
1 2 3 4 5a 5b 5c 6 7 8a 8b 9 10 11 12 13 A B C F

Non-perturbative strings from automorphic forms

Bengt E.W. Nilsson
Chalmers University of Technology, Göteborg

Talk at the International Conference on
"Strings, M-theory and Quantum Gravity"

Ascona, July 25-29, 2010

Talk based on:

two papers with Ling Bao, Axel Kleinschmidt, Daniel Persson and Boris Pioline:

“Instanton Corrections to the Universal Hypermultiplet and Automorphic Forms on
SU(2,1)”
arXiv:0909.4299 [hep-th] in CNTP (Comm. in Number Theory and Physics)

"Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons"
arXiv:1005.4848 [hep-th]

Non-perturbative strings from automorphic forms Bengt E.W. Nilsson, Chalmers



1 2 3 4 5a 5b 5c 6 7 8a 8b 9 10 11 12 13 A B C F

Introduction and Content

Introduction:

In QFT perturbative and non-perturbative (instanton) corrections
are calculated one by one.

In string theory there are organizing principles giving such
corrections summed up into closed functions so called
automorphic functions! [Green, Gutperle]

Such principles stem in string/M theory from the appearance of
double cosets G(Z)\G/K.

Here we discuss various implications for the string effective action:

exact dependence on moduli of certain higher derivative terms
(some comments)

at the two-derivative level, an example of a sigma model with all
possible quantum corrections included (our work)
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Higher derivative terms

Moduli dependence of higher derivative terms:
in type IIB 10d with τ = χ+ ie−φ [Green, Gutperle, Russo, Vanhove]

E3/2(τ)R4: two "constant terms" (i.e. perturbative)

E5/2(τ)∂4R4: two "constant terms"

E
(10)
(0,1)(τ)∂6R4: inhomogeneous "Eisenstein" giving four

"constant terms" plus other "constant" terms

∂nR4 with n = 8 and higher: no results like these!

After comp to lower dimensions: limits to one higher spacetime
dimension, pert string and M-theory limits can be obtained using
a slight variation of the construction of these Eisenstein
functions. [Pioline], [Green, Russo, Vanhove, Miller]
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Our approach

An example of a non-trivial exact sigma model: UHM

Consider 4d supergravity theories with 2 supersymmetries
obtained from the type IIA superstring compactified on
Calabi-Yau 3-folds (CY3).

Restrict to rigid CY3 and derive the relevant function, i.e. the
Eisenstein series, for the universal hypermultiplet.

Fourier expand this function and compare the result to the
structure of the various types of known perturbative and
non-perturbative quantum corrections.

This will involve NS5 brane instanton contributions which are
complicated and poorly understood in this context (for some
recent results in IIA see [Persson, Pioline]).
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Type II supergravity on CY3: common sector

Compactification on a CY3 gives N = 2 supergravity in 4d!
Start from low-energy type IIA and IIB supergravity in 10d:
the bosonic sector

NS-NS sector common to both cases: gMN , BMN , φ

The Hodge numbers h0,0 = 1, h1,1 ≥ 1, h2,1 ≥ 0, h3,0 = 1
imply the following massless fields in four dimensions:

gµν , gi j (2h2,1 scalars), gi j̄ (h1,1 scalars)
Bµν , Bi j̄ (h1,1 scalars): Note that Bµν will be dualized to ψ.
φ
no isometries means h1,0 = 0 and thus no vectors in this sector
also h2,0 = 0 means no massless fields from Bi j

Summary: the NS-NS sector provides in 4d Minkowski
one metric and two scalar (φ, ψ)
plus 2h2,1 + 2h1,1 scalars, i.e. the geometric moduli of CY3
(with the Kahler ones complexified)
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Type II supergravity on CY3: the IIA RR sector

Additional physical moduli from embedding CY3 in supergravity:
R-R sector type IIA: CM, CMNP give in 4d

Cµ (one graviphoton from h0,0 = 1)
Cµ i j̄ (h1,1 vectors)
Ci j k̄ (2h2,1 scalars)
Ci j k (2 scalars from h3,0 = 1)–>denoted χ and χ̃

Summary of N = 2 multiplets in type IIA:
one graviton multiplet
one tensor mult. = the univ. hypermult. (UHM): φ, ψ, χ and χ̃
h1,1 vector multiplets
h2,1 hypermultiplets

=> Moduli space: MA = MVM
A (2h1,1)×MHM

A (4h2,1 + 4)

which is a product up to discrete groups (follows from susy and
holonomy arguments, see e.g. [Aspinwall])
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Type II supergravity on CY3: the IIB RR sector

Similar statements true for type IIB:
R-R sector type IIB: C, CMN , C+

MNPQ give in 4d
C (one scalar)
Cµν (one tensor), Ci j̄ (h1,1 scalars)
Cµν i j̄ (h1,1 scalars), Cµ i j k̄ (2h2,1 vectors),
Cµ i j k (h3,0 = 1 vector, not 2 since selfdual),
Ci j k̄ l̄ (h2,2 scalars, but not counted due to selfduality)

