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Motivation

@ Type IIB orientifold with D3/D7-branes on conformal CY:
well-studied

@ stabilization Kahler moduli through non-perturbative effects
o uplift susy vacuum to dS, models of inflation

@ Type lIA compactifications with AdS,4 space-time

o Early type IIA models on torus orientifolds:
Derendinger et al., DeWolfe et al., Camara et al.

& All moduli can be stabilized at tree level

o Uplift susy vacuum to dS, models of inflation: problems

& No-go theorem modular inflation: fluxes, D6/06 Hertzberg,
Kachru, Taylor, Tegmark

@ Way-out: geometric fluxes, NS5-branes, non-geometric fluxes

@ Geometric fluxes: deviation from Calabi-Yau
@ Other application: type IIA on AdS, x CP?
o AdS/CFT Aharony, Bergman, Jafferis, Maldacena M2-branes




Type lIA susy vacua with AdS, space-time

Liist, Tsimpis

@ RR-forms: Romans mass Fy = m, Iy, Fy,
NSNS 3-form: H, dilaton: ®

@ SU(3)-structure: J, Q
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Type lIA susy vacua with AdS, space-time

Liist, Tsimpis

@ Solution susy equations:

@ Constant warp factor
@ Geometric flux i.e. non-zero torsion classes:

dJ = %Im(wlﬁ*)+w4/\J+W3
dQ=WIJAJ+Wa AJ+Wi AQ

ﬁ




Type lIA susy vacua with AdS, space-time

Liist, Tsimpis

@ Solution susy equations:

@ Constant warp factor
@ Geometric flux i.e. non-zero torsion classes:

3 . 4 5,
d = _I Q W = — —
J 5 m (Wi Q") with 1 g ¢ J
dQ=WiJAT+Wa AJ Wy = —ie? )
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Type lIA susy vacua with AdS, space-time

Liist, Tsimpis

@ Solution susy equations:

@ Constant warp factor
@ Geometric flux i.e. non-zero torsion classes:

3 X 4i 5,
dJ = =1 Q Wi =——
J 5 m (V1 Q7) with 1 ¢ f
dQ=WiJAJ +Wo AJ W, = —ie F
@ Form-fluxes: AdS, superpotential W:
H = %eq)ReQ 1
f Vu(- = §W'yug+ definition
Fo==J+ FZ, .
9 0_ 1 P o,
3 We ——ge m—l—ge f
Fi= fvola + S0 A %
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Bianchi identities

@ Automatically satisfied except for

dFy + HFy = —j8
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Bianchi identities

® Automatically satisfied except for

dFy + HFy = —j°

@ Source j% (06/D6) must be calibrated (here SLAG):
AT=0  j°AReQ=0 = ;0= —%e"buReQ + ws

ws simple (1,2)+(2,1)
@ /1 > 0: net orientifold charge, 1+ < 0: net D-brane charge

@ Bianchi:

e**m? —u+—(3|wl|2 Wal?) 20

w3 = —ie_q)dW2‘ %
2.1)+(1,2)
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Smeared orientifolds

@ Warp factor constant = only smeared orientifolds
@ Solutions without orientifolds: possible!

@ No-go theorem Maldacena,Nifiez only for Minkowski, not AdS4
@ We will introduce orientifolds to obtain N’ =1

@ Smearing:

= Toe 8(z*, 25, %) dz* A dx® A da® —>Topcdx A dz® A dzb

@ We will still associate orientifold involution:

06 : do* — —da*, d2® — —dz®, da® — —da®
o Write 5% as sum of decomposable forms %
e B, H,F>,ReQ) odd, Fo, F4,Im) even e




Calabi-Yau solution

@ Calabi-Yau solution Acharya, Benini, Valandro

2
§% = —ge_q)uReQ + ws

e2m? = = U + — (3|W1|2 |W2|2)

h
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Calabi-Yau solution

@ Calabi-Yau solution Acharya, Benini, Valandro
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Calabi-Yau solution

@ Calabi-Yau solution Acharya, Benini, Valandro
Put Wi =0, =0= w3 =0

2
j% = —ge_q)uReQ

@ Torus orientifolds

h
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What about equations of motion?

