(Supersymmetric) Godel Space from Wrapped M2 Branes

Bert Vercnocke, ITF, K.U.Leuven

in collaboration with:

- Tommy Levi (NYU)
- Joris Raeymaekers (FZU Prague)
- Dieter Van den Bleeken (Rutgers U.)
- Walter Van Herck (K.U.Leuven)
- Thomas Wyder (K.U.Leuven)

Zurich, 7 September 2009
Overview

- **Introduction**

- **Our system**
 - Reduction of 11d sugra to 3d effective action

- **Solutions:**
 - Anti-de Sitter space
 - Godel space
 - (Super)symmetries

- **Superglue**
 - Gluing Godel space to anti de Sitter space

- **Conclusions and outlook**
Introduction
Introduction/Motivation

- **Problem:**
 - $AdS_3 \times S^2 \times CY_3$ background + probe M2 wrapping S^2 Backreaction?

- **Original motivation:** Black Hole entropy/microstates
 - Constituent counting: D-branes/CFT states
 - Supergravity regime?
 - Fuzzball proposal
 - Gaiotto-Strominger-Yin (2005), GSY + Denef-Van den Bleeken (2007):
 - Type IIA on CY gives N=2 supergravity in 4d
 - D0-D4 black hole split as D0-D4 background and probe D0, counting agrees with entropy
1) **Gaiotto-Strominger-Yin:**

- D0-D4 BH: background core D0-D4 + probe D0s
- Background near-horizon: $AdS_2 \times S^2 \times CY_3$
- AdS superconformal quantum mechanics
- Large # (non-abelian) D0s: puff up to D2s (conjecture)
Introduction/Motivation

- **GSY+Denef-Van den Bleeken:**
 - D0-D4 BH: background + probe

 \[D_6 \; \rightarrow \; D_6 \] purely fluxed
 - Two interesting regions in scaling limit
 - **FAR region:** quotient of $AdS_3 \times S^2$
 (not surprising, D0-D4 BH near horizon)
 - **NEAR region:** global $AdS_3 \times S^2$
 (surprising)

- **Entropy?**
 - Start in near region (take D0 charge to infinity)
 - Bring in D0 charge as D2/M2 branes (non-abelian degrees of freedom)
 - M2’s wrap near horizon \(S^2 \): spinning particles in \(AdS_3 \)
 - Counting ok in leading order à la GSY

- **ISSUES:**
 - Myers effect?
 - **Backreaction** of probe branes on \(S^2 \)
 Either solves black hole problems or is interesting new solution
Our System
Our System
From M2 probes to an ansatz for the backreaction

- Backreaction of M2 branes on S^2 ? 11 dimensional picture

D6-anti D6 near horizon:

$$ AdS_3 \times S^2 \times CY_3 $$
Our System
From M2 probes to an ansatz for the backreaction

- Backreaction of M2 branes on S^2?

11 dimensional picture

M2 brane probes
(Susy when rotating with constant angular velocity in global AdS_3, see later)

$$\text{AdS}_3 \times S^2 \times CY_3$$
Our System
From M2 probes to an ansatz for the backreaction

- Backreaction of M2 branes on S^2? 11 dimensional picture

M2 brane probes
(Susy when rotating with constant angular velocity in global AdS_3, see later)

$AdS_3 \times S^2 \times CY_3$

Backreacted system:
(ASSUME...)

g_{11}

$F^{(4)}$ Red and blue cycles (on S^2) $\Lambda < 0$

$M_3 \times S^2 \times CY_3$
Our System
Specifying our ansatz in 11 dimensions

- Backreaction of M2 branes on S^2?

\[ds_{11}^2 = \frac{1}{\tau_2^{2/3}} (ds_3^2 + \frac{\ell^2}{4} d\Omega_2^2) + ds^2(CY_3) \]

\[F^{(4)} = p^A D_A \wedge dvol_{S^2} + \frac{1}{\tau_2} \ast_3 d\tau_1 \wedge dvol_{S^2} \]

\[\tau_2 = CY_3 \text{ volume} \]

\[d\tau_1 = \frac{1}{\tau_2} \ast_5 dA^{(3)} = \frac{1}{\tau_2} \ast_3 dA \]
Our System
Specifying our ansatz in 11 dimensions

- Backreaction of M2 branes on S^2?

