Conclusions

Calabi-Yau solution

 Calabi-Yau solution Acharya, Benini, Valandro Put W₁ = 0, W₂ = 0 ⇒ w₃ = 0

$$j^{6} = -\frac{2}{5}e^{-\Phi}\mu \text{Re}\Omega$$
$$e^{2\Phi}m^{2} = \mu$$

Torus orientifolds

What about equations of motion?

IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis* 0706.1244 Under mild conditions (subtleties time direction):

What about equations of motion?

IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis* 0706.1244 Under mild conditions (subtleties time direction):

- Bulk supersymmetry conditions
- Bianchi identities form-fields with source
- Supersymmetry conditions source = generalized calibration conditions *PK*; *Martucci*, *Smyth*

What about equations of motion?

IIA: *Lüst*, *Tsimpis*, IIB: *Gauntlett*, *Martelli*, *Sparks*, *Waldram* With sources: *PK*, *Tsimpis* 0706.1244 Under mild conditions (subtleties time direction):

- Bulk supersymmetry conditions
- Bianchi identities form-fields with source
- Supersymmetry conditions source = generalized calibration conditions *PK*; *Martucci*, *Smyth*

imply

- Einstein equations with source
- Dilaton equation of motion with source
- Form field equations of motion

Some older solutions

• Nearly-Kähler: only $W_1 \neq 0$ Behrndt, Cvetič SU(2)×SU(2) and the coset spaces $\frac{G_2}{SU(3)}$, $\frac{Sp(2)}{S(U(2)\times U(1))}$, $\frac{SU(3)}{U(1)\times U(1)}$

Some older solutions

- Nearly-Kähler: only $W_1 \neq 0$ Behrndt, Cvetič SU(2)×SU(2) and the coset spaces $\frac{G_2}{SU(3)}$, $\frac{Sp(2)}{S(U(2)\times U(1))}$, $\frac{SU(3)}{U(1)\times U(1)}$
- Iwasawa manifold Lüst, Tsimpis:
 - A certain nilmanifold or twisted torus
 - = a group manifold associated to a nilpotent algebra
 - Left-invariant forms e^i obeying Maurer-Cartan relation:

$$de^i = -\frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

• Singular limit of T² bundle over K3

Group manifolds

SU(3)-structures with J, Ω constant in terms of left-invariant forms on a group manifold: fertile source of examples

$$de^i = -\frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

 \Rightarrow algebraic relations

Group manifolds

SU(3)-structures with J, Ω constant in terms of left-invariant forms on a group manifold: fertile source of examples

$$de^i = -\frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

- \Rightarrow algebraic relations
 - SU(2)×SU(2)
 - Nilmanifolds (divide discrete group: compact)
 - Only Iwasawa & torus
 - Needs smeared orientifolds
 - Solvmanifolds (compact?): no solution
 - Extend to cosets

9 / 24

Coset manifolds

Tomasiello: $W_2 \neq 0$ on two examples $\frac{Sp(2)}{S(U(2) \times U(1))}$, $\frac{SU(3)}{U(1) \times U(1)}$ *PK*, *Lüst*, *Tsimpis*: classification

10 / 24

Coset manifolds

Tomasiello: $W_2 \neq 0$ on two examples $\frac{Sp(2)}{S(U(2)\times U(1))}$, $\frac{SU(3)}{U(1)\times U(1)}$ PK, Lüst, Tsimpis: classification

• Maurer-Cartan more complicated:

$$de^{i} = -\frac{1}{2}f^{i}{}_{jk}e^{j} \wedge e^{k} - f^{i}{}_{aj}\omega^{a} \wedge e^{j}$$

10 / 24

Coset manifolds

Tomasiello: $W_2 \neq 0$ on two examples $\frac{Sp(2)}{S(U(2) \times U(1))}$, $\frac{SU(3)}{U(1) \times U(1)}$ *PK*, *Lüst*, *Tsimpis*: classification

• Maurer-Cartan more complicated:

$$de^{i} = -\frac{1}{2}f^{i}{}_{jk}e^{j} \wedge e^{k} - f^{i}{}_{aj}\omega^{a} \wedge e^{j}$$

