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@ |IB Supergravity and Killing Spinors
@ Analysis of Solutions with 28 < N < 32 supersymmetries

No assumptions about the spacetime geometry/fluxes are
made - the analysis is completely general.

All maximally supersymmetric solutions, i.e. those with 32 linearly
independent Killing spinors, are completely classified [Figueroa
O'Farrill, Papadopoulos]

One finds: R, AdS5 x S° and a maximally supersymmetric plane
wave solution.

@ Conclusions



lIB Supergravity and Killing Spinors

The bosonic fields of IIB supergravity are the spacetime metric g, the
axion ¢ and dilaton ¢ , two three-form field strengths G = dA®
(e =1,2), and a self-dual five-form field strength F

The axion and dilaton give rise to a complex 1-form P [Schwarz].
The 3-forms are combined to give a complex 3-form G.

To achieve this, introduce a SU(1,1) matrix U = (V¥ V%), a = 1,2
such that

vevl —vive =ef (v =vE o (v =V}

612 =1= €12.



The V{ are related to the axion and dilaton by

Vig  1+4i(o+ie7?)
Vi 1—i(o+ie?) "

Then P and G are defined by

PM = —EagiaMVf, GMNR = _EaﬁVfG@NR



The gravitino Killing spinor equation is

- 7 1
Vue+ @FN“'N%FNI...MM — %( m NN G v N

—9FN1N2G]\4N1N2)(CE)* = 0

where . 1
- i
Vi =0m — §QM + ZQM,ABFAB

is the standard covariant derivative twisted with U(1) connection @/,
given in terms of the SU(1,1) scalars by

Qm = —ieagi‘aMVf

and € is the spin connection.



There is also an algebraic constraint

1
PMFM(CE)* + ﬂGNlNZNSFNlNzNgﬁ =0

The Killing spinor € is a complex Weyl spinor constructed from two
copies of the same Majorana-Weyl representation A;%:

€ =11 +ithy
Majorana-Weyl spinors 1) satisfy
¥ =CY")

C'is the charge conjugation matrix.



Spinors as Forms

@ Let eq,...,e5 be a locally defined orthonormal basis of R®.
@ Take U to be the span over R of ey,...,es5.

@ The space of Dirac spinors is A, = A*(U ® C) (the complexified
space of all forms on U).

e A, decomposes into even forms AT and odd forms A, which are
the complex Weyl representations of Spin(9,1).



@ The gamma matrices are represented on A, as

F()?] = —ez A Ui + €511
Isn = esAn+esm
Iin = e An+em 1=1,...,4
Ispin = de; Anp—ie;un 1=1,...,4
o I'; for j =1,...,9 are hermitian and I'y is anti-hermitian with

respect to the inner product
5
< 2%q, wley >= Z(z“)*w“ ,
a=1

This inner product can be extended from U @ C to A..



There is a Spin(9,1) invariant inner product defined on A, defined
by

B(El7 62) =< I’OC(el)*, €o >
B is skew-symmetric in €1, €3.

B vanishes when restricted to AT or A7 .

This defines a non-degenerate pairing B: AT ® A — R given by

B(e, &) = Re B(e, §)
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Canonical forms of spinors

We wish to write a spinor v = vy + ivy, where v; € Ay in a simple
canonical form.

Spin(9,1) has one type of orbit with stability subgroup Spin(7) x R® in
ATg [Figueroa-O'Farrill, Bryant].

Al =R < es+ e123a5 > +AYRY) + Ag

R < e5 + e12345 > is the singlet generated by e5 + €12345

AY(RT) is the vector representation of Spin(7) spanned by (j,k=1,...,4)
€jk5 — 3€jkmnEmn5, H(€jk5 + 5€jkmnEmns) and i(es — €12345).

Ag is the spin representation of Spin(7) spanned by

1 . 1
ej + éequqzqseq1q2q37l(ej - éejmqaqgeqlqz%)-



Spin(7) acts transitively on the S7 in Ag, with stability subgroup G»,
and G acts transitively on the S in A*(R") with stability subgroup
SU(3) [Salamon]

Using these transitive actions, any 11 € Ajg can be written as

v1 = a1(es + €12345) + iaz(es — €12345) + az(er + e234)

For all possible choices of (real) a1, as, as, there exist Spin(9,1)
transformations which set 11 = e5 + €12345 .
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Spin(7) acts transitively on the S7 in Ag, with stability subgroup G»,
and G acts transitively on the S in A*(R") with stability subgroup
SU(3) [Salamon]

Using these transitive actions, any 11 € Ajg can be written as

v1 = a1(es + €12345) + iaz(es — €12345) + az(er + e234)

For all possible choices of (real) a1, as, as, there exist Spin(9,1)
transformations which set 11 = e5 + €12345 .

