CFT description of the self-dual orbifold Balasubramanian, Parsons & SFR

Simon Ross

Centre for Particle Theory, Durham University

Monte Verita 29 July 2010

Outline

- Motivation: laboratory for studying AdS₂
- Review of self-dual orbifold spacetime
- Two boundaries: entangled state
- Boundary conditions
- Asymptotically SDO geometries?
- Conclusions

Motivation

- AdS₂ is everywhere:
 - Generic near-horizon geometry of extremal black hole—entropy function formalism.
 - AdS₂ in near-horizon of Reissner-Nordström AdS used to describe non-Fermi liquids.
 - Kerr/CFT.
- Some puzzles:
 - ▶ Nature of dual CFT? 0+1? 1+1 chiral theory?
 - ► Geometry has two boundaries, causally connected through bulk.
 - No asymptotically AdS₂ spacetimes?

Self-dual orbifold is a quotient of AdS_3 , circle fibration over AdS_2 . Simple context to address these issues.

Balasubramanian Naqvi Simon Balasubramanian de Boer Sheikh-Jabbari Simon

Quotient of AdS₃ by $\xi = J_{02} + J_{13}$. $\|\xi\|^2 = 1$. $SL(2,\mathbb{R}) \times U(1)$ isometries. Define adapted coordinates:

$$\begin{split} U+X &= \frac{1}{\sqrt{2}} e^{\phi} \big(e^z \cos t - e^{-z} \sin t \big) = e^{r+u}, \\ U-X &= \frac{1}{\sqrt{2}} e^{-\phi} \big(e^{-z} \cos t - e^z \sin t \big) = \frac{1}{2} \big(e^{-r-u} + 2ve^{r-u} \big), \\ V+Y &= \frac{1}{\sqrt{2}} e^{\phi} \big(e^{-z} \cos t + e^z \sin t \big) = \frac{1}{2} \big(e^{-r+u} - 2ve^{r+u} \big), \\ V-Y &= \frac{1}{\sqrt{2}} e^{-\phi} \big(e^z \cos t + e^{-z} \sin t \big) = e^{r-u}. \end{split}$$

In these coordinates, $\xi=\partial_\phi=\partial_u$. AdS₃ metric is

$$ds^2 = -\cosh^2 2zdt^2 + dz^2 + (d\phi + \sinh 2zdt)^2$$

and

$$ds^{2} = -e^{4r}dv^{2} + dr^{2} + (du + e^{2r}dv)^{2}.$$

 (t, ϕ, z) global; (u, v, r) are like Poincare coordinates.

Simon Ross (Durham)

CFT desc of SDO

Review of SDO: Boundary geometry

Boundary is at $z \to \pm \infty$.

On boundary, (t, ϕ) are null coordinates; boundary metric $\tilde{ds}^2 = -2dtd\phi$. Related to usual global coordinates on AdS₃ (τ, θ) by

$$\tan(\tau - \theta) = \mp \frac{1}{\sinh 2\phi}, \quad \tan(\tau + \theta) = \tan 2t.$$

 $\phi \to \pm \infty$ corresponds to $\tau - \theta = 0, \pi.$ These lines divide the boundary into two strips, corresponding to $z = \pm \infty.$

Boundary two null cylinders

In (u, v, r) coordinates, boundary at $r \to \infty$, $\tilde{ds}^2 = -2 du dv$. This covers the $z = \infty$ boundary for $t \in (-\pi/2, \pi/2)$.

 Simon Ross (Durham)
 CFT desc of SDO
 29 July 2010
 5 / 19

From extremal BTZ black hole

$$ds^2 = -\frac{(r^2 - r_+^2)^2}{r^2}dt^2 + \frac{r^2}{(r^2 - r_+^2)^2}dr^2 + r^2(d\phi - \frac{r_+^2}{r^2}dt)^2,$$

define coordinates $u=r_+(t-\phi)$, $v=\frac{\epsilon}{2r_+}(t+\phi)$, $r^2-r_+^2=\epsilon e^{2r'}$. The limit $\epsilon\to 0$ gives SDO.