• Condition left-invariance p-form ϕ : constant and components

$$f^j{}_{a[i_1}\phi_{i_2\dots i_p]j} = 0$$

10 / 24

Conclusions

Type IIA AdS₄ susy vacua on coset manifolds

PK, Lüst, Tsimpis 0804.0614

	$SU(2) \times SU(2)$		$\frac{SU(3)}{U(1) \times U(1)}$	$\frac{Sp(2)}{S(U(2)\times U(1))}$	$\frac{G_2}{SU(3)}$	$\frac{SU(3) \times U(1)}{SU(2)}$
# of parameters	2	4	4	3	2	4
$W_2 \neq 0$	No	Yes	Yes	Yes	No	Yes
$j^6 \propto { m Re} \Omega$	Yes	No	Yes	Yes	Yes	No

Note: geometric flux: $W_1 \neq 0, W_2 \neq 0$

Type IIA AdS₄ susy vacua on coset manifolds

PK, Lüst, Tsimpis 0804.0614

	$SU(2) \times SU(2)$		$\frac{SU(3)}{U(1) \times U(1)}$	$\frac{Sp(2)}{S(U(2)\times U(1))}$	$\frac{G_2}{SU(3)}$	$\frac{SU(3) \times U(1)}{SU(2)}$
# of parameters	2	4	4	3	2	4
$W_2 \neq 0$	No	Yes	Yes	Yes	No	Yes
$j^6 \propto { m Re} \Omega$	Yes	No	Yes	Yes	Yes	No

Note: geometric flux: $W_1 \neq 0, W_2 \neq 0$

Parameters:

• Geometric: scale and shape

$$J = ae^{12} + be^{34} + ce^{56}$$

Scale a and shape $\rho = b/a, \sigma = c/a$:

• Orientifold charge μ

The effective theory of type IIA AdS₄ compactifications on nilmanifolds and cosets (Paul Koerber

11 / 24

Generalization

• SU(3)×SU(3) susy ansatz: 10d \rightarrow 4d

$$\begin{aligned} \epsilon_1 = & \zeta_+ \otimes \eta_+^{(1)} + \text{ (c.c.)} \\ \epsilon_2 = & \zeta_+ \otimes \eta_{\mp}^{(2)} + \text{ (c.c.)} \end{aligned}$$

for IIA/IIB

12 / 24

Generalization

• SU(3)×SU(3) susy ansatz: 10d \rightarrow 4d

$$\begin{aligned} \epsilon_1 = \zeta_+ \otimes \eta_+^{(1)} + \text{ (c.c.)} \\ \epsilon_2 = \zeta_+ \otimes \eta_{\mp}^{(2)} + \text{ (c.c.)} \end{aligned}$$

for $\mathsf{IIA}/\mathsf{IIB}$

• Strict SU(3)-structure: $\eta^{(2)}_+ = e^{i\theta}\eta^{(1)}_+$ Type: (0,3)

12 / 24

Generalization

• SU(3)×SU(3) susy ansatz: 10d \rightarrow 4d

$$\epsilon_1 = \zeta_+ \otimes \eta_+^{(1)} + (\mathsf{c.c.})$$

$$\epsilon_2 = \zeta_+ \otimes \eta_{\mp}^{(2)} + (\mathsf{c.c.})$$

for $\mathsf{IIA}/\mathsf{IIB}$

- Strict SU(3)-structure: $\eta^{(2)}_+ = e^{i\theta}\eta^{(1)}_+$ Type: (0,3)
- Static SU(2)-structure: $\eta^{(1)},\,\eta^{(2)}$ orthogonal everywhere Type: (2,1)

12 / 24

Generalization

• SU(3)×SU(3) susy ansatz: 10d \rightarrow 4d

$$\epsilon_1 = \zeta_+ \otimes \eta_+^{(1)} + (\mathsf{c.c.})$$

$$\epsilon_2 = \zeta_+ \otimes \eta_{\mp}^{(2)} + (\mathsf{c.c.})$$

for $\mathsf{IIA}/\mathsf{IIB}$

- Strict SU(3)-structure: $\eta_{+}^{(2)} = e^{i\theta} \eta_{+}^{(1)}$ Type: (0,3)
- Static SU(2)-structure: $\eta^{(1)},\,\eta^{(2)}$ orthogonal everywhere Type: (2,1)
- intermediate SU(2)-structure: $\eta^{(1)}$, $\eta^{(2)}$ fixed angle, but neither a zero angle nor a right angle Type: (0,1)

