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1. The very hot: heavy-ion collisions

Theare ~ 300 MeV for central RHIC collisions, about 200,000 times hotter than

the core of the sun, and about 1.7 times bigger than 7, ~ 180 MeV where QCD
deconfines.

First natural question: What is the equation of state? Lattice gives pretty reliable
answers (except 1. is hard to pin down in MeV).
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1.1. Equation of state and bulk viscosity

Authors of [ ; ] suggest a way to trans-
late EOS into a prediction for bulk viscosity:
1 0 e—3p
T°— — 16€,. | + (quark terms) . 1
(= o [ 57 i ] (q ) (1)

(1) comes out of a low-energy theorem (“sum rule”) for 6 = Tﬁ:

GE(0,0) = /d4:1: (0(x)0(0)) = (Ta% — 4) (0(0)) 4 (quark terms),  (2)

plus observation that (#(0)) = € — 3p + 4€.., plus (crucially) the assumption of a
low-frequency parametrization
S Ww Wi

0) = ~ 1GeV 3
plw,0) T wi+ w? -0 ’ )

for the spectral measure of the two-point function of T/j‘.

Because (3) is ad hoc, it seems worthwhile to obtain ( using strongly coupled meth-
ods and compare with (1).
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Equation of state and bulk viscosity

The results [
not so much as (1) predicts.
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The method:

Reproduce the lattice EOS using

L=y |R— 067 ~ V(o) @

2K3

V (¢) can be adjusted to match dependence of

dp
2 _
= — (5)
* de
on T". Then adjust x? to get desired ¢/T* at some high scale (say 3 GeV). A quasi-
realistic EOS comes from

—12cosh b’
Vi(g) = COSLZ¢+ ¢ v =0.606, b=2.057. (6)

speed of sound: ¢

Authors of [ ; ] took same starting
point (4) further: an appropriate V' (¢), with V' ~ _¢2€\/§¢’ gives a Hawking-
Page transition to confinement; logarithmic RG in UV; glueball with m? ~ n, as
in linear confinement; and favorable comparison with thermodynamic and transport
quantities [ ].
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Once conformal invariance is broken, we can investigate bulk viscosity [

], following a number of earlier works, e.g. [ ;

]:
1 : 1 3 wwt — 1%
¢ =glim—Tm [ dwdte™o(t)([T",(t,7),T",(0,0)). (7)
w—0 W
R3,1 ‘
. . t,x
Shear viscosity relates to ) )

absorption probability for
an hio graviton. Bulk vis- h, h, ¢ z
cosity relates to absorption
of a mixture of the h;; gravi-

ton and the scalar ¢. 5 ii /¢

1
n Npul\sm'h C ~pub§0rb 2= zH

dr?
) ¢ =o(r). 3)

In a gauge where ¢ = 0, let’s set hy; = e 24dg1, = e 240 g90 = e 240 g33. Then

, 1 / / h/ / 672A+QB ) h/ h/B/
iy = (‘ﬁ‘“ 8B _E> ot (‘T“ oA T )hﬂ
)

ds? = 24" (—h(r)dt2 + df2) + 2B0)
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1.2. Drag force on heavy quarks

The results: [Herzog et al. 2006; Gubser 2006a]

Quark can’t slow down
because m = o0

Horizon is “sticky” because
of gravitational redshift:
prevents string from moving.

dp ™A, v D 2mg

- —_— = - 70

a2 M2 g - T2 VA

Tcharm ~ 2 fm Thottom ~ 6 fm if TQCD = 250 MeV
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The method:

Consider a more general problem of embedding a string in a warped background

[ ; ; ]:

T+ ((r
ds? = —e** " h(r)dt? v +vC(r) + £(r)
LAtz 4 I XM = X (10
h(r)
r

Using classical equations of motion and a gauge choice for (, find

oy T h — v? S
$r) = heA \/he4A/(27ra’)2 — 72 Clr) = h —v?’ (th

§
where ¢ = 0Lgying /0. To make &' (1) everywhere real, we must choose

h(r,)e?A0)

where h(r,) = v°. (12)
2mal

7T§:—

Fi.a can be argued to be precisely (¢, 0, 0).
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Drag force on heavy quarks

