SUSY gauge theory, Liouville theory and quantization of the Hitchin moduli spaces

Jörg Teschner

DESY Hamburg

Gaiotto theories I — Lagrangian description

Gaiotto: Riemann surface $\mathcal{C} \to N=2$ gauge theory $\mathcal{G}_{\mathcal{C}}$.

Pants decomposition of \mathcal{C} ,

 \mapsto Lagrangian description of $\mathcal{G}_{\mathcal{C}}$ such that:

- Curve c_r separating pair of pants \mapsto Gauge group $SU(2)_r$, multiplet $(A_r, \lambda_r, \psi_r, a_r)$
- Gluing parameters $q_r \mapsto$ Gauge coupling for $SU(2)_r$
- Boundary β with length $l_{\beta} \mapsto$ hypermultiplet $(q_{\beta}, \tilde{q}_{\beta}, \chi_{\beta}, \tilde{\chi}_{\beta})$ with mass $m_{\beta} \propto l_{\beta}$.

 $r = 1, \ldots, 3g - 3 + n$ if C has genus g, n boundary components.

Gaiotto theories II — Remarks

- Gaiotto theories UV finite \Rightarrow Couplings q_c not renormalized.
- Asymptotically free theories from limits of Gaiotto theories.

Example: $N = 2^*$ theory $\Leftrightarrow C$ has genus g = 1, n = 1 boundary components.

Mass of hypermultiplet: m. Single UV gauge coupling q.

Limit $m \to \infty$, $q \to 0$ with certain combination fixed:

 \Rightarrow Pure N = 2 SUSY-Yang Mills (Seiberg-Witten).

Gaiotto theories III — S-duality

S-duality conjecture:

- Space of UV coupling constants $q_c \equiv$ Moduli space $\mathcal{M}_{g,n}$ of Riemann surfaces.
- Lagrangian description exists near the components of the boundary $\partial \mathcal{M}_{g,n}$ which correspond to max. degenerate Riemann surfaces C (pants decomposition).
 Lagrangian description follows the rules summarized on the previous slide.

Example: $N = 2^*$ -theory.

For $q = e^{2\pi i \tau}$ large there exists weakly coupled description with coupling $\tilde{q} = e^{-2\pi i/\tau}$.

Generalizes Montonen-Olive duality conjecture...

Gaiotto theories IV — Solution I

Solution à la Seiberg-Witten:

- Low-energy Lagrangian from prepotential $\mathcal{F}(a)$, where $a : c \mapsto a_c$: Special coordinates for \mathcal{B} : manifold of vacua.
- For Gaiotto theories: \mathcal{B} : Base of Hitchin fibration.

The **Hitchin moduli space** $\mathcal{M}_{\mathrm{H}}(C)$ on a Riemann surface C is the space of solutions (A, θ) of the SU(2) self-duality equations

$$F_A + R^2 \left[\theta, \bar{\theta} \right] = 0, \qquad \qquad \frac{\partial_A \theta + \theta \,\partial_A = 0,}{\partial_A \bar{\theta} + \bar{\theta} \,\partial_A = 0,}$$

where $d_A = d + A$ is an SU(2)-connection on a vector bundle V, and θ is a holomorphic one-form with values in End(V), modulo SU(2) gauge transformations. $\mathcal{M}_{\mathrm{H}}(C)$ is a space of complex dimension 6g - 6 + 2n.

Gaiotto theories V — Solution II

To (A, θ) associate quadratic differential

$$\vartheta = \operatorname{tr}(\theta^2).$$

Expanding ϑ with respect to a basis $\{\vartheta_1, \ldots, \vartheta_{3g-3+n}\}$ of the 3g-3+n-dimensional space of quadratic differentials,

$$\vartheta = \sum_{r=1}^{3g-3+n} H_r \vartheta_r \,,$$

defines functions H_r , $r = 1, \ldots, 3g - 3 + n$ on $\mathcal{M}_{\mathrm{H}}(C)$.

H_r : Hamiltonians of **Hitchin's integrable system**.

The subspaces $\Theta_E \subset \mathcal{M}_H(C)$ defined by the equations $H_r = E_r$ for $E = (E_1, \ldots, E_{3g-3+n})$ are abelian varieties (complex tori) for generic E. This means that $\mathcal{M}_H(C)$ can be described as a **torus fibration** with **base** \mathcal{B} which can be identified with the space $\mathcal{Q}(C)$ of quadratic differentials on the underlying Riemann surface C.

