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Introcluction & Motivation

® Many systems in nature exhibit critical points with
non-relativistic scale invariance> 1.
T — AT t — N\°t.
® Such systems have Lifshitz symmetries: translationstionts
and NR dilatations.

= Aim: to construct holographic techniques for (strongly
coupled) systems with NR symmetries.

m Systems with Schrodinger invariance.

= Holographic approach to the study of such systems; oo

[Balasubramanian, McGreevy, 2d08

5th Aeaean Summer School. Milos. Sentember 2009 — p. 2/17



For anyz > 1.

Review of properties of Schrodinger space-times in
Poincaré-like coordinates

Causal properties
For >z = 2:

Global coordinates
Hilbert space for scalars
Comments on Cauchy problem for scalars
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etries

h = 0andg = ™ (zt, T)
(d+3) Cso(2,d+2)



(¢ = 0 and¢ = e™* o)(x™, T)
sch,(d+ 3) C so(2,d + 2)

The Schrodinger algebra for# 1 consists of:

H time translation

SL(2,R
( ) D dilatation

(only for z = 2) _
C special conformal{ only for z = 2)

N mass operator (only central for= 2)
Heisenberg P, momenta¢ =1,...,d)
V. Galillean boosts
SO(d) M,, rotations
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Geodesic properties

ds® = 5 L 4 i > (—2dtd€ + dr® + di?)
Geodesically Tidal forces Bulk to boundary
complete Podolsky, 199% geodesics
z =1 (AdS) no constant yes
1<2<?2 no divergent no
z2 =2 no finite (bounded) no

z > 2 no finite (unbounded) no
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Causality # 1

1
ds? = — g’ + 3 > (—2dtd€ + dr® + dz*)

T2
®m Forz > 1the space-time IS non-distinguishingifeny, Rangamani,

Ross, 200]5 :

= non-distinguishing There exist distinct points with
identical past and future.
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Causality # 1

1
ds® = — g + 3 > (—2dtd€ + dr® + dz*)

T2
®m Forz > 1the space-time IS non-distinguishingifeny, Rangamani,

Ross, 200]5 :

non-distinguishing There exist distinct points with
identical past and future.

= The argument uses that light cones near the bounaagy()
flatten out forz > 1.

m Causal future ofty, &y, o, xo) contains{ (¢, &, r,x) | t > to}.
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Causal Ladder:

- Globally hyperbolic -> Minkowski, de Sitter

- Stably causal -> Anti-de Sitter, plane waves
- Strongly causal

- Distinguishing

- Causal ->  Schrddingere (> 1)

- Chronological
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Global coordinates #1

® Does there exist a time-independent global coordinategyat

® Necessary conditiord timelike Killing vector in the Poincare
patch whose norm is nowhere vanishing.
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Global coordinates #1

® Does there exist a time-independent global coordinategyat

® Necessary conditiord timelike Killing vector in the Poincare
patch whose norm is nowhere vanishing.

= Only for z = 2 does there exist such a Killing vector:
H + w*C.

m If there exists a time-independent global coordinate syste
then only forz = 2.

m There is one generator that commutes with- w?C', namely
N.
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Global coordinates #2

® To construct a coordinate traf¢t, &, v, ) — (1, V, R,X’) that
“diagonalizes’H + w?C andN: H + w?*C = = andN = ;&

oV
t = wltanwT
r = I boundaryr =0 — R =0
cos wT’
- X
1 ~ coswT

= V+4 (R2 +X’2) tan w7

ds? =4 1 L (—2dtd¢ + dr? + di?)
= U (—2dTdV - o (B2 4 X2) dT? 4 dR? 4 dX?)
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Global coordinates #3

ds? =~ + o (—2dTdV — o (R? + X?) dT? + dR? + dX?)

®m Terms proportional ta establish geodesic completeness via
“harmonic trapping”.
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Global coordinates #3

ds? =~ + o (—2dTdV — o (R? + X?) dT? + dR? + dX?)
®m Terms proportional ta establish geodesic completeness via

“harmonic trapping”.

» NRCFT: primary operators correspond to energy eigenstdites
a system in a harmonic potentiailshida, son, 200f

» “Boundary”: R = cst andl/ = cst
ds” |R,V:cst: — (1 + WQPQ) dT* + dp2 -+ deQ?l—l

takes the form of a Newtonian limit with isotropic harmonic
oscillator potential.
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A Hilbert space for scalars #1

m Free complex scalaff] — m3) ¢ = 0 in global coordinates.

® Mode decompositiony = > ., (apdar + b5,05,)-
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A Hilbert space for scalars #1

m Free complex scalaff] — m3) ¢ = 0 in global coordinates.

