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N = 4 Super-Yang—-Mills

N = 4 SYM has played a fundamental role in the study of
gauge and string theory

It is the unique four—dimensional gauge theory with
maximal global supersymmetry (16 supercharges)

Extremely interesting properties:

1y H ini [Ferrara,Zumino],[Grisaru et al. '80],[West,Sohnius '81]
> Perturbative Finiteness [Stelle '81],[Brink et al. '83],[Mandelstam '83]

» Nonperturbative Finiteness [aps '84,Nsvz '86,seiberg— Holomorphicity]
= 4d Superconformal Field Theory

» AdS/CFT Correspondence [maldacena '97]

» Planar Integrablllty [Minahan,Zarembo '02], many others

» Planar Amplltudes [Anastasiou et al. '04], [Bern et al. '05], [Alday,Maldacena '07]

But is it the unique theory with these features?

Are there theories which share only some of these
features?

How does the knowledge accumulated for N' = 4 SYM
help in understanding more realistic theories?



Marginal Deformations of A =4 SYM

Look for theories as close as possible to A/ = 4 SYM
Preserve conformal invariance = Marginal Deformations
Focus on superpotential deformations = N = 1 SUSY
Write the N’ = 4 SYM action in V' = 1 superspace

L:/d4€TregV$ie‘ng>i o (/d29W+/d29_W> +e-

Chiral Superfields ¢' = ¢' + 02!, + 62F' i =1,2,3
N = 4 superpotential:

W = gTroH02, 6] = I Tro! piok

Most general classically marginal deformation:
W = hi Trd!' &I ok

where hjy is a symmetric tensor



Exactly Marginal Deformations

Not all of these deformations are exactly marginal
Perturbative approaCheS [Parkes, West '84],[Jones,Mezincescu '84]

Leigh and Strassler ('95) provided a non—perturbative
proof using the NSVZ ( function
The Leigh—Strassler theories are defined by:

Wis = KTr <¢1[¢2, ®7Jq + g (@1 + (%) + (¢3)3))
g—commutator [X,Y]q = XY — qYX

e Finite if f(g, x,q,h) = 0, where f unknown in general
e 1-|oop finiteness condition

20 = kR [é(uqxna) - (1f Ni) (1+ad+ hﬁ)}

Recover N =4 SYMforq=1,h=0
An interesting case: g =e'#.h = 0 (“Real 3 deformation”)



N =4 SYM vs. Leigh-Strassler?

e How do the LS theories compare with N' = 4 SYM?

N =4 SYM Leigh—Strassler
Conformally Invariant Vv V()
AdS/CFT dual v real /3 [Lunin,Maldacena’05]
Planar Integrability Vv basically real 3 ()
Planar Amplitudes v real 3 [Khoze'05]

(*) Recent controversy over higher—loop finiteness [Elmetti et al. '06,07], [Rossi et al. '05,06]
(") Berenstein&Cherkis ('04) showed mismatch of LS deformation with integrable
deformation of the spin chain for complex 3. However one—loop integrability persists in
a particular sector for complex (3 [Mansson '07]. A few other integrable choices are known.
e What makes the real g deformation so special?
e Take a closer look at the symmetries
e Work at the level of the classical lagrangian



Symmetries: N =4 SYM

4d Superconformal group: PSU(2,2|4)
Focus on the R—symmetry subgroup SU(4) ~ SO(6)

In N = 1 superspace notation, the N' = 4 theory has
manifest SU(3) x U(1)gr symmetry

W = gTrol[07, 6% = ey Tro! piok

€k i the invariant tensor of SU(3)
Eiiji|Uijkn — (detU)€|mn = €lmn

Transforming ®' — U/ &' leaves the superpotential invariant

Note that SL(3) would be enough for the superpotential,
SU(3) comes from the kinetic term ~ ®; '



Symmetries: Leigh—Strassler

The generic LS deformation breaks SU(3) to a discrete
subgroup

Wis = wTr (¢1[¢2, g + g ((®1)° + (92)% + (¢3)3)>

This superpotential has the following Zs symmetries:

Zh: ot =% | PP P !