This spinor is Spin(7) x R® invariant.

Having fixed v1, it remains to consider v5:
By using Spin(7) gauge transformations, which leave v invariant, one
can write

vg = b1(e5 + €12345) + iba(es — €12345) + bs(e1 + e234)



There are various cases

i) bs # 0. Then using Spin(7) x R® gauge transformations one can
take

vy = g(e1 + ea3a)

The stability subgroup of Spin(9,1) which leaves 14 and v
invariant is Gs.

ii) If b3 = 0 then
vy = g1(es + e12345) + ig2(es — €12345)
and the stability subgroup is SU(4) x R®

III) If b2 = b3 = 0 then
vy = g(es + e12345)

and the stability subgroup is Spin(7) x R®.



N = 31 Solutions: Algebraic Constraints

Suppose that there exists a solution with exactly (and no more than) 31
linearly independent Killing spinors over R.

Consider the algebraic constraint

. 1
PA{FM(CE’I)* + ﬂG«NIN2N31—~|N1N2N3€r -0

where €" are Killing spinors for r =1,...,31.
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Suppose that there exists a solution with exactly (and no more than) 31
linearly independent Killing spinors over R.

Consider the algebraic constraint

. 1
PA{FM(CE’I)* + ﬂG«NIN2N31—~|N1N2N3€r -0

where €" are Killing spinors for r =1,...,31.

The space of Killing spinors is orthogonal to a single normal spinor,
v € A with respect to the Spin(9,1) invariant inner product 5.
Using Spin(9, 1) gauge transformations, this normal spinor can be
brought into one of 3 canonical forms:

Spin(7) x R® : v =(n+1im)(es + €12345) ,
SU(4) D(RS : V= (n—€+im)e5+(n+€+im)612345,
G : v =n(es + e12345) + im(er + ea34),



In general, one can write

32
e => i
i=1

where f7; are real, P for p=1,...,16 is a basis for A, and
7716+p = inP.

The matrix with components f”; is of rank 31.



In general, one can write

32
ro__ r o1
€= frm
=1

where f7; are real, P for p=1,...,16 is a basis for A, and
7716+p = inP.
The matrix with components f”; is of rank 31.

The functions f"; are constrained by the orthogonality condition.

For example, take the case for which v = (n + im)(es + €12345): set

€ = f1(1+ era34) + fra7i(1 + erzza) + fTrn®

where 1* are the remaining basis elements orthogonal to
1+ e1234, (1 + e1234).



Then the orthogonality relation implies
nf'r—mfr7=0

and so, taking without loss of generality n # 0; one finds

T

€ = n17 (m 4 in)(1 + e1a34) + fT1n"




Then the orthogonality relation implies
nf'r—mfr7 =0

and so, taking without loss of generality n # 0; one finds

o frir

n

(m + m)(l + 61234) + frknk

Substituting this back into the algebraic Killing spinor equation, one finds

1 ,
PMFIMO*[(TI'L“F?:TL)(1+61234)]+ﬂGM1]\/12M3FM1A12M3 (m+in)(1+61234) = 0

and

Py TMyP =0, GMlM2MgFMlM2M377” =0, p=2,...,16



Analogous equations are obtained for SU(4) x R® and G invariant
normals.

In all cases, the constraints PMFMnP =0fix P=0.

This means that the algebraic Killing spinor equation is linear over C, so
if there is a background with N = 31 linearly independent solutions of
the algebraic Killing spinor equation, then this equation must have 32
linearly independent solutions.



Analogous equations are obtained for SU(4) x R® and G invariant
normals.

In all cases, the constraints PMFMnP =0fix P=0.

This means that the algebraic Killing spinor equation is linear over C, so
if there is a background with N = 31 linearly independent solutions of
the algebraic Killing spinor equation, then this equation must have 32
linearly independent solutions.

This in turn fixes G = 0. However, if G = 0 then the gravitino Killing
spinor equation also becomes linear over C.

In this case, if the gravitino Killing spinor equation has 31 linearly
independent solutions, it must have 32 solutions also. So the background
is maximally supersymmetric.



N = 30 Solutions: Algebraic Constraints

Having excluded N = 31 solutions, consider N = 30.

To simplify the analysis, we use a result of Figueroa O'Farrill,
Hackett-Jones and Moutsopoulos.

This states that all solutions with N > 24 linearly independent Killing
spinors are homogeneous, and hence have P = 0.