Conclusions

Generalization

• SU(3)×SU(3) susy ansatz: 10d \rightarrow 4d

$$\begin{aligned} \epsilon_1 = & \zeta_+ \otimes \eta_+^{(1)} + (\mathsf{c.c.}) \\ \epsilon_2 = & \zeta_+ \otimes \eta_{\mp}^{(2)} + (\mathsf{c.c.}) \end{aligned}$$

for $\mathsf{IIA}/\mathsf{IIB}$

- Strict SU(3)-structure: $\eta_{+}^{(2)} = e^{i\theta} \eta_{+}^{(1)}$ Type: (0,3)
- Static SU(2)-structure: $\eta^{(1)},\,\eta^{(2)}$ orthogonal everywhere Type: (2,1)
- intermediate SU(2)-structure: $\eta^{(1)}$, $\eta^{(2)}$ fixed angle, but neither a zero angle nor a right angle Type: (0,1)
- dynamic SU(3)×SU(3)-structure: angle changes, type may change

12 / 24

The effective theory of type IIA AdS $_4$ compactifications on nilmanifolds and cosets $(\mathsf{Paul}|\mathsf{Koerbel})$

Conclusions

13 / 24

$SU(3) \times SU(3)$ -structure susy equations

Graña, Minasian, Petrini, Tomasiello

$$d_{H} \left(e^{4A-\Phi} \operatorname{Im} \Psi_{1} \right) = 3e^{3A-\Phi} \operatorname{Im} \left(W^{*} \Psi_{2} \right) + e^{4A} \tilde{F}$$

$$d_{H} \left[e^{3A-\Phi} \operatorname{Re} \left(W^{*} \Psi_{2} \right) \right] = 2|W|^{2} e^{2A-\Phi} \operatorname{Re} \Psi_{1}$$

$$d_{H} \left[e^{3A-\Phi} \operatorname{Im} \left(W^{*} \Psi_{2} \right) \right] = 0$$

$$d_{H} \left(e^{2A-\Phi} \operatorname{Re} \Psi_{1} \right) = 0.$$

with

$$\begin{split} d_{H} &= d + H \wedge \\ \Psi_{1} &= \Psi_{\mp} , \qquad \Psi_{2} = \Psi_{\pm} \\ \Psi_{+} &= \frac{8}{|\eta^{(1)}| |\eta^{(2)}|} \eta^{(1)}_{+} \otimes \eta^{(2)\dagger}_{+} , \quad \Psi_{-} &= \frac{8}{|\eta^{(1)}| |\eta^{(2)}|} \eta^{(1)}_{+} \otimes \eta^{(2)\dagger}_{-} , \underbrace{\mathcal{I}_{\text{substate limit of the limit$$

Conclusions

SU(3)×SU(3)-structure susy equations

Graña, Minasian, Petrini, Tomasiello

$$d_{H} \left(e^{4A-\Phi} \operatorname{Im} \Psi_{1} \right) = 3e^{3A-\Phi} \operatorname{Im} \left(W^{*} \Psi_{2} \right) + e^{4A} \tilde{F}$$

$$d_{H} \left[e^{3A-\Phi} \operatorname{Re} \left(W^{*} \Psi_{2} \right) \right] = 2|W|^{2} e^{2A-\Phi} \operatorname{Re} \Psi_{1}$$

$$d_{H} \left[e^{3A-\Phi} \operatorname{Im} \left(W^{*} \Psi_{2} \right) \right] = 0$$

