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Motivation
Matrix Factorizations And Branes
Moduli Spaces

Effective Superpotential



v

(phenomenologically) interesting string backgrounds:
Calabi-Yau + branes

» open and closed string moduli

» what is their connection? How do brane moduli react on
closed string deformations?

» matrix factorization technique via Landau-Ginzburg
description (topologically twisted)

> rather explicit connection to worldsheet CFT description



4+6d string theory

» six dimensions may be compactified on an ‘internal’ manifold

» Calabi-Yaus (Kahler, with vanishing Chern class) Satisfy the String
consistency conditions

» this provides a valid closed string background in 10d
supersymmetric string theory

> generally, there are (closed string) moduli



Branes

» for open strings, boundary conditions must be imposed
> these often have a geometric interpretation as hyper-surfaces
embedded in the background geometry

> branes often come with (open string) moduli

» the moduli space can have a rich structure:

special points, families, webs

» brane-moduli depend crucially on closed string moduli
» what happens to a brane, when the background changes?



From CFT to Calabi-Yau

cy Landau-Ginzburg CFT
W(xi) =0 <= superpotential W(x;) — ;ei!?lr\}er:r;;zels

> e.g. A-type minimal models are realised by
W = xk*+2 with ¢ = k3—+k2

» Quintic W = x? + - + x2 is tensor product of five Ax_3

» complete ADE set known



Landau-Ginzburg description

» The N = (2,2) LG theory has a Langrangian description
S = / d?zd*0K (x, %) + / d?zd*0W(x) + hc

» chiral ring O/0W

» boundary conditions for B-branes: W factorizes as

where E(X) and J(X) are matrices of polynomials



Supersymmetric boundary conditions

» bulk chiral rings extended by Chan-Paton factors
Rs C Mat(O)
» Q is a graded odd operator with Q% = W (kontsevich)  (susv/BrsT)

» In a Clifford representation with grading o = diag(1, —1), Q

has the form
0o J
o= (¢ )

with JE =EJ =W



» Simple factorization

» these can be explicitely mapped to boundary states in a single
m|n|ma| mOde| Ad_2 [Kapustin; Recknagel et al; Brunner, Gaberdiel]



2-branes on the quintic

W=x+x5+x5+x5+x nCP Q=QoQoQ

with
J1=x1+x b =xs J3 = x5 + x3

» J; =0is a line in CP* — Nullstellensatz

» this describes a permutation branes [Recknagel]

> CFT deSCI’Iptlon knOWI‘l [Brunner, Gaberdiel]

> can be generalized to [MB, Brunner, Gaberdiel]
h=x1+x b = axqg — bxz J3 = axs — cx3

with a® + b® + ¢® = 0 in CP?



Lines in the quintic

» the common locus of J; corresponds to a complex line in the
quintic

» it can be parametrised as

(x1:x:x3:xa:x5) = (u:—u:av:bv:cv)
with (v :v) € CP! and &° + b° + c® =0
» this is a 2-cycle in W =0

» MF has interpretation as D2-brane wrapping this cycle



The moduli space

» moduli space known globally
» genus 6 algebraic curve
P +b+c=0

» cohomology computed!

V1 = 0pQ(b)
Wz = ﬂ\Ul
WO -
‘\ Qa\ » away from the permutation
N
A\

point, W, is obstructed, due
4
to <W2W2\U2> = *%%

» only W; is exactly marginal

Im(c) over the b-plane



Directions in moduli space

\Ug \Ul

permutation point

Red branch: J; < J3



branch | factorization | intersects with
() (12)(435) | (8), (<), (p)
(8) (35)(412) | (), (7):(w)
() (14)(325) | (), (9),(v)
() (23)(415) (7). (e) (p)
(€) (15)(324) | (5),(¢): (w)
() (34)(215) | (e),(a),(v)
(A) (13)(245) | (w),(v),(p)
(1) (24)(315) (3), (A). (€)
(v) (25)(134) | (7). (€), (M)
(p) (45)(123) | (a),(9),(})

e.g. (12)(435) corresponds to (u: —u:av: bv: cv)
permutation points are given e.g. by (af3), (u)) etc



Transitions

At each permutation point the fermions generating the braches are
exchanged
They are related by expressions of the form

xiV1 = x;Ws

This gives a set of rules how to walk through the moduli space



... It's a truncated icosahedron!