A recent study shows that these equilibration times are at least roughly consistent

with R 4 4 of non-photon electrons:
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e STAR(0-5%)

Fdrag = —°—PD
mq

v ~ 2 based on AdS/CFT

Colored triples show
different freezeout
assumptions

Analysis should work for

pr = 3GeV.
[ ]

To get this v ~ 2, have to match SYM and QCD at fixed energy density, and also
set A\ = ¢g%,,N = 5.5 to approximately match the static ¢-G force calculated from

the lattice [
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A bit more detail on why ¢;-,,N & 5.5 based on matching string theory to lattice
q-q potential:

e Lattice people define an effective coupling:

3 ,0F,;
a(r,T) = -r’*—24 . (13)
qq ( ) 4 a,r,
e Analogous quantity in string theory receives contributions from two configura-
tions:
R3! q q i X R31 k q
AdS—-Schwarzschild y AdS—-5Schwarzschild

massless exchange

e Simplest approximation to U-curve contribution is zero temperature result:

3,0V, 3m?
(XSYM(T:O) = ZT2 a;lq — . /g%MNW . (14)

T' # 0 results in a bit of Debye screening.
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To fix gi,,N ~ 5.5, compare to lattice at largest r where U-shape dominates.

a) Toym = 190 MeV b) Toym = 250 MeV
0.1 0.25 0.5 1 0.1 0.25 0.5 1
0.6 / 0.6 0.6 / 0.6
— . /
0.4 =——ou2 0.4 0. 4 —> 0.4
—/ j\

s 0.2 T 0.2 s 0.2 T 0.2
0 0 0 0
-0.2 -0.2 -0.2 -0.2
0.1 0.25 0.5 1 0.1 0.25 0.5 1
r r

lattice data from [ 1, T ~ 250 MeV.

e Overlap of lattice and SYM is a bit better when one compares at fixed energy
density rather than fixed remperature.

e Makes sense: more matter, faster thermal screening.

® csyn = €qep means Tsyy &~ Toep /342

e Match between SYM and lattice here is conspicuously imperfect, but I wanted
some comparison where leading-order result on SYM side involves g3, N.

As with equation of state, the approach is to fix key parameters using comparison
with lattice; then use stringy methods to get real-time transport properties.
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1.3. Stochastic forces and the Einstein relation

Stochastic forces and the Einstein relation

The heavy quark dynamics is described using Langevin:

dp = _ D(p) 1dD(p)
dt Fdrag+F( ) <E<t)F7<O)> - D<p>5135<t) F 2ET 2p dp
Direct calculations of stochastic forces [ ;
: ; ] show that
(FI)FI0) = kLo(t)  (F(6)F;(0) = krdy;o(t)
TV, TV (15)
Kp = (1—@2)5/4T o(t) Ky = (1—@2)1/4T o(t) .

Compare to Einstein relation, derived by demanding that Langevin equilibrates to a
Boltzmann distribution p(k) oc e FH®)/T;

2 FpegT TV
v (1= ?)iR

KL = — (16)

Einstein relation works only when v = 0.
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Another point of difficulty: the stochastic forces aren’t really white noise. They have
instead a scaling form:

gr (1) oy
(FEOF0) = 0ym T 5

(= (1—0)Y*71Tt, 50 tegmeiation — 00 as v — 1

)1/49T(€)

-~ 41[ ]

2z Z.5 3 3.5

To use Langevin, we need coprelation ~ ¢, 1.€.

L _dmg
V1i—v2 AT?

— pr ~ 20GeV  for charm

Obtaining the full scaling form of (F'(¢)F'(0)) is involved, but let’s at least look at
the basic methods...
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1.4. The worldsheet horizon

The key insight: = r, is a horizon on the worldsheet.