So, for N = 30 solutions, the algebraic Killing spinor equation becomes
linear over C:
1 N; N3N
[Mefse =

ﬂGNlNzN:s



To analyse the case of N = 30 solutions, note that the Killing spinors are
all orthogonal to a normal spinor v € A7 with respect to the inner
product B.

This can be brought into canonical form using gauge transformations.

Spin(7) x R® . v=(n+im)(es + e12345) ,
SU(4) x R®: v=(n—{l+im)es + (n+{+im)eia3as ,
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all orthogonal to a normal spinor v € A7 with respect to the inner
product B.

This can be brought into canonical form using gauge transformations.

Spin(7) x R® . v=(n+im)(es + e12345) ,
SU(4) x R®: v=(n—{l+im)es + (n+{+im)eia3as ,
Gy : V= n(e5 + 612345) + im(el + 6234) )

The solutions to the algebraic Killing spinor equation are
15
€ = Z 2"smt
s=1

where 71" is a basis normal to v and z is an invertible 15 x 15 matrix of
spacetime dependent complex functions.



There are three cases to consider, corresponding to the types of normal
spinor v.

In all cases, one can choose the basis (1%) to have 13 (very simple)
common elements, which are orthogonal to v: eyq, €15pq; €1p, €14 fOr
p=2,3,4 and er5 — €2345.



There are three cases to consider, corresponding to the types of normal
spinor v.

In all cases, one can choose the basis (1%) to have 13 (very simple)
common elements, which are orthogonal to v: eyq, €15pq; €1p, €14 fOr
p=2,3,4 and er5 — €2345.

The remaining two basis elements are case-dependent

Spin(7) x R® : 1 —e1234, €15 + €2345,
SU(4) X RS : €15 + €2345, (7? — 0+ im)l - (77 + 0+ im)61234 y
Gy : 1 — e1234, m(1 + e1234) + in(e1s + €2345)

In all cases, evaluating the algebraic Killing spinor equation on the basis
(n") produces sufficient constraints to fix G = 0.



Integrability Conditions for N=30 Solutions

It remains to consider the integrability conditions of the Killing spinor
equations for solutions with G = P = 0.

The curvature R = [D, D] of the covariant connection D of IIB
supergravity can be expanded as
1 1
Run = i(TI%IN)PQFPQ + g(Tﬁm)Ql...Qin”'Q“ ,
where

2 1 1
(Tyn)pr, = Run.pp — e, @ PP AN p)0:0:0s -

(Tyn)pPpe = $DwFNIpy..py+ 5FMNG Qo Fropp) O



The T2 and T* tensors satisfy various algebraic constraints, following
from the Bianchi identities and field equations:

(T]%4N)P1P2 = <T1%1P2)MN ,
(T]%/[[Pl)P2P3] = 0,
(T]%/[N)PN = 0,
(TﬁDle)PBPALPsPG] =0
4 N
(TILIN)P1P2P3 = 0,
1
(T]%4[P1)P2P3P4P5] = _56P1P2P3P4P5Q1Q2Q3Q4Q5(TJZ\Z[Ql)QQQsQ4Q5] :

And (T4pl(1\/1)1\;)1321:3134 is totally antisymmetric in Py, P, P3, P;.
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Analysis of Constraints

The integrability conditions of the gravitino Killing spinor equations

Re" =0

One can obtain constraints on the tensors T2 and T* by directly
evaluating these constraints on the basis elements 7* and using the
constraints and symmetries of T2, T%.

It is more straightforward to note that Re” = 0, implies

T
RJV[N,(),I)’ = UMN,rTM Vv + Up N XaVy

where u are complex valued, and 7", x is a basis for AT.



We also have the formula

2
1 1
¢ayb’ = T4 Z (2k)!B(¢7FA]AQ...AQRV)(FA1A2.'.A2k)ab’ 5

for any positive chirality spinor .

Requiring that the holonomy of the supercovariant connection lie in
SL(16,C) implies that
UMNB(X7 V) =0

which eliminates the contribution to Rasn,qp from wunrnXxale -



Hence we are left with

RMNapy = UMNroly
1 I |
_ Z r A1 Ag.. Aok
o _IGUMN’T k=1 (2k)|B(n 7FA1A2-~~A2kV)(F e 2k)0«b’

which in turn relates T2, T* to UMN,r Vid

(Thrn)ara, = _TGUMNJ‘B(,"]T? T'a,a,v)

(T]z\l/[N)AlAzAaAzL = _TGUMN7TB(77T7FA1A2A3A4V)
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The method is then as follows
@ Determine all components of 72 and T in terms of upsn
o Translate the 72 and T constraints into constraints on u

o After some mildly involved computation, one finds that these are
sufficient to fix upn,» = 0.

