# Beaming in AdS/CFT

[work in progress...]

Veronika Hubeny

Durham University

International Conference on Strings, M-Theory and Quantum Gravity
Monte Verita Ascona
July 27, 2010

### Motivation:

To further our understanding of the AdS/CFT dictionary. eg. recall UV/IR (scale/radius) duality:

\* statement of scale/radius duality:

bulk excitation at radial position z in AdS is manifested by CFT excitation on scale  $L \sim z$ 

[Susskind & Witten]

\* provides useful intuition:

eg. object falling into a black hole ↔

CFT excitation spreads and thermalizes

[Banks, Douglas, Horowitz, Martinec]

- \* tells when interaction is possible:
  - \* different-scale CFT excitations at same position don't interact (since in bulk dual, radially separated)
  - \* conversely, we'd expect that same-scale CFT excitations at same position do interact.



### Motivation:

To further our understanding of the AdS/CFT dictionary. eg. recall UV/IR (scale/radius) duality:

\* statement of scale/radius duality:

bulk excitation at radial position z in AdS is manifested by CFT excitation on scale  $L \sim z$ 

[Susskind & Witten]

\* provides useful intuition:

eg. object falling into a black hole ↔

CFT excitation spreads and thermalizes

[Banks, Douglas, Horowitz, Martinec]

- \* tells when interaction is possible:
  - \* different-scale CFT excitations at same position don't interact (since in bulk dual, radially separated)
  - \* conversely, we'd expect that same-scale CFT excitations at same position do interact.

     But the

- But this is not necessarily correct...

### Outline:

- \* Motivation

  revisiting the UV/IR relation

  counter-example to conventional expectations:
- \* Synchrotron radiation in AdS/CFT review of set-up puzzle
- \* Proposal for beaming mechanism expectations construction & tests
- \* Concluding remarks
  summary, outlook, caveats
  implications

### Synchrotron radiation in AdS/CFT

Recall work of Athanasiou, Chesler, Liu, Nickel, Rajagopal (1001:3880)

- \* Consider a quark in uniform circular motion in strongly coupled CFT; how does it radiate?
- \* dual to bulk string in AdS, ending on the quark;
- \* the string backreacts on the spacetime and induces nontrivial bdy stress tensor.

### Synchrotron radiation in AdS/CFT

Recall work of Athanasiou, Chesler, Liu, Nickel, Rajagopal (1001:3880)

\* Consider a quark in uniform circular motion in strongly coupled CFT; how does it radiate?

\* dual to bulk string in AdS, ending on the quark;

\* the string backreacts on the spacetime and induces

nontrivial bdy stress tensor.

#### Energy density on boundary:

- \* exhibits tightly-collimated beam (similar to synchrotron radiation)
- \* propagates radially outward at speed of light, indep. of quark vel. v
- \* despite the strong coupling, at T=0, radiation does not diffuse (though for T>0, radiation does thermalize).



### Synchrotron radiation in AdS/CFT

snapshot of boundary energy density taken from [ACLNR]



- \* spiral arms (peaks) retain same width and profile along full spiral
- \* peak spacing and width decreases with increasing quark velocity v

### Puzzle:

[ACLNR] emphasize that the CFT behavior is surprising: why doesn't the radiation propagating through strongly coupled medium diffuse?

i.e. why is  $T_{\mu\nu}$  sharply localized to arbitrary distances?

However, this seems just as bizarre from the bulk perspective:

consider metric perturbation  $h_{\mu\nu}$  due to string in AdS.

Why/how does  $h_{\mu\nu}$  remain so sharply localized, even when sourced deep in the bulk?

### Naive answer:

Since collimated beam in synchrotron radiation arises due to Lorentz beaming, it seems natural to expect that this effect also ensures localization of  $h_{\mu\nu}$ 

Indeed, string moves relativistically

(norm of transverse velocity of string  $\rightarrow$  1 as  $z \rightarrow \infty$  i.e. away from AdS bdy)

#### However:

- \* beaming along transverse velocity would point away from boundary
- \* for fixed beam angle, shadow on bdy would increase with depth of source

### Outline:

- \* Motivation revisiting the UV/IR relation
- \* Synchrotron radiation in AdS/CFT review of set-up puzzle
- \* Proposal for beaming mechanism expectations construction tests
- \* Concluding remarks

### Expectations for beaming mechanism:

\* Note: backreaction due to a null particle is given by a gravitational shock wave (GSW)

GSW has support on transverse null plane

\* Treat string as composed of relativistic point particles, each producing a GSW

assume transverse velocity is approx. = 1 ignore interaction between different bits of string

\* Superpose individual GSWs

the greatest backreaction of the string will be given by where the GSWs intersect (constructive interference)

Proposal: this gives qualitative features of backreaction.

### Gravitational shock wave (GSW)

\* given by generalizing Aichelburg-Sexl metric to AdS; construct via:

boosting BH w/ mass→0 & boost→∞ gluing 2 AdS spacetimes across null plane [Dray, 't Hooft; Horowitz, Itzhaki; Gubser, Pufu, Yarom; ...]