78 o s wdl | P2 WP PP (WP=1)
Together with a third Z3 within U(1)g (&' — wd'), they form
a trihedral group known as As7 [anarony etal. '02]

For real 3 the symmetry group is enhanced to U(1)3

Is this all?



More symmetry?
e Let us naively rewrite W, 5 as
1 i iy ik
W, s = gEijkTrCD o

where
E123 = E231 = Ez1o = &,
Es21 = E213 = E132 = —k( ,

E111 = E222 = E333 = sh

e Similarly F' = Ej defines W = IF Tro;d; ¢y
e Would like to find some t; such that &' — t|¢'is a

symmetry, i.e. _
Eijktlﬂjmtkn =SJEmn

e Clearly there exists no Lie group with this property...
= Quantum Groups



An Example: The Manin Plane

A simpler setting that illustrates the main ideas
x1,x? € V, where V is a noncommutative space

2 121

Ix2 = Zx2x

X=X

Coordinates of a 2—dimensional quantum plane

These commutation relations can be obtained from a
matrix R:V®V -V eV

g0 o0 o0
110 1 g-gq* o0
R=a%19 0 1 of"

00 0 q

via the relation Rikjlxkx| = q2x)x' (Or RipX1X2 = 2 XX1)
Think of R as acting on basis {|11),|12),]21),|22)}
(eg. Rb% =qf —q %)



Quantum Plane Symmetries
e The function f(x!,x?) = x'x? — q~1x2x?! is invariant under
X' — tix!

if the matrix tij satisfies the FRT, or RTT relations:

R0 = tht,R:®, (Rztity = trt3R17)
. tt .
e Writingt = < t21 t22 ) we find
1 2

thty = q 7 Mthth , thth = q ALY,
thty = q 7 'thth , tath = q Mt

thth = tith , thts — t5th = (@7 — Q)thth ,

e The elements of t are noncommutative!
e These commutation relations define a quantum group



Quantum Groups

e What are quantum groups? Some definitions

e Recall an algebra (C, +, -, n; k) is a vector space together
with a product - :C®C — Candaunitmapn:k —C

e A coalgebra (C,+, A, ¢ k) is instead equipped with a
coproduct A : C - C®C andacounite:C — k

C®C®C
A®B// \\Q®A C®C
cC®C C®C

exld/ A Id®e

\Nc% koC=C=Cak

e A bialgebra (H,+,-,n, A, ¢ k) is both an algebra and a
coalgebra in a compatible way



Hopf Algebras

A Hopf Algebra is a bialgebra equipped with an antipode
S:C—-C

(S®id)ocA=-(dRS)ocA=noec.

We are working in the Quantum Matrix Algebra picture,
where the coproduct and counit are

Agh =) dRedf,  egh =0
k

and the antipode s satisfies : ti s = 4} = st

In this picture, it is the product whose noncommutativity is
controlled by the matrix R through the RTT relations

For R = | we are left with a Lie Algebra

Dual picture = Universal Enveloping Algebra



Quasitriangular Hopf Algebras

In a quasitriangular Hopf algebra, the matrix R controlling
noncommutativity satisfies the Quantum Yang—Baxter
Equation (QYBE) (but note without spectral parameter):

R12R13R23 = R23R13R12

A A R . ij k rp _pik ip
(ln index notation: R\ R%*,R'n"y = R R, nRﬂsm)

Among other things, this condition guarantees that the
resulting algebra is not too trivial

We call a quasitriangular Hopf algebra a quantum group
The matrix R defining the Manin plane does satisfy QYBE!
It corresponds to the quantum group SUq(2)



Why SUq(2) and not GL4(2)?

We have constructed the quantum group SUq(2) as the
invariance group of the Manin plane

The quantum determinant D := t4t3, — q~t% t%, is central
and we can set it equal to one = SL4(2)

There is an analogous construction for the coplane
UiUp = quaug (Ui € V*) defined by

1 o ji
J2UgUp = UjUiR ba

Compatibility of the plane and coplane imposes a reality
condition on the matrix R:

R\, =R\ (R=PR hermitian)

This lets us define t|” = s; — SUq(2)



Three—Dimensional Quantum Planes

Apply these ideas to the Leigh—Strassler theories!
Note the F—term conditions: [serenstein etal. ‘00]

¢'o? = q¢?¢" — h(¢°)?