\[ds_{11}^2 = \frac{1}{\tau_2^{2/3}} (ds_3^2 + \frac{\ell^2}{4} d\Omega_2^2) + ds^2(CY_3) \]

\[F^{(4)} = p^A D_A \wedge d\text{vol}_{S^2} + \frac{1}{\tau_2^2} \star_3 d\tau_1 \wedge d\text{vol}_{S^2} \]

\[g_{11} \]

\[F^{(4)} \]

\[\begin{array}{c}
\text{Redux} \\
\text{Redux}
\end{array} \]

\[\begin{array}{c}
\tau_2 = \text{CY}_3 \text{ volume} \\
d\tau_1 = \frac{1}{\tau_2^2} \star_5 dA^{(3)} = \frac{1}{\tau_2^2} \star_3 dA
\end{array} \]

\[\text{3d with } \Lambda < 0 \]

+ two scalars τ_1, τ_2
Our System
From 11d to 5d to 3d

- Reduced to 5 dimensions over CY_3
 - Gives five dimensional N=1 supergravity with vector multiplets and one hypermultiplet:
 \[
 S_5 = \int d^5x \sqrt{-g} \left(R - \frac{1}{2} \partial_\mu \tau \partial_\mu \bar{\tau} \right) - \frac{1}{2} \int G_{AB} F^A \wedge * F^B + \frac{D_{ABC}}{6} \int A^A \wedge F^B \wedge F^C
 \]
 \[
 F^A = \rho^A d\text{vol}_{S^2}
 \]
 \[
 \sim *_5 dA^3
 \]
 \[
 \tau = \tau_1 + i\tau_2 \quad \text{complex scalar in universal hypermultiplet}
 \]
 \[
 \text{CY volume}
 \]

- Reduced to 3 dimensions over S^2
 - $\mu = 1$: no backreaction, AdS
 - $\mu = \frac{3}{2}$: backreaction $= ???$
 - Constant sphere radius? None of the other fields couple to this modulus!
 - General for codimension 2 branes
Our System
Equations of motion in the 3d system

- **Action and equations of motion in 3d:**
 \[S_3 = \int d^3x \sqrt{-g} \left(R + \frac{2}{\ell^2} - (\mu - 1) \frac{\partial_\mu \tau \partial^\mu \tilde{\tau}}{\tau^2} \right) \]

 - Einstein eqns. \[R_{\alpha\beta} + \frac{2}{\ell^2} g_{\alpha\beta} = (\mu - 1) \frac{\partial_{(\alpha} \tau \partial_{\beta)} \tilde{\tau}}{\tau^2} \]
 - Scalar field eqn. \[\partial_\alpha \left(\sqrt{-g} g^{\alpha\beta} \partial_{\beta} \tau \right) + i \sqrt{-g} g^{\alpha\beta} \frac{\partial_\alpha \tau \partial_{\beta} \tau}{\tau^2} = 0 \]
 - We search for stationary solutions

- **Inspiration: codimension 2 branes are special!**
 - Greene, Shapere, Vafa, Yau (1990) (Stringy cosmic strings)
 - Gibbons, Green, Perry (1995) (D7 branes)

- **3D part of metric:**
 \[-dt^2 + dx^2 + dy^2 - dz d\bar{z} \]

 - Remains valid when spatial part of \(\sqrt{-g} g^{\alpha\beta} \) is “flat”
 - Flat space: \[-dt^2 + e^{2\phi(z,\bar{z})} dz d\bar{z} \]
 - Our case: \[-(dt + \chi)^2 + e^{2\phi(z,\bar{z})} dz d\bar{z} \]
Let's put everything together:

- Wrapped branes on the sphere in $M_3 \times S^2 \times CY_3$
- Leads to three-dimensional action:
\[
S_3 = \int d^3x \sqrt{-g} \left(R + \frac{2}{\ell^2} - (\mu - 1) \frac{\partial_\mu \tau \partial^\mu \bar{\tau}}{\tau_2^2} \right)
\]

- Ansatz:
\[
ds_3^2 = -(dt + \chi)^2 + e^{2\phi(z, \bar{z})} dz d\bar{z} \quad \tau(z)\\
\chi = \chi(z, \bar{z}) dz + \chi_\bar{z}(z, \bar{z}) d\bar{z}
\]

- Einstein eqns.:
\[
d\chi = \frac{i e^{2\phi} dz \wedge d\bar{z}}{2}\\
\partial \bar{\partial} \phi - \frac{e^{2\phi}}{4} = - (\mu - 1) \frac{\partial_\tau \partial \bar{\tau}}{4\tau_2^2}
\]

- We will focus on eqn. for ϕ: sourced Liouville equation
\[
\mu = \frac{3}{2} \quad \text{Our case, we will show this is timelike stretched } \text{AdS}_3\\
\mu = 1 \quad \text{AdS}_3
\]
Let's put everything together:

- Wrapped branes on the sphere in $M_3 \times S^2 \times CY_3$
- Leads to three-dimensional action:

$$S_3 = \int dx^3 \sqrt{-g} \left(R + \frac{2}{\ell^2} - (\mu - 1) \frac{\partial_\mu \tau \partial_\mu \bar{\tau}}{\tau_2^2} \right)$$

- Ansatz:

$$ds_3^2 = -(dt + \chi)^2 + e^{2\phi(z,\bar{z})} dz d\bar{z}$$

$$\chi = \chi(z, \bar{z}) dz + \chi_\bar{z}(z, \bar{z}) d\bar{z}$$

- Einstein eqns.:

$$d\chi = \frac{i e^{2\phi}}{2} dz \wedge d\bar{z}$$

$$\partial \bar{\partial} \phi - \frac{e^{2\phi}}{4} = -(\mu - 1) \frac{\partial \tau \bar{\partial} \bar{\tau}}{4 \tau_2^2}$$

- We will focus on eqn. for ϕ: sourced Liouville equation

Take μ arbitrary

Our case, we will show this is timelike stretched AdS_3

$\mu = \frac{3}{2}$ AdS_3

$\mu = 1$ AdS_3
Solutions
Solutions
Solving for our ansatz

• Solving for general value of μ

 - Ansatz and Einstein equations:
 \[
 \begin{align*}
 ds_3^2 &= -(dt + \chi)^2 + e^{2\phi(z,\bar{z})} dz d\bar{z} \\
 \tau(z) &
 \end{align*}
 \]

 - Specifics:

 • Spatial base has topology of a disk (UHP) (cf. AdS)
 • Imaginary part of τ positive: lives on UHP
 • Possible poles of τ only on the boundary of space
 meromorphic function from disk/UHP to UHP
Solutions
Solving for our ansatz

- Solving for general value of μ

 - Ansatz and Einstein equations:

 \[
 \begin{cases}
 ds_3^2 = -(dt + \chi)^2 + e^{2\phi(z,\bar{z})} \, dz \, d\bar{z} \\
 \tau(z)
 \end{cases}
 \]

 \[
 d\chi = \frac{i e^{2\phi} \, dz \wedge d\bar{z}}{2}
 \]

 \[
 \partial \bar{\partial} \phi - \frac{e^{2\phi}}{4} = -(\mu - 1) \frac{\partial \tau \bar{\partial} \bar{\tau}}{4 \tau_2^2}
 \]

 - Specifics:

 - Spatial base has topology of a disk (UHP) (cf. AdS)
 - Imaginary part of τ positive: lives on UHP
 - Possible poles of τ only on the boundary of space
 - Meromorphic function from disk/UHP to UHP

 - Build solutions:

 \[
 \chi = 2 \text{Im} \left(\partial \phi + (1 - \mu) \partial \ln \tau_2 \right) + df
 \]

 \[
 D e^{2\phi} = -(\mu - 1) \frac{\partial \tau \bar{\partial} \bar{\tau}}{2 \tau_2^2} = D \left(\mu \frac{\partial \tau \bar{\partial} \bar{\tau}}{\tau_2^2} \right)
 \]

 Notice earlier gauge freedom!

 - We can take:

 \[
 e^{2\phi} = \mu \frac{\partial \tau \bar{\partial} \bar{\tau}}{\tau_2^2}
 \]

 - Literature (sourced Liouville eqn.)
 - Uniqueness? Locally: 3D gravity
We express the Godel metric in coordinates where the spatial base is either the Poincare disk or UHP.

\[ds^2 = -(dt + d\chi)^2 + e^{2\phi(z, \bar{z})} dz d\bar{z} \]

\[e^{2\phi} = \mu \frac{\partial \tau \partial \bar{\tau}}{\tau^2} \]

- **Poincare Disk**

 \[z = re^{i\varphi} \]

 \[\tau(z) = i \frac{1 + z}{1 - z} \]

 \[ds^2 = \frac{\mu \ell^2}{4} \left[-\mu (d\tilde{t} + \frac{2r^2}{1 - r^2} d\varphi)^2 + 4 \frac{dr^2 + r^2 d\varphi^2}{(1 - r^2)^2} \right] \]

 - \(\mu < 1 \) Timelike Squashed AdS (TMG): unphysical!
 - \(\mu = 1 \) AdS
 - \(\mu > 1 \) Timelike Stretched AdS