@ This then implies that T2 =0, T* = 0.

@ However these are equivalent (together with P = 0, G = 0) to the
constraints on maximally supersymmetric backgrounds.

So all N = 30 solutions are locally maximally supersymmetric.

There are also no quotients of maximally supersymmetric solutions which
preserve 30 supersymmetries.
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N = 29 Solutions

Solutions with exactly N = 29 linearly independent Killing spinors are
excluded as follows:

o As P = 0, the algebraic Killing spinor eqns are linear over C.

@ So a background with N = 29 linearly independent solutions to the
algebraic Killing spinor equation must have at least 30 solutions to
this equation.

o By the N = 30 analysis, this is sufficient to fix G =0

@ As G = 0, the gravitino Killing spinor equation is linear over C, and
so an exactly N = 29 solution is excluded.
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Conclusions

There are no solutions of 1B supergravity with exactly N = 29,
N =30 or N = 31 linearly independent Killing spinors

What about solutions with N = 28 supersymmetries? A non-trivial
example is known - the plane wave geometry of Bena and Roiban.

In fact in order to have a solution with exactly 28 linearly independent
Killing spinors, one is forced to take G # 0.

Analysis of the Killing spinor equation integrability conditions with G # 0
is much more complicated!



The gravitino integrability conditions are

Se+T(Ce)* =0

where
i LiLoL Ly{L
T = 7£(F[N 152 3DM]GL1L2L3+9F 1 2D[NGM]L1L2)
in? Lpo . LilaLsg rLilap Q1Q2 ¢
Ty (GINM LiLaLg ™+ [N|L1Ly IM]Q1Q2

1 1
- Q LiLaLg _ Zpli--La Q
R N Yale) GLiLoLg o7 FNMLyLy “CL3L4Q

1 1
- LiLaLg Q1Q2 1Ly Q
+ohv FMILy Ly GrL3Qi1Qe + ;T Fri.Ly “GNMQ

1
_ - LyiLaLg Q1Q2
STIN FLyLoLg GIM]Q1Qa) -



1 1 ik
1 LiLgy 1 * iR Lq..Ly
S iNM oLy = S PwPay + 2T DINFMLy...Ly

2
K 1
T o(_pLila Q1Q2Q3 “pli-Lg Q1Q2
+24< r FINiLy FiMLoQ1Q203 T 2F FNMLy FLoL3LsQ1Qs
1
- LyiLaLg QR1Q2Q3
+ 2F[N Fmyeg FrLyL3Q1Q2Q3)
w21 LiLo 1 LiLoLg ~*
+37(—;G[N CMLyLy T TNME GLiLyLg

1 1
L LoL * Q LiL *
T T M TG g STV G T T2 G MLy Ly

3
+ Zrlil2g

L3 g% _pLiLs Qo
16 NMPCL Long =T GINILy ~CMILyQ

3 1
_ Zrplil2 Qa* _ LiLa Q1Q2g*
161" GrLiLy "GNMQ T+ 16FNM GrLy CLoQ1Qo

1 1
TS TR * 1 LiLyL3 Q o*
v CLiLaLzONMLy T ST GrLiLy “CMIL3Q

1
irLl-

Ly *
G G
s NMLyCGLoLgLy

1
“pLy...Ly *
+.7 CINIL Ly G MILgL, T
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1 1
- LiLoLg Q % = 1---Ls *
ey GmiLy “C9LargQ * o2 N GIMIL Ly CLgLy Ly

1 1
Ly...L * Ly...L Q ~*
R VS GL Ly Ly GlM Ly Ly T 32 M PTG Ly TG0
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One can show [JG, Gran, Papadopoulos| that the Bena and Roiban plane
wave is the unique solution with N = 28 supersymmetries:

ds* = 2dw(dv— (g + 2h*)6; ;2" 2 dw) + §;jdx da?
G = —2V2ie®dw A (dz'® + dz? + dz®7 + dz*®)

F = 2hdw A (dz'?°® — dz?47®)
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One can show [JG, Gran, Papadopoulos| that the Bena and Roiban plane
wave is the unique solution with N = 28 supersymmetries:

ds* = 2dw(dv — (2 + 2h*)6; ;2" 2 dw) + §;jdx da?
G = —2V2ie®dw A (dz'® + dz? + dz®7 + dz*®)
F = 2hdw A (dz'?5 — da1™®)

All homogeneous solutions with N > 24 linearly independent Killing
vectors could (in principle) be classified using similar methods.

It has also been shown [Gran, JG, Papadopoulos, Roest], that
there are no N = 31 (and very recently, no N = 30) solutions in
D=11 supergravity.