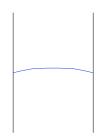
- Obtain CFT dual of SDO from CFT dual of BTZ;
 - ▶ BTZ: CFT on spacelike cylinder, state $T_R = 0$, $T_L = r_+/2\pi$
 - Near-horizon limit involves infinite boost: DLCQ
 - \blacktriangleright Chiral 1+1 CFT on null cylinder, thermal state for surviving sector.
 - ▶ Unlike Kerr-CFT, different *J* are states in a single CFT.
- Can also see DLCQ in quotient picture: u is spacelike at finite r, becomes null as we remove UV cutoff.

Note these coordinates only see one boundary.

6 / 19

Spacetime has two boundaries, which are causally connected. Is the dual a single CFT, or two copies on the two boundaries?

Spacetime has two boundaries, which are causally connected. Is the dual a single CFT, or two copies on the two boundaries?



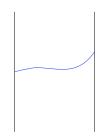
- Bulk time translation gives two independent Hamiltonians.
- However, causal connection ⇒ translating spacelike surface in bulk can't generate independent time-translations by arbitrary amounts.
- Spatial connection implies $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \neq 0$, obtained from entanglement. van Raamsdonk

Spacetime has two boundaries, which are causally connected. Is the dual a single CFT, or two copies on the two boundaries?



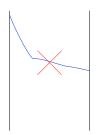
- Bulk time translation gives two independent Hamiltonians.
- However, causal connection ⇒ translating spacelike surface in bulk can't generate independent time-translations by arbitrary amounts.
- Spatial connection implies $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \neq 0$, obtained from entanglement. van Raamsdonk

Spacetime has two boundaries, which are causally connected. Is the dual a single CFT, or two copies on the two boundaries?



- Bulk time translation gives two independent Hamiltonians.
- However, causal connection ⇒ translating spacelike surface in bulk can't generate independent time-translations by arbitrary amounts.
- Spatial connection implies $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \neq 0$, obtained from entanglement. van Raamsdonk

Spacetime has two boundaries, which are causally connected. Is the dual a single CFT, or two copies on the two boundaries?



- Bulk time translation gives two independent Hamiltonians.
- However, causal connection ⇒ translating spacelike surface in bulk can't generate independent time-translations by arbitrary amounts.
- Spatial connection implies $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \neq 0$, obtained from entanglement. van Raamsdonk

AdS₃ in SDO coordinates

Consider usual AdS₃/CFT₂ duality in this coordinate system:

- Coordinate transformation is conformal transformation on boundary; maps $\mathbb{R} \times S^1$ boundary to two $\mathbb{R}^{1,1}$ regions.
- Indeed have independent dof in the two regions. Entanglement:
 - ▶ Toy model: free scalar field on $\mathbb{R} \times S^1$. Vacuum wrt Poincare time is an entangled state wrt u, v coords,

$$|0\rangle = e^{-i\int_0^\infty d\omega e^{-\pi\omega}b_{\omega,l}^{1\dagger}b_{\omega,l}^{2\dagger}}|0\rangle_1\otimes|0\rangle_2,$$

where $b_l^{1,2\dagger}$ are creation operators for modes of frequency ω wrt the u coordinate. The corresponding modes $b_r^{1,2\dagger}$ wrt the v coordinate are not excited.

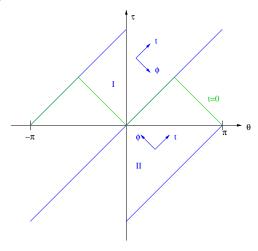
▶ Boundary stress tensor: $T_{\mu\nu}=0$ in vacuum in Poincare coordinates, so in (u,v) coordinates

$$T_{vv} = 0, \quad T_{uu} = \frac{c}{12} \left[\frac{\partial_u^3 x^+}{\partial_u x^+} - \frac{3}{2} \left(\frac{\partial_u^2 x^+}{\partial_u x^+} \right)^2 \right] = -\frac{c}{6}.$$

Can obtain same result from bulk by usual holographic calculation.