- **Upper Half Plane (UHP)**

 \[w = x + iy \]

 \[\tau(w) = w \]

 \[ds^2 = \frac{\mu \ell^2}{4} \left[-\mu (dt + \frac{dx}{y})^2 + \frac{dx^2 + dy^2}{y^2} \right] \]
Solutions: Godel Space
Properties of original and our Godel space

- **Original Godel space**
 - Metric in four dimensions:
 3d solution above ($\mu = 2$) plus 1 extra dimension
 - Solution to Einstein eqns. with a pressureless fluid source:
 \[T_{\mu\nu} = \rho u_\mu u_\nu, \quad u^\mu = \frac{2}{i} \delta^\mu_0 \quad \rho \text{ constant energy density} \]
 - Closed Timelike Curves (CTCs)
 - Godel rotates around every point: \(\ast_3 (u \wedge du) \neq 0 \)

- **Our Godel space**
 - 3d solution ($\mu = 3/2$)
 - Non-trivial complex scalar $\tau(w)$ with EM tensor of the “Godel” form
 - CTCs
 - Pole of τ on the boundary ($w = i\infty$)
 Infinite U(1)- charge of gauge field:
 \[d\tau_1 \sim \ast_3 dA \]
(Super)Symmetries
Comparison of supersymmetries: probe/backreaction

- **Background geometry**

 \[AdS_3 \times S^2 \times CY_3 \]

 - Bosonic symmetry group: \(SL(2, R)_L \times SU(2)_L \times SL(2, R)_R \)
 - Supergroup (8 supersymmetries): \(SU(1, 1|2) \)

- **Probe (wrapped) M2 Branes**

 - Static w.r.t. \(l_0 \) generator of \(SL(2, R)_L \) (i.e. \(t \) in UHP coords, physically rotating M2!)
 - Minimal energy: \(L_0 = Z \), \(Z = \) mass of brane
 - \(\frac{1}{2} \) BPS state: (4 supersymmetries)

- **Is 3d Godel Space = Backreacted (wrapped) M2 branes?**

 - Bosonic symmetry group \(U(1)_L \times SU(2)_L \times SL(2, R)_R \)
 - Same (4 supersymmetries) of probe
 - Check: M2 branes in Godel background do not break any susy
Superglue
Motivation: why glue to Anti de Sitter space?

- Black hole motivation
- AdS/CFT
 - Embedding of Godel in AdS:
 - **SIMPLEST REALIZATION**: domain wall canceling the M2 charge
 - Outside wall: locally AdS (3d gravity)
- Analogy with enhancon etc.
 - Resolving CTCs of Godel-type spacetime

Setting up the domain wall

- Cancel energy-momentum sourcing Godel space
- Need M2 brane charge

Domain wall built up out of M2 branes wrapping internal smeared in AdS on a dimension 1 domain “wall”

Action

\[S = S_3 + S_{probe} \]

- Which wall? M2 branes couple to CY volume \((\tau_2)\) try constant \(\tau_2\)
Superglue

Strategy

- **Action**
 \[S = \int d^3x (L_3 + L_{probe}) \]
 with
 \[dA = \frac{1}{\tau_2^2} \star_3 d\tau_1 \]
 \[X^0(\sigma, \lambda) = \sigma \quad X^1(\sigma, \lambda) = \lambda \quad X^2(\sigma, \lambda) = Y \]

 Solution supersymmetric (remember static probe branes in UHP are susy!)

- **Domain Wall**

- **Ansatz:**

 \begin{align*}
 \tau &= x + iy \\
 \epsilon(y - Y) &\leq 0 \\
 dS_3^2 &= dS_{Godel}^2 \\
 \tau &= \tau_0 \text{ (cst)} \\
 \epsilon(y - Y) &\geq 0 \\
 dS_3^2 &= N^2 dy^2 + h_{ab} dx^a dx^b
 \end{align*}
Superglue

Strategy

- Junction conditions

<table>
<thead>
<tr>
<th>$\tau = x + iy$</th>
<th>$\varepsilon(y - Y) \leq 0$</th>
<th>$ds^2_3 = ds^2_{Godel}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau = \tau_0$ (cst)</td>
<td>$\varepsilon(y - Y) \geq 0$</td>
<td>$ds^2_3 = N^2 dy^2 + h_{ab} dx^a dx^b$</td>
</tr>
</tbody>
</table>

- For metric, complex scalar
 (= CY volume and gauge field)

- Need to match:
 - Continuity across domain wall
 - EOM scalar/metric across wall:
 - Einstein eqn. AdS part: no source

\[\varepsilon = \text{the sign of the M2 brane tension!} \]
\[\text{Godel in/out determined by brane tension neg/pos} \]