Summary type IIB:
one graviton multiplet, one tensor multiplet (UHM)
h2,1 vector multiplets, h1,1 hypermultiplets

=> Moduli space: MB = MVM
B (2h2,1)×MHM

B (4h1,1 + 4)
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Comments

Comments:
The moduli spaces are in general complicated: N = 2 susy not
enough to make them coset spaces, but we know that

MVM is a 2n-dimensional special Kahler (SK) space which is
Kahler
MHM is a 4n-dimensional quaternionic-Kahler (QK) space which
is NOT Kahler in general

torus compactifications give more susy and moduli spaces which
are coset spaces (see e.g. [Aspinwall])

Simplifications arise if we consider rigid CY3’s:
[Cecotti, Ferrara, Girardello]

They have h2,1 = 0
There are a number of examples of such CY3’s (see e.g. [Yui])
Type IIA case gives then MUHM

A = SU(2, 1)/(SU(2)× U(1))

This is the case we will study here:
MUHM

A is homogeneous and Kahler, a nice exception!
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Effective actions

In the effective action the metric on MUHM

in perturbation theory is known to have corrections only at
one-loop
[Antoniadis et al],[Strominger] [Anguelova, Rocek, Vandoren]

non-perturbative corrections are due to D2- and NS5-brane
instantons [Becker, Becker, Strominger]

Compare to the D(-1) instanton corrections to IIB in 10d
[Green, Gutperle]

the relevant double coset is SL(2; Z)\SL(2,R)/U(1)

the R4 is multiplied by the non-holomorphic Eisenstein series
Es(τ, τ̄) = Σ′(m,n)

(Imτ)s

|m+τn|2s , with s = 3
2

the instanton action is Sp=mn
D(−1) = 2π|mn|e−φ − 2πimnC0

it has two "constant terms" (tree and 1-loop)
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Instanton corrected Type IIA supergravity on rigid CY3

The non-perturbative type IIA effective action in 4d on a rigid CY3
depends on

the double coset SU(2, 1; Z[i])\SU(2, 1)/(SU(2)× U(1)) where
the gaussian integers Z[i] = m + in, with m, n integers,

and an associated Eisenstein function living on this double coset
(the fundamental domain= moduli space).

Note:
the assumption that SU(2, 1; Z[i]) is the correct discrete group is
based on:

the non-abelian Heisenberg group of SU(2, 1) is known to be
relevant [Becker, Becker]
electric-magnetic duality [Becker, Becker]
the assumption that SL(2,Z) is a subgroup acting on χ+ ie−φ
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Instanton corrected Type IIA supergravity on rigid CY3

A complication:
The quantum corrected σ-model metric is no longer homogeneous
and Kahler!
How do we determine its exact metric when it is not Kahler but only
quaternionic?

Use the twistor space ZMUHM which is Kahler and project back to
MUHM [Alexandrov, Pioline, et al]

Back to our problem:
Given the double coset the Eisenstein function can be obtained

as a Poincare series,

from an adelic construction and spherical vectors,

or —>
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Construction of the Eisenstein function

Given a double coset there is a standard way to get the Eisenstein
function [Obers, Pioline] applied here to the UHM:

Es(K) := Σ′ω†·η·ω=0(ω† ·K · ω)−s

ω is a non-zero 3-dim vector of gaussian integers Z[i]
K is the metric on the coset SU(2, 1)/(SU(2)× U(1)) obtained
from the Iwasawa decomposition of SU(2, 1): K̃ = ν̃ν̃† = K− η
the constraint on the summation is needed to make the Eisenstein
series an eigenfunction of the Laplace operator on the coset space
the coset is similar to the upper half plane SL(2,R)/U(1) with a
metric involving Im(τ) > 0: here we have R3 x R+ denoted CH2

with a metric involving F(z1, z2) = Im(z1)− 1
2 |z2|2 > 0

z1, z2 are related to the UHM fields φ, ψ, χ, χ̃
it has also zero third Casimir => in the principle discrete series of
SU(2, 1) (see [Bars, Teng])
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Fourier expansion of the Eisenstein function: tree level

Dividing the lattice summation (over six integers) into sectors =>
Es = Econst

s + Eabelian
s + Enon−abelian

s which for s = 3/2:
Econst

s (φ) = the tree and 1-loop terms
Eabelian

s (φ, χ, χ̄): encodes D2-brane instantons
Enon−abelian

s (φ, χ, χ̄, ψ): encodes NS5-brane instantons
and bound states with D2-brane instantons

This sum of terms is obtained by first doing the ω3 = 0 part of
the sum over six integers not all zero, which means summing
only over ω1 since the constraint sets also ω2 = 0 =>

the tree level term equals 4ζQ[i](s)e−2sφ, where ζ is the Dedekind
zeta function 1