IIA: Liist, Tsimpis, |1B: Gauntlett, Martelli, Sparks, Waldram
With sources: PK, Tsimpis 0706.1244
Under mild conditions (subtleties time direction):
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What about equations of motion?

I1A: Liist, Tsimpis, |1B: Gauntlett, Martelli, Sparks, Waldram

With sources: PK, Tsimpis 0706.1244
Under mild conditions (subtleties time direction):

@ Bulk supersymmetry conditions
@ Bianchi identities form-fields with source

@ Supersymmetry conditions source = generalized calibration
conditions PK; Martucci, Smyth

imply
@ Einstein equations with source
@ Dilaton equation of motion with source

@ Form field equations of motion
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Some older solutions

@ Nearly-Kahler: only Wy # 0 Behrndt, Cvetic
s s
SU(2)xSU(2) and the coset spaces 58(23), S(U(2F))(><23J(1))' U(1)UX(?J)(1)
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Some older solutions

@ Nearly-Kahler: only Wy # 0 Behrndt, Cvetic

SU(2)xSU(2) and the coset spaces 58(23), S(U(S2F))(><2l)J(l))' U(f)Ux(?J)u)

@ lwasawa manifold Liist, Tsimpis:
@ A certain nilmanifold or twisted torus
= a group manifold associated to a nilpotent algebra
o Left-invariant forms e’ obeying Maurer-Cartan relation:

de' = —%fijkej AeF

o Singular limit of T? bundle over K3

Man-Planc




Group manifolds

SU(3)-structures with J, 2 constant in terms of left-invariant forms
on a group manifold: fertile source of examples

. 1. .
de' = —§fzjkej A ¥

= algebraic relations
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Group manifolds

SU(3)-structures with J, 2 constant in terms of left-invariant forms
on a group manifold: fertile source of examples

. 1. .
de' = —§fzjkej A ¥

= algebraic relations
@ SU(2)xSU(2)
@ Nilmanifolds (divide discrete group: compact)

@ Only Iwasawa & torus
@ Needs smeared orientifolds

@ Solvmanifolds (compact?): no solution

@ Extend to cosets %




Coset manifolds

Tomasiello: W5 # 0 on two examples S(U(S2';(><221(1))' U(f)ux(%)(l)

PK, Liist, Tsimpis: classification
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Coset manifolds

Tomasiello: W5 # 0 on two examples S(U(S2';(><221(1))' U(f)ux(%)(l)

PK, Liist, Tsimpis: classification

@ Maurer-Cartan more complicated:

_ 1 . _ A
de' = —§fljke] - flajw® Ae?

@ Condition left-invariance p-form ¢: constant and components

fja[il ¢12’LP]J = O

ﬁ




Type IIA AdS, susy vacua on coset manifolds

PK, Liist, Tsimpis 0804.0614

SU@3 Sp(2 G SUB)xU(1
SUR)XSUR) oo sova sol s
# of parameters 2 4 4 3] 2 4
Wy #0

j% < ReQ Yes No Yes Yes Yes No

Note: geometric flux: Wy # 0, Wy # 0




Type IIA AdS, susy vacua on coset manifolds

PK, Liist, Tsimpis 0804.0614

SU@3 Sp(2 G SUB)xU(1
SUR)XSUR) oo sova sol s
# of parameters 2 4 4 3] 2 4
Wy #0

j% o< ReQ Yes No Yes Yes Yes No

Note: geometric flux: Wy # 0, Wy # 0
Parameters:

@ Geometric: scale and shape
J = ae'? 4+ be3* + e

Scale a and shape p =b/a,0 = c¢/a:

@ Orientifold charge p e




Generalization

@ SU(3)xSU(3) susy ansatz: 10d — 4d

e =C @t + (cc)
2 =¢ @) + (cc.)

for IA/IIB

h




Generalization

@ SU(3)xSU(3) susy ansatz: 10d — 4d
e =C @t + (cc)
2 =¢ @) + (cc.)

for 11A/11B
& Strict SU(3)-structure: nf) = ewnﬂrl) Type: (0,3)

h




Generalization

@ SU(3)xSU(3) susy ansatz: 10d — 4d

e =C on + (cc)
2 =¢ @) + (cc.)
for l1A/IIB

& Strict SU(3)-structure: nf) = ewnﬂrl) Type: (0,3)
o Static SU(2)-structure: V), n® orthogonal everywhere
Type: (2,1)

h




Generalization

@ SU(3)xSU(3) susy ansatz: 10d — 4d

e =C on + (cc)
2 =¢ @) + (cc.)
for l1A/IIB

& Strict SU(3)-structure: nf) = ewnﬂrl) Type: (0,3)

o Static SU(2)-structure: V), n® orthogonal everywhere
Type: (2,1)

o intermediate SU(2)-structure: nV, n® fixed angle,
but neither a zero angle nor a right angle Type: (0,1)
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Generalization

@ SU(3)xSU(3) susy ansatz: 10d — 4d

e =C @t + (cc)
2 =¢ @) + (cc.)

for 11A/11B
& Strict SU(3)-structure: nf) = ewnﬂrl) Type: (0,3)
@ Static SU(2)-structure: 77(1), 77(2) orthogonal everywhere
Type: (2,1)

o intermediate SU(2)-structure: nV, n® fixed angle,
but neither a zero angle nor a right angle Type: (0,1)
& dynamic SU(3)xSU(3)-structure: angle changes, type may change

.
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SU(3) xSU(3)-structure susy equations

Grafa, Minasian, Petrini, Tomasiello

w (e Im¥y) = 3e 3A—¢Im(w*qf2) +etAF
dy [*47PRe(W*Ty)] = 2[W[*e*APRe ¥,

w [P Im (W Ty)| =

H(62A ‘}Re\Ill) 0.

with
dg=d+ HA
V) =V, Uy =W
8 1) o 21 8 1) o @1
- - ® , _ - N .
\174- ‘ H (2’774- 77 ‘;7 ‘ H (2’774- ®77 “d%’:




SU(3) xSU(3)-structure susy equations

Grafa, Minasian, Petrini, Tomasiello

dy (** 7 PIm ¥y ) = 3342 Im (W*s) + ' F

dy [~ PRe (W*Wy)] = 2[W [*e*4PRe ¥,
dy [~ Im (W*Ws)] =0

dir (#4~%Re¥;) = 0.

Example: strict SU(3)-structure in 1A
Uy =U_=-Q, Wy=0, =%

leads to susy equations List, Tsimpis




SU(3) xSU(3)-structure susy equations

Grafa, Minasian, Petrini, Tomasiello

dy (** 7 PIm ¥y ) = 3342 Im (W*s) + ' F
d [*4"PRe (W*Wy)] = 2[W [*e**PRe ¥,
dy [~ Im (W*Ws)] =0

dy (> PRely) = 0.
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Generalizations: no-go theorems

dp [ PRe (W* )| = 2[W[*e**PRe ¥y

@ Strict SU(3)-structure in 11B: (¥, Ug) = (¥4, T_)
Type: (0,3) ¥y 3-form = ReWUy|p = Re¥y|a =0
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Generalizations: no-go theorems

dp [ PRe (W* )| = 2[W[*e**PRe ¥y

@ Strict SU(3)-structure in 11B: (¥, Ug) = (¥4, T_)
Type: (0,3) Wy 3-form = ReWilo =ReUq|a =0
But we also need (¥, ¥;) = —8ivol # 0

with the Mukai pairing (¢1, ¢2) = d1 A a(d2)]top
and « reverses the indices of a form
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Generalizations: no-go theorems

dp [ PRe (W* )| = 2[W[*e**PRe ¥y

@ Strict SU(3)-structure in 11B: (¥, Ug) = (¥4, T_)