Metric:

\[\varepsilon(y - Y) \leq 0 \quad ds^2 = \frac{\mu l^2}{4} \left[-\mu (dt + \frac{dx}{y})^2 + \frac{dx^2 + dy^2}{y^2} \right] \]

\[\varepsilon(y - Y) \geq 0 \quad ds^2 = \frac{\mu l^2}{4} \left(-(dt + \frac{dx}{y})^2 + \left(f(y) dx^2 + f^{-1}(y) dy^2 \right) \right) \]

\[f(y) = \mu + (1 - \mu) \frac{Y^2}{y^2} \]

Global AdS!
• Problems:

 – CTCs:
 – Remember poincare disk:
 Domain walls are circles tangent to the boundary in $z = 1$
 – Even worse:
 – Out(in)side AdS space can be brought to global coordinates
 – Identification of AdS-angle requires extra timelike identification in Godel

 – Black hole charges? Hoped for, but not realized!
Conclusions & Outlook
Conclusions & Discussion

• Summary?
 - Backreaction of M2 branes wrapped on S^2 in $AdS_3 \times S^2 \times CY_3$ background?
 - Gödel space + complex scalar in 3 dimensions:
 • Infinite M2 charge on one boundary point
 • Supersymmetric ($\frac{1}{2}$ BPS)
 - Connect to to asymptotically AdS spacetime: domain wall of M2 branes
 • PROBLEMS: CTCs, no BH equivalent

• Questions?
 - What corresponds to backreacted setup of Gaiotto-Denef-Strominger-Van den Bleeken-Yin? We would expect asymptotics = quotient of $AdS_3 \times S^2$
 - Other alternatives
 • For Gödel solutions? Complex scalar solution?
 • of making Domain Wall?
 - 11d picture, need codimension 1 object – other brane sources:
 • M2?
 • M5?
 - Use this technology to resolve problematic solutions (3d conical defect of AdS…)

7 Sep 2009 Bert Vercnocke – “Gödel Space from Wrapped M2 Branes”
End
Extra Slides
As an appetizer, let's solve the case

\[S_3 = \int d^5x \sqrt{-g} \left(R + \frac{2}{l^2} \right) \]

- We know this should be AdS
- Equations of motion become

\[\partial \bar{\partial} \phi - \frac{e^{2\phi}}{4} = 0 \]
\[d\chi = \frac{ie^{2\phi}}{2} dz \wedge d\bar{z} \]

\[ds_3^2 = -(dt + \chi)^2 + e^{2\phi(z, \bar{z})} dz d\bar{z} \]

\[e^{2\phi} = \frac{4\partial g \bar{\partial} \bar{g}}{(1 - g \bar{g})^2} \]
\[\chi = 2\text{Im}\partial \phi + df \]

in terms of an arbitrary holomorphic function \(g(z) \)

- We can show this is AdS with the coordinate transformation:

\[g = \tanh(\rho)e^{i(\psi - \sigma)} \]
\[\sigma = \frac{t + f}{2} \]

\[ds^2 = l^2 \left(-\cosh^2 \rho \, d\sigma^2 + d\rho^2 + \sinh^2 \rho \, d\psi^2 \right) \]

For later use, two main coordinate systems:

- The Poincare Disk
- The Upper Half Plane (UHP)
Solutions: Godel Space
Godel Space in Disk and UHP coordinates

- We express the AdS metric in coordinates where the spatial base is either the Poincare disk or UHP.

\[ds^2 = -(dt + d\chi)^2 + e^{2\phi(z, \bar{z})} dz \, d\bar{z} \]

\[e^{2\phi} = \frac{4\partial g \bar{g}}{(1 - g \bar{g})^2} \]

\[\chi = 2\text{Im} \partial \phi + df \]

- Poincare Disk

\[z = r e^{i \varphi} \]

\[r = 1 \]

\[r = 1/\sqrt{\mu} \]

\[\tau(z) = i \frac{1 + z}{1 - z} \]

\[ds^2 = \frac{\ell^2}{4} \left[-(d\tilde{t} + \frac{2r^2}{1 - r^2} d\varphi)^2 + \frac{4}{(1 - r^2)^2} (dr^2 + r^2 d\varphi^2) \right] \]

- Upper Half Plane (UHP)

\[w = x + iy \]

\[\tau(w) = w \]

\[ds^2 = \frac{\ell^2}{4} \left[-\mu (dt + \frac{dx}{y})^2 + \frac{dx^2 + dy^2}{y^2} \right] \]

- Timelike Squashed AdS (TMG)
- AdS
- Timelike Stretched AdS