:[; 3 R3’1 (71% Vv

AdSS—Schwarzschild

signals go L

timelike

spacelike
horizon

Explicitly, one can show

1 €2Ah 2
dsty ¢ = Ywdo'do” = —e*(h — v*)d7?* + (E o iz) dr’

A, /
Tws = cVE o . (h; - 4v2A;)1/2 =

T(1 —v))Y*  for AdSs-Schwarzschild,
(17)
where A, = A(r,) etc.

Note that 7 and ¢ coincide on the boundary, because we can set ((r) = 0 there.
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(F(t)F(0)) is a symmetrized Wightman two-point function based on fluctuations
of the string around the trailing string ansatz:

»Cstring _ .- . KLQ(T) (aa(sxl)Q . Z KTZ(T) (aaé‘xi)Q + 0(53,;3)
1=2,3
€2A \/h7* €6A 2A, h
Kilr) = 21’ he Kalr) = 2ma/ \/7*

(18)
Standard AdS/CFT methods give retarded correlator G**'(w), with infalling bound-
ary conditions at the worldsheet horizon:

bx ~ (1 —r,) w/inTws (19)

To get the Wightman 2-pt function G(w), need a funny version of fluctuation dissi-
pation relation:

G(w) = — coth ( ) Im G™(w) (20)
WS
Now one can easily show that [ ; ]
2F oo 1 0log |Fya
fp = — o gt WS oy = pop 2108 [Faras| 21)

v 0logv
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2. The very cold: superconductors and superflu-
ids

2.1. The basics of superconducting black holes

In the spirit of [ ], I equate “superconducts” to “spontaneously breaks
a U(1) gauge symmetry.”

If m?; for a complex scalar 1) is negative enough, we’ll get (1)) # 0, breaking the
U(1) of its phase.

The setup we’ll consider is [ ; ]
1 1 :
Lo |R— P~ 10— g AP - V(e)| . @

If we assume A(;) = ®di and look at |¢)|* terms, we see that

%v"(m | (23)

m2s =m® + ¢°®°¢g"  where  m’

Since g" < 0, we can make mZ; very negative with very big ¢. ® — 0 at horizon
in order for Pdt to be well-behaved, so m2; — m? at horizon.
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The basics of superconducting black holes

Below some temperature, quanta of
1 are driven upward from horizon:
recall T = ¢ /2.

FFFFFEY
F =mg

down

Condensate spontaneously breaks U (1)
gauge symmetry, so this is a supercon-
ductor: s-wave since ) is a scalar.

Some fraction of charge remains behind

the horizon.

But what is the ground state configura-
tion? No black hole horizon?

Y quanta can never escape from
AdS,, so they fall back toward
horizon.

+++++++

Expected end state has an “atmo-
sphere” of 1) quanta condensed
above the horizon.

superconducting BH
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2.2. A candidate ground state

A ground state was suggested [ ]in AdS, for
§ U
V([¥]) = 7zt m?|Y|° + §\¢!4 m? <0, u>0 (24)

e A domain wall between AdSyy and
AdStr involving only scalars is a holo-
graphic RG flow, and describes dynamics

4—A
of ECFT + Mot ¢Ow.

e Here I do not deform by O,. A scale
is set by U(1) charge density p in CFT.
One finds a different domain wall from

AdSyy to AdSig.

AdS,,

o [, — 0in AdSig. All the charge is
carried by the domain wall.

AdS,,
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Ansatz for charged domain wall:

dr?
2 2
ds® = ¢? ( hdt? + dax? +dy)+—h 25)

A(l) = (I)(T’)dt ?ﬂ = w(T)
Full equations of motion:

L, 2
A =
2¢ 2h2e2A

" 11 —2A /2 2
W'+ 3AN = e he%cbzp >0

- — S
o0 (26)
CD”—i—A/CI)' _ i®¢2

! h/ o / 2 2
o+ 34+ h)@b—%vw) Ly,

e “c-theorem:” Az > Ayy. Radius of AdSiy is smaller. As in [
: : I
e “h-theorem:” hir < hyy. Light travels slower in IR as measured by dz /dt.
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Non-zero ® means there is some finite density (Jy) = p of a dual charge density.
We prescribe ) ~ e~2+", dual to some VEV (QO,,), with no deformation of Lcpr.