4Σ′(m,n)
1

(m2+n2)s

the relevant value is s = 3
2 so the corrections enter via eφEs
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Fourier expansion of the Eisenstein function: the
perturbative term at one loop

The structure of the perturbative terms and Langlands functional
relation: Turning to the terms with ω3 non-zero

we need to solve the constraint n2
1 + n2

2 + 2m1p2 − 2m2p1 = 0:
use Bezout’s identity m1p2 − m2p1 = d
(for which solutions mi exist only if d = gcd(p1, p2))
solving the constraint expresses m1,m2 in terms of m, d
after a Poisson resummation in m–> m̃ the non-abelian term
comes from the sum with m̃ non-zero
the m̃ = 0 then needs another resummation involving n1, n2
which produces two new integers l1, l2 to sum over:
First: l1, l2 both zero

provides the second constant term i.e. the one-loop term:
4ζQ[i](s)Z(2−s)

Z(s) e−2(2−s)Φ

with s = 3
2 we get e(−φ) and thus no φ dependence in eφEs
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Fourier expansion of the Eisenstein function: the
non-perturbative terms

Secondly: l1, l2 not both zero: the abelian non-perturbative
terms:
e−2φ∑′

(`1,`2)∈Z2 C(A)
`1,`2

(s) K2s−2

(
2πe−φ

√
`2

1 + `2
2

)
e−2πi(`1χ+`2χ̃)

encodes the effects of D2-brane instantons with charges (l1, l2)
expanding the Bessel function at weak coupling gives the
D-brane instanton action
computing the coefficients C gives instanton measures involving
double sums over gaussian divisors which generalize previously
found D2 single sum instanton measures

the non-abelian terms involve Hermite and Whittaker functions
([Ishikawa]) and are much more complicated due to the
non-abelian structure of the Heisenberg group (ψ gives a twisted
bundle over χ, χ̃ which can be seen from the σ-model metric)
the NS5 brane instanton measures are not yet understood
expanding these functions now gives NS5 brane instanton actions
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Summary so far

Langlands functional relation: supported by the constant and
abelian terms

Z(s)Ps = Z(2− s)P2−s

where Z(s) := ζQ(i)∗(s)β∗(2s− 1)
where the first factor is the completed Dedekind zeta function and
the second is the completed Dirichlet beta function (like the
Riemann zeta function but with alternating sum only over odd
integers)
and Es(K) = 4ζQ(i)(s)Ps(Z)

NS5 instanton action:
Sk,q = 2π(|k|e−2φ + 2|k|

(
χ̃− n

)2 − iqχ+ 2ik(ψ + χχ̃))

the abelian measure: µs(`1, `2) =
∑

ω′
3|Λ
|ω′3|2−2s∑

z| Λ
ω′

3

|z|4−4s

where the first sum is over primitive gaussian divisors and the
second over all gaussian divisors
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Generalization to other kinds of integers

The results so far can be related via the c-map to the prepotential

F(X)=τX2/2

for τ = i. This leads to gaussian integers which can be generalized to
any quadratic imaginary integers in the Stark-Heegner sequence:

d=1,2,3,7,11,19,43,67,163

which are the only cases having a unique factorization into integers.
The related complex multiplication property stems from the metric

ds2 = dφ2 + 1
2 e2φ |dζ + ωddζ̃|

Im(ωd)
+

1
4

e4φ(dσ − ζ̃dζ + ζdζ̃)2

which leads to sums over numbers m + ωdn, with m, n ordinary
integers.
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L-series and Multiplicativity

To form L-functions one needs a series of numbers which are either
"absolutely multiplicative" or just "multiplicative": multiplicative
means that the series N(n) satisfies

N(p)N(q) = N(pq) (1)

for all coprimes p and q. If valid for all integers p,q then N(n) is
absolutely multiplicative. An example is the usual Dirichlet series, for
N(n) absolutely multiplicative

Φ(s) = Σ∞n=1N(n)N−s = Πp(N(pn)p−ns) = Πp
1

1− N(n)p−s (2)

where the sum is over all primes p.
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L-series and Multiplicativity: the second constant term

To get the second perturbative term one must compute the number
N(d) of solutions (n1, n2) of n2

1 + n2
2 = 0 mod(2d) both positive and

n1 < d, n2 < 2d: N(d) is multiplicative and the relevant sum gives

L(N, s) = Σ∞d=1N(d)d−s =
1

1− s1−s Πp1

1− p−s

(1− p1−s)2 Πp2

1 + p−s

(1− p1−s)(1 + p1−s)
(3)

where the products are over primes p1 = 1mod4 and p2 = 3mod4.
Then

L(N, s) =
β(s− 1)ζ(s− 1)

β(s)
(4)

Functional equations for completed functions like

β∗(s) = β∗(1− s) (5)

will then appear!
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Conclusions

This has been an exercise in

constructing Eisenstein functions

Fourier expanding them

extracting the physical information contained in them

For the UHM we are probably on the right track but not there yet!

Thanks for your attention!
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