$$d_{H} \left(e^{2A-\Phi} \operatorname{Re} \Psi_{1} \right) = 0.$$

Example: strict SU(3)-structure in IIA

$$\Psi_1 = \Psi_- = -\Omega, \qquad \Psi_2 = \Psi_+ = e^{-i\theta} e^{iJ}$$

leads to susy equations Lüst, Tsimpis

13 / 24

Conclusions

$SU(3) \times SU(3)$ -structure susy equations

Graña, Minasian, Petrini, Tomasiello

$$\begin{aligned} &d_H \left(e^{4A - \Phi} \mathrm{Im} \, \Psi_1 \right) = 3 e^{3A - \Phi} \mathrm{Im} \left(W^* \Psi_2 \right) + e^{4A} \tilde{F} \\ &d_H \left[e^{3A - \Phi} \mathrm{Re} \left(W^* \Psi_2 \right) \right] = 2 |W|^2 e^{2A - \Phi} \mathrm{Re} \, \Psi_1 \\ &d_H \left[e^{3A - \Phi} \mathrm{Im} \left(W^* \Psi_2 \right) \right] = 0 \\ &d_H \left(e^{2A - \Phi} \mathrm{Re} \, \Psi_1 \right) = 0 \,. \end{aligned}$$

13 / 24

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

The effective theory of type IIA AdS₄ compactifications on nilmanifolds and cosets (Paul Koerber)

14 / 24

Inflatio

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$

14 / 24

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$

Inflatio

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \operatorname{vol} \neq 0$ with the Mukai pairing $\langle \phi_1, \phi_2 \rangle = \phi_1 \wedge \alpha(\phi_2)|_{\operatorname{top}}$ and α reverses the indices of a form

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

- Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible
- Intermediate SU(2)-structure:

14 / 24

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

- Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible
- Intermediate SU(2)-structure: Type: (0,1) \Rightarrow general form $e^{2A-\Phi}\Psi_1 = ce^{i\omega+b}$

14 / 24

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

- Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible
- Intermediate SU(2)-structure: Type: (0,1) \Rightarrow general form $e^{2A-\Phi}\Psi_1 = ce^{i\omega+b}$ $\Rightarrow \operatorname{Re} c = 0$, $c\omega$ exact

14 / 24

Inflation

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible

• Intermediate SU(2)-structure:
Type: (0,1)
$$\Rightarrow$$
 general form $e^{2A-\Phi}\Psi_1 = ce^{i\omega+b}$
 $\Rightarrow \operatorname{Re} c = 0$, $c\omega$ exact
 $\operatorname{Im} c\langle e^{2A-\Phi}\Psi_1, e^{2A-\Phi}, \bar{\Psi}_1 \rangle = \frac{8}{3!}(c\omega)^3$

14 / 24

Inflation

Conclusions

Generalizations: no-go theorems

$$d_H \left[e^{3A - \Phi} \operatorname{Re} \left(W^* \Psi_2 \right) \right] = 2|W|^2 e^{2A - \Phi} \operatorname{Re} \Psi_1$$

• Strict SU(3)-structure in IIB: $(\Psi_1, \Psi_2) = (\Psi_+, \Psi_-)$ Type: (0,3) Ψ_2 3-form $\Rightarrow \operatorname{Re} \Psi_1|_0 = \operatorname{Re} \Psi_1|_2 = 0$ But we also need $\langle \Psi_1, \bar{\Psi}_1 \rangle = -8i \text{vol} \neq 0$ \Rightarrow impossible

• Intermediate SU(2)-structure: Type: (0,1) \Rightarrow general form $e^{2A-\Phi}\Psi_1 = ce^{i\omega+b}$ $\Rightarrow \operatorname{Re} c = 0$, $c\omega$ exact $\operatorname{Im} c\langle e^{2A-\Phi}\Psi_1, e^{2A-\Phi}, \bar{\Psi}_1 \rangle = \frac{8}{3!}(c\omega)^3$ $\Rightarrow c$ not everywhere non-vanishing

14 / 24

Generalizations: conclusion of no-go theorems

 Type IIB: only static SU(2) or dynamic SU(3)×SU(3) that changes type to static SU(2) at least somewhere is possible

Generalizations: conclusion of no-go theorems

- Type IIB: only static SU(2) or dynamic SU(3)×SU(3) that changes type to static SU(2) at least somewhere is possible
- Example: type IIB static SU(2) on nilmanifold 5.1 (table of *Graña, Minasian, Petrini, Tomasiello*)

Generalizations: conclusion of no-go theorems

- Type IIB: only static SU(2) or dynamic SU(3)×SU(3) that changes type to static SU(2) at least somewhere is possible
- Example: type IIB static SU(2) on nilmanifold 5.1 (table of *Graña, Minasian, Petrini, Tomasiello*)
- Type IIA: only strict SU(3) or dynamic SU(3)×SU(3) for which $d\left(e^{2A-\Phi}\eta^{(2)\dagger}\eta^{(1)}\right) \neq 0$