Recovering AdS) in the IR (constant ?), constant /, linear A) means you have emer-
gent conformal symmetry in the IR.

A h e 1 — 400 1is the UV,
4 25 —00 1s the IR.
| ZE/ r > r — —o0o is the
-5 A s s e Here we chose L =1, ¢ = 2,
6 —d b T m?=—2,u = 3.

-8 -5 5
e This solution is essentially

unique: related solutions have
1) with nodes.

: : T : !
-5 5 -5 5

Null trajectories at constant 7 have v(r) = |dZ/dt| = \/h(r).

T

“Index of refraction” n = vyy/vr ~ 1.63 for this setup.

You can also recover Lorentz symmetry but not conformal symmetry in IR if V' (|¢)|)
has no extrema away from ¢ = 0 [ ].
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2.3. Embedding in string theory

Focus on AdS5 embeddings [ ]. For AdS,, see also [
; ; I
N =4 SYM has SO(6) R-symmetry. Let’s pick out a U(1) C SO(6) by studying

states with

0
(Jr2) = (J31) = (Js6) = Nz (27)
The AdS5 dual is the near-horizon limit of spinning D3-branes. The d = 5 descrip-
tion 1s the Reissner-Nordstrom black hole:

1 1 12
L= 5.2 R — ZFEV + T2 + (F'F A Chern-Simons)
ds? = e*(—hdt* + d7?) + dr” Ay = ddt
g h W (28)
A= r h—=1— %’626—47“@ ﬁe—&“ﬂ
L 3 3
d — p/€2(€ 2rg /L 6—27’/L)
Easily calculate T = —e"n/(ry)  p = lim ®(r)
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5-dimensional perspective:

® 20, 10¢, and 1¢ parametrize Fg)/USp(8) of d = 5, N' = 8 SUGRA [
]. Uplift to 10-d only partially known.

e Explicit non-linear action and uplift for just the 20 plus SO(6) gauge fields is
known [ ].

e The U(1) we’ve selected, plus the highest-charge member of 10¢, plus metric
are (almost) all the fields in the SU (3)—invariant bosonic sector of d = 5, N =
8:

2 SLER) NLoM
1 , 1 , o \/g o u(1)
L=R—--F, —=|(0n) +sinh"n|0,0— TA“

4 "2 (29)
+ i cosh? - (5 — coshn)
L2 2 ’

e The non-SUSY vacuum at ) = log(2 +/3) is unstable toward breaking SU (3)
[ ], but more sophisticated examples are probably stable.

e A more ornate setup probably flows from N' = 4 to N’ = 1 superconformal
vacuum of [ ], and may be stable.
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10-dimensional perspective:

e It helps to view S° as a (1) fibration over CP*. All results I’ show generalize
to S E;5’s obtained by replacing CP? by a different Einstein-Kahler 2-fold.

~_
=
spinning
_— CY3
F (before stretching)
5 D3—branes
e
<z

e Main trick is to establish some explicit uplift of a sub-theory of d = 5, N' = 8
SUGRA to type IIB.
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1 12
To uplift any solution (ds3;, Aq))to L = R — ~F. + — 4+ C.S.,use|[

AT
]
3 3 ;
d32:d2 L2 Diz 2'2:1 DZEdl —A i
10 Sy T Z’ zil Z‘Z’ z Z"'L (1)*
1=1 1=1 (30)
4
Fioy = Foy ++F6)  Fis) = =7 volu +L7(xarFla)) Aoy,
where w(y) is the Kahler form on CP>
Now generalize to capture superconducting solutions [ ]: basi-
cally, find AdSs-to-AdS5 domain walls [ ] similar to quartic

example of [ ].
SU(3) symmetry means we can’t squash the CP?; only stretch the U (1) fiber:
3
dsg = (dséPQ + cosh? gca)) Cny = %Z(zidzi — Zdz") (31)