¢°0° = q¢°¢? — h(¢')?

#*¢" = o' ¢® —h(¢?)?
(non—commutative moduli space)

The three scalars will play the role of the quantum plane
coordinates: ¢' — x'

Can think of the C2 tranverse to the D3-branes becoming
noncommutative

We need to examine the symmetries of three—dimensional
guantum planes



Quantum deformations of GL(3)

e Ewen & Ogievetsky ('94) classified quantum deformations
of GL(3), and the corresponding quantum planes

e Starting point were the g—epsilon tensors Eji and their
duals Fik
e Given the following conditions

1 . ! - - s
0 = 5EmF™  and EajmF ™ Eenk F*9 = 630 + 640

they show that
kl = 5k5 — EgnF™

satisfies QYBE and defines a quantum plane through

Ri2X1X2 = X1X



LS as a quantum symmetry deformation

e Can the E&O approach be applied to LS?

The desired g—epsilon tensors are:
Ei23 = K, E1s2 = —r0, E11x = sh  (+cyclic), F = Eji

e Imposing the first E&O condition (5] = 1EjmF™) we find
xRk = 1/(1+qg + hh) = planar 1-loop finiteness condition!
e H = ExnF"i is the 1-loop spin chain Hamiltonian weian os)
hh 0 0 0 0 h 0 —hg 0
0 1 0 —q 0 0 0 0 h
0 0 qd 0 —hg 0 —q 0 0
1 0 —q 0 ad 0 0 0 0 —h§
Hjpp=—"—7—>= 0 0 —hq 0 hh 0 h 0 0
' 1+ag+hh | p 0 0 0 0 1 o —q 0
0 0 —q 0 h 0 1 0 0
—hg 0 0 0 0 - 0 dg 0
0 h 0 —hq 0 0 0 0 hh
" c i (4L (41)
e Hermitian, cyclic: H,, = H 1y 1) etc.
o Define R}, =dkd —HY), = R\, =R}



Does it work?

Given R, the RTT relations will produce a bialgebra A(R)
But our R is not part of the E&O classification
In particular, R does not satisfy QYBE!
(apart from special cases, e.g. real 3)
Differences from E&O:
» We have not imposed the second E&O condition
» We are interested in a cyclic quantum plane structure (while
E&O look at ordered planes, e.g. x'x) = gxx', i <j)
We cannot have a quasitriangular Hopf Algebra, but is it
still a Hopf Algebra?

Need careful analysis of the RTT relations

Two main new features:

e Possibility of no (nontrivial) solutions
e Associativity will imply higher relations



Solving the RTT relations

When R satisfies QYBE, we are guaranteed that
R t2t) = tht,RP,

has nontrivial solutions for |

In our case we need to explicitly show that out of the 81
equations, only 36 are independent

This turns out to be the case!

Quadratic commutation relations of A(R):

(@)  GtE — gt 4+ htTUE = h (15,130, — Gt t3h + htdtdt)
(b) q[ta+lc+l, a] — _qzta+1ctac+1 + hqta 1 ta 1 - + hta 1c+1ta 1 4t c+lta+1c
(C) _qtéé+1té(1:+1 + C_]t 1ta+1 — hta lta+l hta 1ta 1

c+1

(d) h(t2 413, — qt3_,t3 ;) = h(tF ™M — gt '3




Associativity

The QYBE also guarantees no new relations arise at

higher levels

In our case, associativity leads to new cubic relations

a) R12R13Rastitots = RipRustatstaRas = RiptatitoR13R23 = tatatiR12R13R23

b) R23R13R1ot1tots = RosRistatitzsR12 = Rostatsti R13R1o = tatati RosR13R12

These relations would be the same if QYBE were satisfied,
but now they have to be imposed to guarantee associativity
Danger is that they will trivialise the quantum determinant