Low energy effective theory: nilmanifolds

Torus (IIA), nilmanifold 5.1 (IIB), lwasawa (IIA): T-dual to each other

- Calculation mass spectrum
 - Using effective 4D sugra techniques
 - For Iwasawa & torus: direct KK reduction of equations of motion
 - Perfect agreement

Low energy effective theory: nilmanifolds

Torus (IIA), nilmanifold 5.1 (IIB), lwasawa (IIA): T-dual to each other

- Calculation mass spectrum
 - Using effective 4D sugra techniques
 - For Iwasawa & torus: direct KK reduction of equations of motion
 - Perfect agreement
- ${\ensuremath{\, \circ }}$ Result for $M^2/|W|^2$

Complex structure	-2, -2, -2			
Kähler & dilaton	70, 18, 18, 18			
Three axions of δC_3	0, 0, 0			
δB & one more axion	88, 10, 10, 10			

Issue: decoupling KK tower

• Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1$

17 / 24

Issue: decoupling KK tower

• Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$

The effective theory of type IIA AdS₄ compactifications on nilmanifolds and cosets (Paul Koerber)

17 / 24

Issue: decoupling KK tower

• Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$

 \bullet Decoupling KK modes: $|W|^2 L_{\rm int}^2 = \frac{e^{2\Phi}m^2L_{\rm int}^2}{25} + \frac{e^{2\Phi}f^2L_{\rm int}^2}{9} \ll 1$

- Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$
- Decoupling KK modes: $|W|^2 L_{\text{int}}^2 = \frac{e^{2\Phi}m^2L_{\text{int}}^2}{25} + \frac{e^{2\Phi}f^2L_{\text{int}}^2}{9} \ll 1$
 - Can be tuned with orientifold charge μ :

$$e^{2\Phi}m^2 = \mu + \frac{5}{16} \left(3|\mathcal{W}_1|^2 - |\mathcal{W}_2|^2\right) \approx 0$$

17 / 24

- Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$
- Decoupling KK modes: $|W|^2 L_{\text{int}}^2 = \frac{e^{2\Phi}m^2 L_{\text{int}}^2}{25} + \frac{e^{2\Phi}f^2 L_{\text{int}}^2}{9} \ll 1$
 - $e^{\Phi} f L_{\text{int}} \propto W_1 L_{\text{int}} \ll 1$:

17 / 24

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets $(\mathsf{Paul}\ \mathsf{Koerber})$

- Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$
- Decoupling KK modes: $|W|^2 L_{\text{int}}^2 = \frac{e^{2\Phi}m^2 L_{\text{int}}^2}{25} + \frac{e^{2\Phi}f^2 L_{\text{int}}^2}{9} \ll 1$
 - $e^{\Phi} f L_{\text{int}} \propto \mathcal{W}_1 L_{\text{int}} \ll 1$: nearly Calabi-Yau

- Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$
- Decoupling KK modes: $|W|^2 L_{\text{int}}^2 = \frac{e^{2\Phi}m^2 L_{\text{int}}^2}{25} + \frac{e^{2\Phi}f^2 L_{\text{int}}^2}{9} \ll 1$
 - $e^{\Phi} f L_{\text{int}} \propto \mathcal{W}_1 L_{\text{int}} \ll 1$: nearly Calabi-Yau
 - Can be arranged for torus, Iwasawa, nilmanifold 5.1

- Consistency approximation: $g_s \ll 1, l_s/L_{\rm int} \ll 1~\sqrt{}$
- Decoupling KK modes: $|W|^2 L_{\text{int}}^2 = \frac{e^{2\Phi}m^2 L_{\text{int}}^2}{25} + \frac{e^{2\Phi}f^2 L_{\text{int}}^2}{9} \ll 1$
 - $e^{\Phi} f L_{\text{int}} \propto \mathcal{W}_1 L_{\text{int}} \ll 1$: nearly Calabi-Yau
 - Can be arranged for torus, Iwasawa, nilmanifold 5.1
 - Harder for coset examples