Type: (0,3) W5 3-form = ReWi|o = ReW1]z =0
But we also need (¥, ¥;) = —8ivol # 0
= impossible

@ Intermediate SU(2)-structure:

Type: (0,1) = general form e24=2Q; = cewt?
= Rec=0, ow exact
Imc(e?A Wy, 47 Wy) = B (cw)?
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Generalizations: no-go theorems

dp [ PRe (W* )| = 2[W[*e**PRe ¥y

@ Strict SU(3)-structure in 11B: (¥, Ug) = (¥4, T_)
Type: (0,3) Wy 3-form = Re¥1]p = ReWUq|a =0
But we also need (¥q,¥;) = —8ivol # 0
= impossible

@ Intermediate SU(2)-structure:
Type: (0,1) = general form e24=2Q; = cewt?
= Rec=10, cw exact
Imc(e?A Wy, 47 Wy) = B (cw)?
= ¢ not everywhere non-vanishing




Generalizations: conclusion of no-go theorems

@ Type IIB: only static SU(2) or dynamic SU(3)xSU(3) that changes
type to static SU(2) at least somewhere is possible
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type to static SU(2) at least somewhere is possible

@ Example: type IIB static SU(2) on nilmanifold 5.1 (table of Grafia,
Minasian, Petrini, Tomasiello)




Generalizations: conclusion of no-go theorems

@ Type IIB: only static SU(2) or dynamic SU(3)xSU(3) that changes
type to static SU(2) at least somewhere is possible

@ Example: type IIB static SU(2) on nilmanifold 5.1 (table of Grafia,
Minasian, Petrini, Tomasiello)

@ Type lIA: only strict SU(3) or dynamic SU(3)xSU(3) for which
d (242750 2 0




Low energy effective theory: nilmanifolds

Torus (lIA), nilmanifold 5.1 (11B), Iwasawa (lIA): T-dual to each
other

@ Calculation mass spectrum

@ Using effective 4D sugra techniques
@ For lwasawa & torus: direct KK reduction of equations of motion
@ Perfect agreement

Max-Planck




Low energy effective theory: nilmanifolds

Torus (lIA), nilmanifold 5.1 (11B), Iwasawa (lIA): T-dual to each
other

@ Calculation mass spectrum

@ Using effective 4D sugra techniques
@ For lwasawa & torus: direct KK reduction of equations of motion
@ Perfect agreement

@ Result for M?/|W|?

Kahler & dilaton 70, 18, 18, 18

0B & one more axion | 88, 10, 10, 10




Issue: decoupling KK tower

@ Consistency approximation: gs < 1,1s/Lint < 1
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Issue: decoupling KK tower

@ Consistency approximation: gs < 1,1s/Lint < 1 \/

2

29, 2752 2P 2
o Decoupling KK modes:  |[W[2L2, = "2t 4 € Ll 1

@ Can be tuned with orientifold charge u:

5
e*Pm? =+ 16 (3|V\/1|2 — |W2|2) ~ 0

ﬁ
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Issue: decoupling KK tower

@ Consistency approximation: gs < 1,1s/Lint < 1 \/
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Issue: decoupling KK tower

@ Consistency approximation: gs < 1,1s/Lint < 1 \/

e2<I> f2 L_2

29, 272
o Decoupling KK modes:  [W/|2L2, = “tm 4 & ol

o e® fLint ¢ Wi Lint < 1:

nearly Calabi-Yau
@ Can be arranged for torus, Iwasawa, nilmanifold 5.1
@ Harder for coset examples
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Low energy theory: superpotential and Kahler