AdS₃ in SDO coordinates

- Causal connection in bulk is causal connection on boundary.
 - In particular, spacelike slices are portions of a single spacelike slice of $\mathbb{R} \times S^1$; this slice ceases to be acausal when the $z=\pm \infty$ slices are causally connected in bulk.



Effect of quotient on boundary

In a free theory, can obtain state on the quotient by method of images. But quotient modifies causal relations:

- The quotient under $\phi \sim \phi + 2\pi r_+$ has fixed points in the boundary, at $\tau \theta = 0, \pi$.
- Need to remove fixed points before quotienting: removes causal connection in boundary. Spacelike surfaces in $z=\pm\infty$ now never causally connected in boundary.
- Causal connection in bulk would predict

$$\langle [\mathcal{O}_1(0),\mathcal{O}_2(\Delta t)]\rangle = \Delta^\phi_{bulk}(\Delta t) \neq 0 \quad \text{for } \Delta t > \pi/2,$$

inconsistent with entanglement description in CFT. Explicit interaction?

Entangled state from near-horizon limit

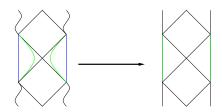
Can also obtain SDO as near-horizon, near-extremal limit from non-extremal BTZ:

$$r^2 - r_+^2 = \epsilon r_+^2 \bar{r}^2, \quad r_+^2 - r_-^2 = \epsilon r_+^2,$$
 $\bar{t} = r_+ \epsilon t, \quad \bar{\phi} = r_+ \phi - r_- t.$

Limit $\epsilon \to 0$ gives

$$ds^2 = -ar{r}^2(ar{r}^2+1)dar{t}^2 + rac{dar{r}^2}{(ar{r}^2+1)} + \left(dar{\phi} + ar{r}^2dar{t}
ight)^2$$

Null coordinates on boundary are $\bar{u}=\frac{1}{2}\bar{t}-\bar{\phi}$, $\bar{v}=\bar{t}$. "Black hole coordinates"; covers the region $t\in(-\pi/4,\pi/4)$ on boundary.



- Non-extremal black hole has two boundaries: can see regions of both boundaries in SDO in this limit.
- Non-extremal BTZ is an entangled state of two CFTs, temperatures $T_L = \frac{r_+ + r_-}{4\pi}$, $T_R = \frac{r_+ r_-}{4\pi}$.
 - ▶ DLCQ scaling keeps $T_{\bar{u}}$, $T_{\bar{v}}$ finite as $\epsilon \to 0$.
- Near-horizon limit is DLCQ: no interactions between boundaries.
 Entangled state in CFT on these regions.
- Extremal black hole as limiting case.

Marolf Yarom

CFT description from near-horizon limit

For both extreme and non-extreme BTZ, near-horizon limit covers regions of boundary which aren't in causal contact.

Propose CFT on these boundary regions has a saddle-point description by corresponding regions of SDO, but can't extend to global SDO spacetime Why can't we extend the spacetime?

- In BTZ, region beyond Cauchy horizon isn't really physical:
 - Mass inflation instability
 - Bulk QFT stress tensor divergent on Cauchy horizon
- But this instability seems to shut off in near-horizon limit:
 - ▶ Must scale perturbation \rightarrow 0 in near-horizon limit to preserve asymptotically SDO structure in "black hole" region
 - QFT stress tensor regular on SDO
- Still, no UV source for CFT data on full SDO boundary.

Entanglement may play important role in this restriction.

Boundary conditions and symmetries

Can impose standard Brown-Henneaux boundary conditions:

$$\delta g_{uu} \sim \delta g_{uv} \sim \delta g_{vv} \sim \mathcal{O}(1).$$

Aymptotic isometries parametrized by two arbitrary functions, $\xi^+(u), \xi^-(v)$.

- Balasubramanian de Boer Sheikh-Jabbari Simon restrict boundary conditions to have $g_{vv}=\mathcal{O}(r^{-2})$: $\xi^-=A+Bv+Cv^2$. Asymptotic isometries Virasoro $\times SL(2,\mathbb{R})$. Chiral CFT.
- Contrasts with Kerr-CFT, which has a more relaxed boundary condition.