17 / 24

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets $(\mathsf{Paul}\ \mathsf{Koerber})$

Low energy theory: superpotential and Kähler potential

We use the superpotential of *Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci* Generalizes *Gukov, Vafa, Witten*

Low energy theory: superpotential and Kähler potential

We use the superpotential of *Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci* Generalizes *Gukov, Vafa, Witten*

$$\mathcal{W}_{\rm E} = \frac{-i}{4\kappa_{10}^2} \int_M \langle \underbrace{\Psi_2 e^{\delta B}}_{\mathcal{Z}}, \hat{F} + i \, d_{\hat{H}} (\underbrace{e^{\delta B} e^{-\Phi} \mathrm{Im} \Psi_1 - i \delta C}_{\mathcal{T}}) \rangle$$

 \mathcal{Z}, \mathcal{T} holomorphic coordinates,

Low energy theory: superpotential and Kähler potential

We use the superpotential of *Graña, Louis, Waldram; Benmachiche, Grimm; PK, Martucci* Generalizes *Gukov, Vafa, Witten*

$$\mathcal{W}_{\mathsf{E}} = \frac{-i}{4\kappa_{10}^2} \int_M \langle \underbrace{\Psi_2 e^{\delta B}}_{\mathcal{Z}}, \hat{F} + i \, d_{\hat{H}} (\underbrace{e^{\delta B} e^{-\Phi} \operatorname{Im} \Psi_1 - i \delta C}_{\mathcal{T}}) \rangle$$

 $\boldsymbol{\mathcal{Z}}, \boldsymbol{\mathcal{T}}$ holomorphic coordinates, and the Kähler potential

$$\mathcal{K} = -\ln i \int_M \langle \mathcal{Z}, \bar{\mathcal{Z}} \rangle - 2\ln i \int_M \langle e^{-\Phi} \Psi_1, e^{-\Phi} \bar{\Psi}_1 \rangle + 3\ln(8\kappa_{10}^2 M_P^2)$$

where $e^{-\Phi}e^{\delta B}\Psi_1$: function of $\operatorname{Re}\mathcal{T} = e^{-\Phi}e^{\delta B}\operatorname{Im}\Psi_1$ Hitchin.

18 / 24

Superpotential and Kähler potential: SU(3)

Specialized to SU(3): $\Psi_1 = -\Omega$, $\Psi_2 = e^{-i\theta}e^{iJ}$

Superpotential and Kähler potential: SU(3)

Specialized to SU(3): $\Psi_1 = -\Omega$, $\Psi_2 = e^{-i\theta}e^{iJ}$ Superpotential:

$$\mathcal{W}_{\mathsf{E}} = \frac{-ie^{-i\theta}}{4\kappa_{10}^2} \int_M \langle e^{i(J-i\delta B)}, \hat{F} - id_{\hat{H}} \left(e^{-\Phi} \mathrm{Im}\,\Omega + i\delta C_3 \right) \rangle$$

Superpotential and Kähler potential: SU(3)

Specialized to SU(3): $\Psi_1 = -\Omega$, $\Psi_2 = e^{-i\theta}e^{iJ}$ Superpotential:

$$\mathcal{W}_{\mathsf{E}} = \frac{-ie^{-i\theta}}{4\kappa_{10}^2} \int_M \langle e^{i(J-i\delta B)}, \hat{F} - id_{\hat{H}} \left(e^{-\Phi} \mathrm{Im}\,\Omega + i\delta C_3 \right) \rangle$$

Kähler potential:

$$\mathcal{K} = -\ln \int_{M} \frac{4}{3} J^{3} - 2\ln \int_{M} 2 e^{-\Phi} \mathrm{Im} \,\Omega \wedge e^{-\Phi} \mathrm{Re} \,\Omega + 3\ln(8\kappa_{10}^{2}M_{P}^{2}) \,,$$

19 / 24

19 / 24

Superpotential and Kähler potential: SU(3)

Specialized to SU(3): $\Psi_1 = -\Omega$, $\Psi_2 = e^{-i\theta}e^{iJ}$ Superpotential:

$$\mathcal{W}_{\mathsf{E}} = \frac{-ie^{-i\theta}}{4\kappa_{10}^2} \int_M \langle e^{i(J-i\delta B)}, \hat{F} - id_{\hat{H}} \left(e^{-\Phi} \mathrm{Im}\,\Omega + i\delta C_3 \right) \rangle$$