® Mode decompositionp = >, (arréar + b5,0%,)-

m Inner product{¢y; | darr) = %fET dE“gb}‘Wai)ng,.

m D
m T = cst dX?
® Induced metricds?|r—cst = 73 (dR2 4 Zipz + pzdﬂfl;)

= Lightlike with normal (-2)" = &%
= dSF = LRI 1R dp d Q.
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yert space for scalars #2
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ke modes to be eigenfunctionsi@f+ w*C = a%, and

_ 0
oV



A Hilbert space for scalars #2

. <
B (O | o) = %sz dRdpdQq s R~V p™1 3, Oy o

m Take modes to be eigenfunctionsféf+ w?C = a% and

— 0
N = =.

m Solutions to the Klein—Gordon equation are separable:

on = e e VY] (angles ar(p) du(R) -
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A Hilbert space for scalars #2

. <
B (O | o) = %sz dRdpdQq s R~V p™1 3, Oy o

m Take modes to be eigenfunctionsféf+ w?C = a% and

— 0
N = =.

m Solutions to the Klein—Gordon equation are separable:

on = e e VY] (angles ar(p) du(R) -

® In (¢nr | @) there is nof dV integral. The modeg,, will be
orthonormal iffm = m' (Bargmann superselectipn
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A Hilbert space for scalars #3

ds® |R,V—cst= — (1 + WQ:OQ) dT? + dp”® + p2d93_1

® The equation forp,,(p) is identical to the time-independent
Schrodinger equation for a particle infadimensional isotropic
harmonic oscillator:

1 2
—swmp® L1 L—1+d/2
Ly (

om(p) = e 2 p wmp?) .

w LY 972 (wmp?) are generalized Laguerre polynomials of
degreen.
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A Hilbert space for scalars #3

ds® |R,V—cst= — (1 + WQ:OQ) dT? + dp”® + p2d93_1

® The equation forp,,(p) is identical to the time-independent
Schrodinger equation for a particle infadimensional isotropic
harmonic oscillator:

1 2
—swmp® L1 L—1+d/2
Ly (

pu(p) =€ 27 p wmp?) .

w LY 972 (wmp?) are generalized Laguerre polynomials of
degreen.

w (s | paar) o €M EMITS 16, [[ARR™9HD gy (R) o (R)
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A Hilbert space for scalars #4

m General solution fop,(R):

1
ouB) = RS (e b d - B 14 AA Ly

m [F'is a confluent hypergeometric function.
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A Hilbert space for scalars #4

m General solution fop,(R):

1
ouB) = RS (e b d - B 14 AA Ly

m [F'is a confluent hypergeometric function.

= Breitenlohner—-Freedman boundg + m* > —%.
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A Hilbert space for scalars #4

m General solution fop,(R):

1
ou(R) = ¢ 2"TRMF(n+ § 4§ - 8% 1+ 555 wmR?)
E %i\/%+mg+m2

m [F'is a confluent hypergeometric function.

m For simplicity consider only modes with; + m?* > 0. These
modes are normalizable iffy; = 2w (k +n + £ + ¢) and
given by

1
dar(R) = e~ 2mF RA+ [8+72)2 (um R2).
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A Hilbert space for scalars #5

® Thus form?2 + m? > 0 with m fixed we have the mode

decomposition:
¢ — Z (ak7n7L¢k7n7L —|_ bz,n,L¢z,n,L)
kn,L
: : 1 5
¢k,n ;. = A n,L e~ Ern. 1 e_"vaL(angIeQ & —gwm(R*+p? RAer X

x LE1%92(omp?) LA+ 22 (umR?)
Epni = 2w(k+n+£2+9)

with coefficients given by

An. . = (DrnL | D) bknr = (Pknr | @) .
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Causality and initial data #1

m T'Is a global time function (differentiable along timelike
curves).

m T cannot be always increasing along future directed timelike
curves otherwise the space-time is stably causakihg, Etiis,
1974).
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Causality and initial data #1

m T Is a global time function (differentiable along timelike
curves).

m T cannot be always increasing along future directed timelike
curves otherwise the space-time is stably causakihg, Eiiis,
1974).

m SinceSch,—s IS not stably causal’ must on some timelike
curves take on the same value more than once.

® The surfacél’ = cst is intersected by certain timelike curves
more than once— The setl’ = cst Is not achronal.
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Causality and initial data #2

m T = cstis not achronddut it is an initial data surface.

® Questions:
w What kind of curves intersed@ = cst more than once?
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Causality and initial data #2

m T = cstis not achronddut it is an initial data surface.

® Questions:
w What kind of curves intersed@ = cst more than once?

w |s there a well-posed initial value formulation?
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