Boundary conditions and geometries

Boundary metric in all cases is a null cylinder; different coordinate systems distinguished by subleading components of the metric.

- With Brown-Henneaux boundary conditions, can "fill in" null cylinder in different ways. SDO in (t, ϕ, z) or "black hole" coordinates correspond to different states in a single CFT?
 - ▶ Black hole coordinates corr to non-chiral excited state.
 - ▶ No CFT dual to (t, ϕ, z) coordinates?
- Boundary condition with $g_{vv} = \mathcal{O}(r^{-2})$ picks a unique bulk: SDO in (u, v, r) coordinates.
- Note this also forbids "black hole" coordinates. Consistent with chiral CFT interpretation: no non-extremal states.

Asymptotically SDO geometries

For CFT, natural to consider other states. Geometrical description? Focus on chiral states:

- More restrictive boundary conditions would only admit such states, $T_{vv} \equiv 0$.
- These states account for entropy of extremal BTZ.
- Dual geometries may preserve $SL(2,\mathbb{R})$; avoid problem with non-trivial asymptotically AdS₂ spacetimes?

Maldacena Michelson Strominger

• But $SL(2,\mathbb{R})$ very restrictive: transitive symmetry on SDO spacetime.

For theory with Brown-Henneaux boundary conditions, would also be interesting to study non-chiral states.

Look for solutions by considering near-horizon limits.

Asymptotically SDO geometries

One successful example: dual of vacuum state $|0\rangle = |0\rangle_L \times |0\rangle_R$.

- Dual of this state on a spacelike cylinder is M=0 BTZ black hole.
- Near-horizon limit gives a quotient of AdS₃ by $\xi = J_{01} J_{13} + J_{02} J_{23}$. $\|\xi\|^2 = 0$, but ξ is non-zero everywhere, so no fixed points.
- In Poincare coordinates,

$$ds^2 = -2r^2dx^+dx^- + \frac{dr^2}{r^2},$$

$$\xi = \partial_{x^{-}}$$
.

- Formal dual of ground state. Supersymmetric.
- Geometry has a single boundary, at $r \to \infty$.
- Geometry in Poincare coordinates is asymptotically SDO, even with restrictive boundary conditions.

Pure state, bulk geometry has a single boundary

Note solution has $SL(2,\mathbb{R}) \times U(1)$ isometries, but no AdS₂ factor.

17 / 19

Perturbative states

On asymptotically AdS_3 spacetimes, can generically study nearby states by considering linearized perturbations on bulk geometry.

Consider chiral perturbations of extremal BTZ: i.e., consider a perturbation with $\delta M = \delta J$ on a bh with M = J.

- For a scalar field $\phi = e^{i\omega t + im\phi} f_{\omega m}(r)$, want $\omega = m$. Implies $\omega_c = \omega m = 0$.
- $\Box \phi \mu^2 \phi = e^{i\omega t + im\phi} \left[\frac{1}{r} \partial_r (rh(r)\partial_r f(r)) \mu^2 f(r) \right]$, normalizable solution

$$f(r) = c(r^2 - r_+^2)^{-h_+/2}$$
.

This blows up on horizon!

- Can't analyse chiral states perturbatively
- Also true for vector fields.

Discussion

- Simple context to study CFT description of very-near horizon region.
- Dual description two CFTs on null cylinder, in an entangled state.
 - General idea: multiple boundaries have independent Hamiltonians, connections come from entangled states.
 - Can't describe causal connections; full spacetime not realised in CFT description.
- Is there any CFT description that can give these causal connections?
- Ground state in CFT on a null cylinder dual (at least formally) to lightlike quotient.
 - Analogous to Schrödinger spacetime
 - ► Accurate description of this state?
- Geometries dual to other chiral states?
 Not accessible perturbatively even on spacelike cylinder.
- Duality for non-chiral theory?