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 Killing spinors:

 Polyforms: ,

they contain complete information about 
NS sector and SUSY

 SUSY conditions Graña, Minasian, Petrini & Tomasiello `05 

,,

precise interpretation in terms of:  
 
 generalized calibrations L.M. & Smyth `05 
 F- and D- flatness Koerber & L.M.`07 
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Hitchin `02;

 Induced polyform decomposition Gualtieri `04

6⊕

n=0

ΛnT ∗M =
3⊕

k=−3

Uk

 Integrability GC structure

with

 Generalized Hodge decomposition (assuming              -lemma) Cavalcanti `05

(F-flatness)
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Moduli and polyforms

`half’ of NS degrees 
of freedom

information encoded in  
(second `half’ of NS 
degrees of freedom)

RR degrees of 
freedom

  The         and        moduli are associated to twisted cohomology 
classes of:

,

 The full closed string information is stored in

,

see also: Grañã, Louis  & Waldram `05;`06
Benmachiche and Grimm `06

Koerber & L.M.`07
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Moduli and 4D fields

moduli space of
Hitchin `02;

   
assuming( )for                minimal SUSY   

       In principle, all      -moduli
    can be lifted (up to rescaling) 

,

-moduli RR axionic shift

Weyl-chiral 
weights:  

          and         will be 4D chiral fields of 4D superconformal theory   
see e.g.: Kallosh, Kofman,
Linde & Van Proeyen`00
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Dual picture: linear multiplets

  D-flatness condition

  Linear-chiral functional dependence

explicit form depends on
microscopical details 

  Expand: ,

bosonic components of 
linear multiplets dual to
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Example: IIB warped CY

     

removed axion-dilaton 

    Chiral fields: 

    Dual linear multiplets: 

complex structure moduli,
 lif ted up to conformal compensator         

Grañã & Polchinski;
Gubser `00

Giddings, Kachru & 
Polchinski `01
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  Going to the Einstein frame, one gets the Kähler potential

        does not seem topological! However

topologically well defined &
in agreement with 4D 

interpretation
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  Freezing the      -moduli, knowing                   one can obtain                    
by integration

la(t + t̄)

what is its 
explicit form?
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redefining                                   unwarped Kähler potential         Grimm & Louis`04 
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Conclusions

  Under some assumptions (e.g.         -lemma), the 4D spectrum 
has been identified with      -twisted cohomologies 

  The Kähler potential determined only implicitly. However, 
4D chiral-linear duality can help in reconstructing it.

  The 4D couplings of probe D-branes (space-filling, instantons, 
DW’s and strings) depend only on the cohomology classes


