Unitarity and Holography in Gravitational Physics

Don Marolf 7/27/2010 UCSB

ane.

arXiv: 0808.2842 & 0808.2845

- Reconcile known gravitational physics with the suggested Unitary of Black Hole Evaporation
- Explain AdS/CFT from a bulk (gravitational) perspective

Main Tool:

 H_{ADM} is a pure boundary term on shell.

Approach:

Derive properties of classical GR which, if true in the quantum theory, would (largely?) achieve these goals.

Info "Paradox" in a Nutshell

Hawking radiation forms outside the black hole. evaporates.

But string theory, AdS/CFT, BH pair production, & other arguments suggest that this radiation should carry the info away when the black hole

Can this tension be resolved? How could the info be transferred to the Hawking radiation?

Info is carried deep inside the black hole.

New non-locality or causality violation? 1)

Infalling info is "stored" outside?

Rough Summary of Claim:

The gravitational constraints relate operators that might a priori seem different. In particular, they allow info to be "stored" in an algebra of observables associated with both the Coulomb tail of the gravitational field and propagating d.o.f. at infinity.

Familiar example: M is encoded in the gravitational flux through i⁰. [Just Coulomb Part]

Claim: With both parts, the algebra of distant observables encodes "all" info. From there, it can be transferred to the Hawking radiation.

Precise statements will follow for various boundary conditions, using the fact that H_{ADM} is a pure boundary term (on shell).

Precise Claims:

I. Classical GR w/ AdS Boundary Conditions

Claim a) "Ads Boundary Unitarity:"

In the full theory, a cosmic censorship-like hypothesis implies that

 $A_{Bndy Obs}(t_2) = A_{Bndy Obs}(t_1)$, for all t_1, t_2

Claim b) "Ads Perturbative Holography:"

At any order n > 1 of pert. theory (i.e., where Gauss' law is non-trivial) *about a collapsing black hole background*,

 $A_{\text{Pert Obs}}(all t) = A_{\text{Pert Bndy Obs}}(t_1)$, for any t_1

Precise Claims:

II. Classical GR w/ As. Flat Boundary Conditions

"As. Flat Perturbative Holography:"

At any order n > 1 of pert. theory (i.e., where Gauss' law is non-trivial) about a collapsing black hole background,

 $A_{Pert Obs} = A_{Pert Obs}$ (i⁰ and early I⁺: u < u₀)

Again, a corresponding property in the (full) quantum theory would provide a mechanism for information to be "stored" outside the black hole and transferred to the Hawking radiation. 0

90ab

Outline

- 1. Intro done!
- Review of AdS Asymptotics
 & Bndy Observables.
- 3. AdS Boundary Unitarity
- 4. A physical example
- 5. AdS Pert Holography
- 6. Comments on As Flat and BH evap.
- 7. Appendix: As Flat argument

Background: AdS_D asymptotics and boundary observables

- Use EOMs to expand fields in asymptotic series.
- 2^{nd} order equations $\implies 2^{nd}$ order recursion
 - 2 independent pieces of data (up to gauge):
 ``Dirichlet & Neumann"

AdS

Which diffeos are gauge?

- Expect fall-off faster than isometries.
- I.e., vanish at Bndy of conformal compactification $\implies g_{ij}^{(0)}$ is gauge invariant

Indeed, standard boundary conditions fix $g_{ij}^{(0)}$, even up to diffeos.

Similar for scalars. Say, fix ϕ_D .

To preserve BCs, gauge trans must fall of faster. 🕚

Pick a point x on the bndy. Any component in the FG expansion at x defines an observable. (FG fixes gauge for z, no reason to fix gauge for x.)

AdS₁

 $T_{ij}(x)$, $\phi_N(x)$ are "Boundary Observables"

Ia. "Boundary Unitarity"

Simple case: Assume $g_{ij}^{(0)}$ has time-trans sym

1. "Boundary Fields" form a natural set of *observables*.

Let $A_{bndy obs}(t)$ = On-shell Poisson/Peierls algebra of bndy observables [generated by ϕ_N , T_{ij}] at time t

2. Construct the Hamiltonian:

H=H(t) is a pure boundary term on-shell.

```
H = H(t) \mathbb{M} A_{bndy obs}(t)
[weak equivalence, or action on physical phase space.]
```

E.g., for above BCs fixing $g^{(0)}_{ij}$ and ϕ_D =0, find

with $\xi = \partial_t$ and \underline{n}^i = normal to t= constant cut of boundary.