We use the superpotential of Grada, Louis, Waldram;
Benmachiche, Grimm; PK, Martucci
Generalizes Gukov, Vafa, Witten
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Low energy theory: superpotential and Kahler

We use the superpotential of Grada, Louis, Waldram;
Benmachiche, Grimm; PK, Martucci
Generalizes Gukov, Vafa, Witten

—1

We

/ (WP F 4 idﬁ(eéBe_©In1\I’1 —10C))
M T

= 1.2
4k

Z,T holomorphic coordinates, and the Kahler potential
K= —lni/ (Z,2) — 21n2‘/ (e7®Wy, e W) 4 31In(8K3, M3)
M M

where e~ ®e?B;: function of ReT = e~ ®e9BIm W, Hitchin.




Superpotential and Kahler potential: SU(3)

Specialized to SU(3): ¥y = —Q, Wy = et/
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Superpotential and Kahler potential: SU(3)

Specialized to SU(3): ¥y = —Q, Wy = et/
Superpotential:

_Z'e—ze

We = /M<ei<J—i5B>, F—idg (e *ImQ +i6C3))

4K3,
Kahler potential:
4
K= —ln/ §J3—21n/ 2¢ " *ImQAe " *ReQ+31In(8k3, M3),
M M
Expansion:

Jo=J —i6B = (K —ib)Y,*") = ¢iy*”)
e~ PImQ +i6C3 = (u' + ici)e_i)Yi(ng) = zie_‘i’Yi(ng)
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Comments

@ We used the same superpotential and Kahler potential for static
SU(2)

@ F-flatness conditions:

DZ'WE - &WE + @IC WE - O
PK, Martucci:
o If W= Mp'(We) # 0 ie. AdSs compactification

F-flatness conditions <> 10D susy conditions vacuum
o If W =0 i.e. Minkowski compactification

F-flatness & D-flatness conditions < 10D susy conditions vacuum
@ The scalar potential is
V = Mg (KVD;WeD;WE — 3)Wel?)

Mass spectrum from quadratic terms Ki
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Low energy theory: cosets

@ For all cosets (but not for SU(2)xSU(2)): all moduli stabilized at
tree level
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Low energy theory: cosets

@ For all cosets (but not for SU(2)xSU(2)): all moduli stabilized at
tree level

Sp(2
@ Example WQJ@))

M2/ w? MW

Ba 20/
// ) /”/ )
F— 2 4 6 8 10 /L F—— 4 s —% 10 _ 12 I'L

(@)o=1 (b) o =2
Movie

@ [i big enough: all mass-squared positive
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Nearly-Calabi Yau limit

@ Important decoupling KK-modes
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Nearly-Calabi Yau limit

@ Important decoupling KK-modes

@ Example ngj(l)) = analytic continuation to negative o0 = —2

Twistor bundle description more appropriate Xu

MQ/‘WQ

Q
o

3 3 3 8

10 %0 % E 50

@ Light modes: M?/|W|? = (—38/49,130/49)
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Inflation

No-go theorem modular inflation I1A
Hertzberg, Kachru, Taylor, Tegmark

@ Dependence on volume-modulus p and dilaton-modulus 7
@ Ingredients: form-fluxes, D6-branes & O6-planes

@ > 27/13
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Inflation

No-go theorem modular inflation I1A

Hertzberg, Kachru, Taylor, Tegmark
@ Dependence on volume-modulus p and dilaton-modulus 7
@ Ingredients: form-fluxes, D6-branes & O6-planes
@ > 27/13

@ Way out: geometric flux, NS5-branes, other branes, non-geometric
flux

@ potential geometric flux V; >0 & R <0
@ not possible for 5(23—) possible for all other cosets and SU(2)xSU(2)

Max-Planck




Conclusions

@ Tractable models with geometric flux: nilmanifold & coset models
@ Other models: e.g. twistor bundles with negative o
@ Uplift: uplifting term or look for dS minimum e.g. Silverstein

@ Study inflation
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