Nodes: moduli branches («), (3) etc

Edges: branch intersections, permutation points (a/3), (8v) etc [MB, Wood]




More Calabi-Yaus

Paiiinld]  W=x+x+x +x +x @+ +c=0
joints with 2 fermions
Pa1112[6] W=x+x+x+x+x  a+b+c°=0
+b°+=0
Jjoints with 2 and 3 fermions
P(171$1’1,4)[8] W = X? + Xg —+ X38 + XE + Xg 38 + bg + C8 =0
B +bp+ct=0
joints with 2 and 5 fermions
Pa11,25[10 W= O+ x5 2 a4+ b0+ 0=0
%+ b0+ =0
%+ b0+ =0
a’+p+c*=0
Jjoints with 2, 3 and 5 fermions

+ disconnected piece

Xj\U]_ = X,'\Uz X,'Wg = XJ'\UQ



Bulk deformations

» boundary theory ‘determined’ by bulk

W—W+A6 "™ Q- Q+uv

» branes, cohomology are modified

» deformations: branes moves along a bulk modulus

» obstructions: branes cease to exist
» obstructions mean:
> supersymmetry broken

» potential for moduli induced

» renormalization group flow



Bulk deformations

W = Wo+AG G = x5 (x3, xa, x5) s = Z SqrsX3 X4 XE
q+r+s=2

» perturbatively: Qp(a, b, ¢) can only be deformed
if G is exactin Ry

» in this case, the factorization extends to finite A

> h=hbh=Jh=0isalinein W=Wy+ \G

[Albano, Katz]

s@(a,b,c)=0 N P+ +>=0

There are only 10 such points for which branes can be deformed



Renormalization group flow

» for the deforming fermions the conformal weight h =1

» in the patch where a =1 and b is a good coordinate we find
for all b

)\

A
b=(1—h)b+5(GV1) = =

~452)(1, b, ¢)

[Fredenhagen, Gaberdiel, Keller; MB, Brunner, Gaberdiel]
» and (GWV3) =0, so only W is excited

» the RG fixed points of the CFT are identical to the points
where s(?)(a, b, ¢) = 0 obtained from the topological theory



The exact brane potential

» the RG flow equation can be integrated
> the rhs is of the form w,e = b" 1c* 2 with1<r,sand r+s < 4

> these are exactly the 6 globally holomorphic functions on the
genus-6-curve 1 + b°> +c®> =0

» thus, w,s db are the associated differentials
The bulk deformations under which a brane deforms are in

one-to-one correspondence to the spectrum of differentials on
the moduli space



The exact brane potential

bulk induced effective potential

W(L,bc)x A > sidWiikn
i+j+k=2

Wrs—72Fl( 1—%,1+ﬁ;—bN) N=5

this can be generalized for the other cases ...



The exact brane potential

[MB, Wood]

CY moduli curve bulk deformation effective superpotential

A+ +=0 G = \s® .7‘“77]')'3(2) Tk, Tty Tim) WxZHJM 9 E,kwﬁrlkﬁ
| | aS+054+c5=0 G = As®) (g, 5) - ) (g, 21, 2n) fozz+]+k. 3¢ ,JkW,+1k+1
A+ +c2=0 G = s @i, xj) - s (w2, 25) | W ZH‘HMJ 522W1+1_k+1

P11V = ( (
( (
( (
PaiiaaN =38 |a®+0¥+F =0 | G =2 (wi,25) 5O (wp, 21, 2m) | W X050 1?kWJ+1 ket
( (zx
( (:
( (
( (

P(I.I.I.I.‘Z)[‘N =

5
6

B+ =0 G = \s©) wi,zj)<s(2) Ty T, T5) Wx21+]+4k 28 ,(JZ,CW,+|4(H1)
IP’(LLLM)[N =10] [ a0+ b0+ =0|G= s Zi, T5) - sO (2, 2, 24) | W Z1+27+uk Y. 1( 2W 1120kt 1)
a4 0042 =0 | G =D (2y,24) - 53 (2, 21, 25) | W x 2L+2‘/+5k72 ”kWH]_s
A2+ 4+ =0 | G= O (ws,zy) s (@p,ma,w5) | W Lpsgpianes Sy




Conclusions

» Matrix factorizations describe B-branes
» and their moduli spaces.

» They provide a new method to investigate bulk induced
changes of open moduli spaces,

» in particular the collapse due to RG flow.

» They allow to compute open-closed effective superpotentials
on CY exactly

» which are important e.g. for open mirror symmetry
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