 $H(t) := \int_{Bndy Cut w/t=const} T_{ij} \xi^{i} \underline{n}^{i} dA$

Ia. "Boundary Unitarity,"

 $H = H(t) \mathbb{M} A_{bndy obs}(t)$

E.g.,
$$H:= \int_{t=const} T_{ij} \xi^{i} \underline{n}^{i} dA$$

Note: For any *observable* O,

 $\partial_{\dagger} \mathcal{O}(\dagger) = -i [\mathcal{O}(\dagger), H]$

3. Suppose * that we can exponentiate H to define $e^{iH \Delta t}$ as an operator on boundary observables

Then, $\mathcal{O}(\mathbf{t}_2) = e^{-iH\Delta t} \mathcal{O}(\mathbf{t}_1) e^{iH\Delta t}$

I.e., expresses any Bndy Obs at t_2 in terms of Bndy Fields ϕ_N , T_{ij} , at any other t_1 .

 $A_{bndy obs}(t_1) = A_{bndy obs}(t_2)$ In QM, information present on the Bndy at any one time t_1 remains present at any other time t_2 .

If no sym, use $\mathscr{P}exp$. Just like Q.M. w/ t-dep Hamiltonian.

Comment on Assumption:

For any observable \mathfrak{O} , $\partial_{\dagger}\mathfrak{O}(\dagger) = -i [\mathfrak{O}(\dagger), H(\dagger)]$

3. Suppose * that we can exponentiate H(t) to define

$$U(t_1, t_2) = \mathcal{P} \exp\left(-i \int_{t_1}^{t_2} H(t) dt\right) \implies \mathsf{A}_{\mathsf{bndy obs}}(\mathsf{t}_1) = \mathsf{A}_{\mathsf{bndy obs}}(\mathsf{t}_2)$$

Classical Interpretation on space of smooth metrics:

Assumes long-time existence of solutions to EOMs, at least in some neighborhood of the Bndy.

I.e., form of "Cosmic Censorship."

QM interpretation:

Assumes quantum Hamiltonian can still be built from ϕ_N , T_{ij}, but that Quantum Gravity "resolves any Classical failures of cosmic censorship".

Finite

Cylinder

t=0

Appears consistent w/ S.T. and LQG.

Note: U is Unitary if H is self-adjoint on some Hilbert space. But info is conserved so long as $U(t_1,t_2)$ exists.

Interpretation:

Classical Level:

Note that Poisson/Peierls algebra of Bndy Observables is much larger than commutative algebra generated by addition and multiplication.

No real implications for information. E.g., measuring J_x and J_y need not classically tell you anything about J_z .

Quantum Level: Only one algebra!

Correlators of J_x , J_y determine correlators of J_z .

<u>A "physical" Example</u>

†₂

Suppose that the Green "super- observer" has access to an ensemble of AdS spaces, all prepared the same way.

[I.e., first observer made the same choice for each.]

To find out what was thrown in earlier, at time t_2 the Green observer:

1. Carefully measures the energy of each system,

- 2. Looks for red or blue particles near infinity at time t_2 (O(t_2)),
- 3. Carefully measures each energy again, and
- 4. Performs a certain interference experiment.

Use this to compute (for all E,λ,E'):

 $f(E,\lambda,E') = \langle \psi | \mathcal{P}_{H=E} \mathcal{P}_{O(t_2)=\lambda} \mathcal{P}_{H=E'} | \psi \rangle$

<u>A "physical" Example</u>

†₂

Now compute the probability distribution for $O(t_1)$ via

 $\begin{aligned} \langle \psi | \mathcal{P}_{O(t_1)=\lambda} | \psi \rangle &= \langle \psi | e^{-iH(t_1-t_2)} \mathcal{P}_{O(t_2)=\lambda} e^{iH(t_1-t_2)} | \psi \rangle \\ &= \int dE dE' f(E,\lambda,E') e^{-i(E-E')(t_1-t_2)} \end{aligned}$

Carefully measures the energy of each system,

- 2. Looks for red or blue particles near infinity at time t_2 ,
- 3. Carefully measures each energy again, and
- 4. Performs a certain interference experiment.

Use this to compute (for all E, λ ,E'):

 $f(E,\lambda,E') = \langle \psi | \mathcal{P}_{H=E} \mathcal{P}_{O(t_2)=\lambda} \mathcal{P}_{H=E'} | \psi \rangle$

Ib. AdS Perturbative Holography

Summary of Above: Any info ever present in the Bndy Fields remains encoded in Bndy Fields.

Q: Is this everything? Or is there more info "in the bulk."

A: Maybe, but not in perturbation theory.

Consider perturbation theory abt some classical solution which is largely empty before t=0.

(Though need not remain empty for time-dep BCs. E.g., can make a black hole.)

At linearized level, any h_{ab} , ϕ can be written (up to gauge) in terms of Bndy observables at early times by solving EOMs. (Related to Holmgren's Uniqueness Thm.)

Remains true at any order in perturbation theory.

Ib. AdS Perturbative Holography

So, *any* perturbative observable can be written in terms of Bndy Observables at early times by solving EOMs.