1=1

Including spin:  dz; — Dz, =  (u) — Cé) = () + +Aq).
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The complex scalar (), ) € 10 describes deformations sourced by F{s) = B(s) +
1C'2). A tricky point: How do we choose F{s)?

e Consider the C'Y; cone over our SE5:  dsgy, = dr® + r’dsgy, .

e Normalize holomorphic three-form {23 so that {3y A Qz‘?)) = 8voley,.
Q) = dz' A dz* A dz° when CY; = C?.

® Decompose ()3 = r2dr A {22y + (3-form on base)

o| fp) = iL*e" tanh g 2

(Related heavy lifting: [

b

After some further thought, find 1; also [ )
d3210 = cosh ﬂds?w + : dgg
(10) 2 cosh 7
coshn —5
f(5) = COSh2 g Tn VOlM +L2(*MF(2)) A W (32)

3
+ L*tanh’ g (d@ — ZA(1)> N Wiz N\ W)
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2.4. A critical velocity
eqe 5 I I I I I

(o]

A familiar probe [ , :

: ] of su- o

perfluids is a point particle (e.g. a 4 40K o

o . . e]

non-relativistic heavy ion) pulled re o

. . o

through it at constant velocity. °

. . Z, . o

e v; 1s Landau velocity, above & ° °

. S / °

which massless probe can © 0.35 K °

emit rotons: the excitations 2 . o

with minimal w /k. B o

(o]

e Scaling form of Fj,,, above °

. [e]

v, depends on the roton emis- 1l o

. [¢]

sion process. Ut O

i (o]

I | | 1 Lﬁ&

20 40 60

of(m s7)

We’ve got a nice example of a strongly coupled superfluid, and we can trail a string

through it [ ]... so what happens?
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v hir, get trailing

For v < wvr ~ 0.373, string hangs For v > v
straight down: NO DRAG. string.

Boundary Boundary

1.0
v=0.07 . Y A ?=0.8
s 0.6 i

IR IR

As before, worldsheet horizon is located by solving h(r*) = 2. If v < v, there
are no solutions!

Calculating drag, worldsheet temperature, and stochastic forces is complicated slightly
by having to pass from 5-d Einstein frame to 10-d string frame: lagrangian is

1

2ma/

£string —

Q(n) \/— det 0, X+03 X" g, Q(n) = cosh g . (33)
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Two last analytic results:

1. Starting from differential first law,

dP = sdT + p, du — Zp—;de : (34)
where p,, and p, are normal and superfluid densities, and &,, = 0,,( is propor-
tional to superfluid velocity, one can extract

R ——— (35)
120 5T + pp,,

2. Using IR asymptotics of the background, one can demonstrate that
Fiyrag 0 —(v — vg) /7 (36)

where the exponent A is the dimension of J;, in the IR AdS5 region. Also find
Reo(w) oc w?*75 for small w. For explicit type IIB example of [

I, Ag = 5.
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3. Conclusions

e Heavy-ion application has some striking experimental support. The combination
of Fiyags S/ Shee, and 1)/ gives a pretty encouraging picture [Noronha et al.
2009].

o Bulk viscosity estimates have also seen some phenomenological application
[Song and Heinz 2009].

o Failure of Einstein relation suggests that we still have an imperfect under-
standing of how to treat thermalization via trailing string.

e Condensed matter applications seem to me less closely tied to experiment, but
the string theory constructions are rich and interesting.

o AdS-to-AdS domain walls look like a pretty general construction at finite
chemical potential, but other behaviors may be possible [Gubser and Nellore
2009b].

o Trailing string at v > wvig has Ty g > 0 even though T = 0 for the back-
ground.
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