Kähler potential:

$$\mathcal{K} = -\ln \int_{M} \frac{4}{3} J^{3} - 2\ln \int_{M} 2 e^{-\Phi} \mathrm{Im} \,\Omega \wedge e^{-\Phi} \mathrm{Re} \,\Omega + 3\ln(8\kappa_{10}^{2}M_{P}^{2}) \,,$$

Expansion:

$$J_{c} = J - i\delta B = (k^{i} - ib^{i})Y_{i}^{(2-)} = t^{i}Y_{i}^{(2-)}$$

$$e^{-\Phi} Im\Omega + i\delta C_{3} = (u^{i} + ic^{i})e^{-\hat{\Phi}}Y_{i}^{(3+)} = z^{i}e^{-\hat{\Phi}}Y_{i}^{(3+)}$$

• We used the same superpotential and Kähler potential for static SU(2)

- We used the same superpotential and Kähler potential for static SU(2)
- F-flatness conditions:

$$D_i \mathcal{W}_{\mathsf{E}} = \partial_i \mathcal{W}_{\mathsf{E}} + \partial_i \mathcal{K} \, \mathcal{W}_{\mathsf{E}} = 0$$

- We used the same superpotential and Kähler potential for static SU(2)
- F-flatness conditions:

$$D_i \mathcal{W}_{\mathsf{E}} = \partial_i \mathcal{W}_{\mathsf{E}} + \partial_i \mathcal{K} \, \mathcal{W}_{\mathsf{E}} = 0$$

PK, Martucci:

• If $W = M_P^{-1} \langle W_E \rangle \neq 0$ i.e. AdS₄ compactification F-flatness conditions \Leftrightarrow 10D susy conditions vacuum

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets $(\mathsf{Paul}\;\mathsf{Koerber})$

- We used the same superpotential and Kähler potential for static SU(2)
- F-flatness conditions:

$$D_i \mathcal{W}_{\mathsf{E}} = \partial_i \mathcal{W}_{\mathsf{E}} + \partial_i \mathcal{K} \mathcal{W}_{\mathsf{E}} = 0$$

PK, Martucci:

- If $W = M_P^{-1} \langle W_E \rangle \neq 0$ i.e. AdS₄ compactification F-flatness conditions \Leftrightarrow 10D susy conditions vacuum
- If W = 0 i.e. Minkowski compactification
 F-flatness & D-flatness conditions ⇔ 10D susy conditions vacuum

20 / 24

- We used the same superpotential and Kähler potential for static SU(2)
- F-flatness conditions:

$$D_i \mathcal{W}_{\mathsf{E}} = \partial_i \mathcal{W}_{\mathsf{E}} + \partial_i \mathcal{K} \, \mathcal{W}_{\mathsf{E}} = 0$$

PK, Martucci:

- If $W = M_P^{-1} \langle W_E \rangle \neq 0$ i.e. AdS₄ compactification F-flatness conditions \Leftrightarrow 10D susy conditions vacuum
- If W = 0 i.e. Minkowski compactification
 F-flatness & D-flatness conditions ⇔ 10D susy conditions vacuum
- The scalar potential is

$$V = M_P^{-2} e^{\mathcal{K}} \left(\mathcal{K}^{i\bar{\jmath}} D_i \mathcal{W}_{\mathsf{E}} D_{\bar{\jmath}} \mathcal{W}_{\mathsf{E}}^* - 3 |\mathcal{W}_{\mathsf{E}}|^2 \right)$$

- We used the same superpotential and Kähler potential for static SU(2)
- F-flatness conditions:

$$D_i \mathcal{W}_{\mathsf{E}} = \partial_i \mathcal{W}_{\mathsf{E}} + \partial_i \mathcal{K} \mathcal{W}_{\mathsf{E}} = 0$$

PK, Martucci:

- If $W = M_P^{-1} \langle W_E \rangle \neq 0$ i.e. AdS₄ compactification F-flatness conditions \Leftrightarrow 10D susy conditions vacuum
- If W = 0 i.e. Minkowski compactification
 F-flatness & D-flatness conditions ⇔ 10D susy conditions vacuum
- The scalar potential is

$$V = M_P^{-2} e^{\mathcal{K}} \left(\mathcal{K}^{i\bar{\jmath}} D_i \mathcal{W}_{\mathsf{E}} D_{\bar{\jmath}} \mathcal{W}_{\mathsf{E}}^* - 3 |\mathcal{W}_{\mathsf{E}}|^2 \right)$$

Mass spectrum from quadratic terms

Low energy theory: cosets

 For all cosets (but not for SU(2)×SU(2)): all moduli stabilized at tree level

21 / 24

Low energy theory: cosets

 For all cosets (but not for SU(2)×SU(2)): all moduli stabilized at tree level

• Example
$$\frac{Sp(2)}{S(U(2) \times U(1))}$$

Movie

Low energy theory: cosets

 For all cosets (but not for SU(2)×SU(2)): all moduli stabilized at tree level

• Example
$$\frac{Sp(2)}{S(U(2) \times U(1))}$$

Movie

• $\tilde{\mu}$ big enough: all mass-squared positive

Nearly-Calabi Yau limit

• Important decoupling KK-modes

22 / 24

Nearly-Calabi Yau limit

- Important decoupling KK-modes
- Example $\frac{\text{Sp}(2)}{\text{S}(\text{U}(2) \times \text{U}(1))} \Rightarrow$ analytic continuation to negative $\sigma = -2$ Twistor bundle description more appropriate Xu

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets $(\mathsf{Paul}\ \mathsf{Koerber})$

Nearly-Calabi Yau limit

- Important decoupling KK-modes
- Example $\frac{\text{Sp}(2)}{\text{S}(\text{U}(2) \times \text{U}(1))} \Rightarrow$ analytic continuation to negative $\sigma = -2$ Twistor bundle description more appropriate Xu

22 / 24

Nearly-Calabi Yau limit

- Important decoupling KK-modes
- Example $\frac{\text{Sp}(2)}{\text{S}(\text{U}(2) \times \text{U}(1))} \Rightarrow$ analytic continuation to negative $\sigma = -2$ Twistor bundle description more appropriate Xu

• Light modes: $\tilde{M}^2/|W|^2 = (-38/49, 130/49)$

No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark

- Dependence on volume-modulus ho and dilaton-modulus au
- Ingredients: form-fluxes, D6-branes & O6-planes
- $\bullet \ \epsilon > 27/13$

The effective theory of type IIA AdS_4 compactifications on nilmanifolds and cosets $(\mathsf{Paul}\ \mathsf{Koerber})$

No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark

- Dependence on volume-modulus ho and dilaton-modulus au
- Ingredients: form-fluxes, D6-branes & O6-planes
- $\epsilon > 27/13$
- Way out: geometric flux, NS5-branes, other branes, non-geometric flux

23 / 24

No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark

- Dependence on volume-modulus ho and dilaton-modulus au
- Ingredients: form-fluxes, D6-branes & O6-planes
- $\epsilon > 27/13$
- Way out: geometric flux, NS5-branes, other branes, non-geometric flux
 - potential geometric flux $V_f > 0 \Leftrightarrow R < 0$

23 / 24

No-go theorem modular inflation IIA Hertzberg, Kachru, Taylor, Tegmark

- Dependence on volume-modulus ho and dilaton-modulus au
- Ingredients: form-fluxes, D6-branes & O6-planes
- $\epsilon > 27/13$
- Way out: geometric flux, NS5-branes, other branes, non-geometric flux
 - potential geometric flux $V_f > 0 \Leftrightarrow R < 0$
 - not possible for $\frac{G_2}{SU(3)}$, possible for all other cosets and $SU(2) \times SU(2)$

23 / 24

(Conclusions)

Conclusions

- Tractable models with geometric flux: nilmanifold & coset models
- ullet Other models: e.g. twistor bundles with negative σ
- Uplift: uplifting term or look for dS minimum e.g. Silverstein
- Study inflation

Conclusions

- Tractable models with geometric flux: nilmanifold & coset models
- Other models: e.g. twistor bundles with negative σ
- Uplift: uplifting term or look for dS minimum e.g. Silverstein
- Study inflation

24 / 24