A_{All Pert Obs} = A_{Bndy Obs}(all t < 0)

Not holography, just solving EOMs.

But in *gravity*, at any order beyond the linearized theory, the Hamiltonian can again be written as a boundary term!

(I.e., Gauss' Law gives a useful measure of the energy.)

"Perturbative Holography"

Apply Above Bndy Unitarity Argument

 $A_{Bndy Obs}$ (all t < 0) = $A_{Bndy Obs}$ (any single t)

A_{All Pert Obs} = A_{Bndy Obs}(any single t)

Comments on As Flat case

1. Perturbative Holography:

Consider a collapsing black hole background g_{0ab} in pure Einstein-Hilbert gravity.

Claim: A complete set of perturbative observables is available on I⁺ in any neighborhood of i⁰.

2. *Suggests* Unitary S-matrix, with info imprinted in Hawking radiation (next slide).

Basic Mechanism: Constraints and local energy conservation!

Cartoon of BH evaporation

Info is carried

the black hole.

deep inside

Suppose physics far from strong • coupling region is essentially perturbative.

Then perturbative holography implies that all info is encoded in asymptotic fields g_{ab} , especially H_{ADM} .

Strong

Curvature

Cartoon of Black Hole Evaporation 2

But constraints relate H_{ADM} to $T^{Hawking}_{ab}$ and a surface term "Gauss Law Grav. Flux" Φ_{H} at the horizon.

 $H_{ADM} - \Phi_{H}(h) \sim \int_{\Sigma} T_{ab}(h)$

Info shared between Φ_H and T_{ab} .

Info carried inside by infalling matter.

Note that $\Phi_{H}(h) \rightarrow 0$ as BH evaporates. Assume finite density of states for Φ_{H} . \Rightarrow info transferred *locally* to T_{ab} .

Indeed, once evaporation is complete, constraint implies $H_{ADM} \sim \int_{\Sigma} T_{ab}(h)$.

I.e., info fully transferred to Hawking radiation.

Summary:

- At the classical level, Perturbative Holography & (for AdS) Bndy Unitarity follow from gravitational constraints, gauge invariance, and a form of Cosmic Censorship.
- 2. Info is stored in asymptotic local fields, and throughout BH exterior.
- If these properties also hold in the quantum theory, info can be transferred to Hawking rad via constraints and (local)
 Energy conservation.

No new causality violation or non-locality required.

AdS

Perturbative As. Flat gravity is holographic

Claim: A complete set of observables is available on I^+ in any neighborhood of i^0 .

Strategy: Consider a collapsing black hole background g_{0ab} in pure Einstein-Hilbert gravity.

Fix a Coulomb-like gauge and show that *every* operator can be rewritten as an operator on I^+ near i^o using equations of motion expanded to *any* order n \geq 2.

Enough to show this for every operator on I⁻.

Recall: In full theory, H is a boundary term at i^0 .

0

90ab

Perturbative As. Flat gravity is holographic

Claim: A complete set of observables is available on I^- in any neighborhood of i^0 .

$$H = \frac{1}{2\kappa^2} \int_C dA (r^a P^{bc} D_b - r^b P^{ac} D_b) g_{ac} =: \Phi$$

where r^{a} , P^{bc} , D_{b} are defined by η_{ab} . I.e., *linear* in g_{ac} . No explicit corrections past n = 1.

$$0 = \mathcal{H} = \pi^{ij}\pi_{ij} - \frac{1}{2}\pi^2 - {}^3R \cdot$$

Interactions are small near I⁻. So write:

$$g_{ab} = g_{0ab} + h_{ab} = \eta_{ab} + h_{0ab} + h_{ab}$$
• Translates h+h₀
For n ≥ 2, find:
$$\Phi = \int_{I_{-}} \sqrt{q} t^{a} k^{b} T_{ab}^{lin}(h + h_{0})$$
• Operator @ i⁰

ω

0

90ab

Perturbative As. Flat gravity is holographic

Claim: A complete set of observables is available on I⁻ in any neighborhood of i⁰.

Consider $h_{ab}(v_1)$ on I^- .

Translate to v_2 in distant *past* using Φ and $h_{Oab}(v_2)$ - $h_{Oab}(v_1)$.

Now, evolve to I⁺ using perturbative EOMS. Find operator approximately supported near u_2 .

Invert to write $h_{ab}(v_2) \cong$ operator in $U(u_2) \subset I^+$. Also for $h_{ab}(v_1)$.

Take limit $v_2 \implies i^-$. • Errors $\implies 0$. • $I I' u_2$) collapses to i^0 . $\Phi = \int_{I^-} \sqrt{q} t^a k^b T_{ab}^{lin}(h+h_0)$

 $U(u_2)$

T-

90a

 V_2