D= % Eptit t<,F'™

=th 515 — qtitLth + hS 515 + thts — qththts + hti et
+ 5t — gttty + hthithth
We have checked that this is not the case
D is nontrivial and central = CansetD =1



The Quantum Symmetry Algebra

e We have also shown that there exists an antipode

1+ 2+k 4 3+k

o =424k 3+k | mi24k 3+k 24k 3+k 3+ki2+k 1+kyel+k
Sk = total —atality i +ht +ht

REL SR S Vo] PV P o I AR SV

e The bialgebra A(R) is thus a Hopf algebra

e We have found a Hopf algebra underlying the general
Leigh—Strassler deformation

» Transform ¢' — tj¢), t € A(R)
» D = 1 guarantees invariance of the superpotential:

W = gEijkTrd)'dﬂd)k —— Eijktlﬂjmtkn = ]D)E|mn .
» The antipode guarantees invariance of the kinetic terms
D0 — Bt "t dF = &0, o

e The full Leigh—Strassler lagrangian is invariant under A(R)
e The Zj3’s appear as automorphisms of A(R)



Integrable Cases

e The Hopf algebra A(R) becomes quasitriangular for
special choices of (g, h)
e All known integrable deformations of V' = 4 can be

obtained in this way
e Can show that they arise as Hopf algebra twists of the real
[ case

-

Rg =

-

£3)
NNl N No o NoNe]

OO0 O O0OO0O0O
[eNeNelNelNeNeNo B Ne}
OO0 o oo oo
OO0 O o0 oo o
OO0 ORrOoOOoOOo o
Q
OO0 |Oooooo o
[e¥oNoNeNeoNoNeoNolNo)
POO OOO0OO0OO0O O

(this is also a twist of the N = 4 case eisert, Roiban 05])
e E.g. g =0,h =1/h can be obtained by

R = FuRgF ', F=UgU?

0o 1 o0
U= 0o 0 1
1 0 O

where



Relation to Noncommutativity

It is known that the real 3 deformation can be described by

a Star prOd UCt [Berenstein et al. '00], [Kulaxizi, Zoubos '04], [Lunin, Maldacena '05]

Non(—anti)commutativity on open string side leads to NS
(and RR) fields on closed string side (schomerus ‘9], [Seiberg, witen ‘9]

Can try to apply these ideas to construct the dual gravity
background to the Leigh—Strassler theories uiaxizios)

Works fine for real 3, but problems with associativity for
general case. Still, a solution was found to third order
The resulting noncommutativity relations

[, 2]. =ipelz*Z', [Z',7]. = iﬁ@i{d—zkz'—, Z',2)], = iﬁ@ﬁmz‘zz'_
can be mapped to our (extended) quantum plane relations
R =xIx' | wuRY, = ujui, uR ! x* =xlu, x*RiSu = ux!
by expanding R = I + pr + O(p®) , (p = 8, h)

r is the classical r—matrix



Summary

We have exhibited a Hopf algebra structure underlying the
general Leigh—Strassler deformation

The SU(3) x U(1) R—symmetry of N’ = 4 is not broken, it is
g—deformed to A(R) x U(1)

This algebra appears to be a new deformation of SU(3)

This quantum symmetry appears at the level of the
classical Lagrangian

It is also a symmetry of the 1-loop spin chain Hamiltonian

Riotity = totyR12 = Raotity = titpRyp = (t2) 1 (t1) *Haatit = Hyp

It reduces to known structures: Quasitriangular Hopf for
integrable cases, star products at first order



Still Lots To Do

¢ Mathematical side

>

Better understanding of the algebra A(R)
(e.g. higher order relations)

» Classification of such algebras?
» Could A(R) be reformulated as a (non-associative)

quas i-Ho pf algebra? [Drinfel'd '89], [Mack, Schomerus '92]

» Add spectral parameter dependence?

Are there other integrable deformations?

e Physics side

vV vyVvyy

What happens at the quantum level?

Regularisation at higher loops

Construction of dual backgrounds

Is there a relation between perturbative finiteness and
guantum symmetry?