- \* GSW supported on null 'plane' transverse to spatial velocity
- \* profile of GSW:
  - \* singular on particle trajectory
  - \* polynomial falloff
  - \* e.g. for particle moving along  $y_+=0$ , GSW is:

$$ds^{2} = \frac{4 \eta_{\mu\nu} dy^{\mu} dy^{\nu}}{(1 - \eta_{\alpha\beta} y^{\alpha} y^{\beta})^{2}} + \delta(y_{+}) \frac{f(\rho)}{(1 + y_{+} y_{-} - \rho^{2})} dy_{+}^{2}$$

\* more general construction:
generate by spacelike transverse geodesics



$$y_{\pm} \equiv y_0 \pm y_1$$

$$\rho^2 = \sum_{i=2}^{d-1} y_i^2$$

### String transverse velocity

for quark moving with velocity v in a circle of radius Ro,

#### string profile for various v:

$$X^{M}(t,z) = (t, R(z), \frac{\pi}{2}, \phi(z) + \omega_{0}, z)$$

$$R(z) = \sqrt{R_0^2 + v^2 \gamma^2 z^2}$$

$$\phi(z) = -z \gamma \omega_0 + \arctan(z \gamma \omega_0)$$

#### transverse velocity of string:

$$V_{\perp}^{2}(z) = v^{2} \frac{1 + v^{2} \gamma^{4} z^{2} / R_{0}^{2}}{1 + v^{4} \gamma^{4} z^{2} / R_{0}^{2}}$$



Hence string is more relativistic deeper in the bulk.

Start with a string in AdS (at some time t).



Pick a point pi on the string parameterized by (t,z)



At pi, construct the transverse velocity  $\vec{V}_{\perp}$ 



Take normal vectors  $\mathbf{w}_i$  to the transverse velocity  $\vec{V}_{\perp}$ 



and construct spacelike geodesics emanating from  $p_i$  in the directions  $w_i$  (these generate the gravitational shock wave).



Finally, the dominant part comes from steepest geodesic to boundary, and lights up point po



Repeat with all points along the string...



### Results:

The bdy lightup induced by string would then look like:

- \* bdy T<sub>µV</sub> supported on a spiral
- \* spiral arms scale linearly:

$$R(\phi) \sim \phi$$

\* spacing L depends on v as:

$$L = \frac{2\pi R_0}{v}$$



\* spiral arms move outward at speed of light (independently of quark velocity v).

### Results:

superposition of GSWs gives finite-width spiral:

- \* each GSW = circle
- \* combined effect = spiral
- \* finite width emerges
  naturally from superposition
- \* width and arm separation depends on v

e.g. for v=1/2:



### Results:

Spiral width decreases with increasing velocity:



In complete qualitative agreement with results of [ACLNR]

## Summary:

Assumption that backreaction of string is given by  $\{GSW\}$  (= superposition of gravitational shock waves) from individual string bits reproduces [ACLNR]'s observed features of spatial distribution of boundary  $T_{\mu\nu}$ :

- \* correct spiral shape

  spiral arms radius grows linearly with azimuthal angle

  separation between spiral arms scales inversely with quark velocity

  width of spiral arms decreases with quark velocity
- \* correct time-dependence
  `radiation' propagates radially outward at speed of light

## Summary:

Assumption that backreaction of string is given by  $\{GSW\}$  (= superposition of gravitational shock waves) from individual string bits reproduces [ACLNR]'s observed features of spatial distribution of boundary  $T_{\mu\nu}$ :

- \* correct spiral shape

  spiral arms radius grows linearly with azimuthal angle

  separation between spiral arms scales inversely with quark velocity

  width of spiral arms decreases with quark velocity
- \* correct time-dependence
  `radiation' propagates radially outward at speed of light

So this is promising as a possible beaming mechanism.

### Outlook:

Albeit encouraging, more still remains to be checked:

\* correct energy density radial profile?

details of peak profile

falloff with r

radial dependence of boundary energy density taken from [ACLNR]



\* correct dependence on inclination angle  $\theta$ ?

### Caveats:

In general, we should not expect precise agreement with {GSW} predictions, since

- \* near bdy, string need not move relativistically hence central part of spiral is not trustworthy
- \* GSWs need not superpose linearly this may modify the spiral peak profile
- \* there are interactions between string bits
  e.g. for 4-d straight string, the tension cancels energy density, so string
  only produces conical deficit

It would be useful to characterize to what extent is the {GSW} a good approximation in a given setup.

# Implications:

- \* Useful calculational method: far easier to compute {GSW} than full backreaction of string (i.e. solving linearized E.eq. for bulk stress tensor)
- \* Allows better geometrical understanding in other situations
  - \* thermalization of synchrotron radiation at non-zero temperature
  - \* diffusion wake (& sonic boom) of a moving quark [Yaffe, Chesler; Gubser, Yarom; ...]
- \* observable effects for e.g. cosmic strings?

  not discussed in literature (more pronounced in higher dimensions)
- \* new insight into (violations of) scale/radius duality beaming of deep-bulk excitations towards AdS boundary