Gaiotto theories VI — Solution III

Define the spectral curve

$$\Sigma = \{ (v, y) | \det(v - \theta(y)) = 0 \},\$$

a double cover Σ of the surface C. On Σ introduce the differential dS = vdy. We then get two systems of coordinates a_r and a_s^D for \mathcal{B} as the periods of S along the homology cycles α_r , β_s , $r, s = 1, \ldots, h$,

$$a_r = \int_{\alpha_r} dS, \qquad a_r^D = \int_{\beta_r} dS.$$

Both $a = (a_1, \ldots, a_h)$ and $a^{D} = (a_1^{D}, \ldots, a_h^{D})$ represent systems of coordinates for the base \mathcal{B} . The relation $a^{D} = a^{D}(a)$ defines a holomorphic function $\mathcal{F}(a)$ called prepotential such that

$$a_r^D = \frac{\partial \mathcal{F}}{\partial a_r}$$

There are coordinates $\tau = (\tau_1, \ldots, \tau_h)$ on the torus fibres $\Theta_{E(a)}$ which are Poissonconjugate to the variables a. The coordinates (a, τ) are **action-angle variables** for the Hitchin system.

Relation to Liouville theory I

Based on work of V. Pestun, AGT (Alday, Gaiotto, Tachikawa) have shown that partition function on S_R^4 can be evaluated by localization techniques, and found

$$\mathcal{Z}_{\mathcal{G}_C}(S_R^4) \propto \left\langle e^{2\mu_n \varphi(z_n, \bar{z}_n)} \dots e^{2\mu_1 \varphi(z_1, \bar{z}_1)} \right\rangle_{\mathcal{C}, 1}$$

(up to less interesting factors) where

• $\langle e^{2\mu_n \varphi(z_n, \bar{z}_n)} \dots e^{2\mu_1 \varphi(z_1, \bar{z}_1)} \rangle_{\mathcal{C}, b}$: Correlation function in Liouville theory on Riemann surface \mathcal{C} , formally defined as

$$\left\langle \prod_{r=1}^{n} e^{2\mu_{r}\varphi(z_{r},\bar{z}_{r})} \right\rangle_{\mathcal{C},b} = \int_{\varphi:C \to \mathbb{R}} \left[\mathcal{D}\varphi \right] e^{-S_{\mathrm{L}}[\varphi]} \prod_{r=1}^{n} e^{2\mu_{r}\varphi(z_{r},\bar{z}_{r})},$$

where
$$S[\varphi] = \int_{\Sigma} \frac{d^2 z}{4\pi} \left(\partial_z \varphi \partial_{\bar{z}} \varphi + 4\pi M e^{2b\varphi} \right).$$

• Parameters μ_r related to hypermultiplet mass parameters m_r as

$$\mu_r = 1 + i \frac{m_r}{R}$$

Relation to Liouville theory II — Holomorphic factorization (i)

Both sides of the correspondence naturally come in holomorphically factorized form:

$$\mathcal{Z}_{\mathcal{G}_{\mathcal{C}}}(S_R^4) = \int d\nu(a) \left| \mathcal{Z}\left(\frac{1}{R}, \frac{1}{R}; a, m; q\right) \right|^2,$$

where

• $\frac{\mathcal{Z}(\epsilon_1, \epsilon_2; a, m; q)}{\text{on } \mathbb{R}^4_{\epsilon_2, \epsilon_1}}$ with scalar vevs given by a, hypermultiplet mass parameters m.

$$\mathcal{Z}(\epsilon_1, \epsilon_2; a, m; q) = \left\langle \exp\left(\frac{1}{(2\pi i)^2} \int_{\mathbb{R}^4} \left[\omega \wedge \operatorname{Tr}(\phi F + \frac{1}{2}\psi\psi) - H\operatorname{Tr}(F \wedge F)\right]\right) \right\rangle_{\mathcal{G}_{\mathcal{C}}(a)}$$

 $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4, \ H(x) = \epsilon_1(x_1^2 + x_2^2) + \epsilon_2(x_3^2 + x_4^2).$

• Integral over a: Integral over zero modes of scalars — not fixed on compact manifold S_R^4 .

Relation to Liouville theory III — Holomorphic factorization (ii)

Liouville theory:

$$\left\langle \prod_{r=1}^{n} e^{2\mu_r(z_r,\bar{z}_r)} \right\rangle_C = \int d\nu(\alpha) \left| \mathcal{G}(b;\alpha,\mu;q) \right|^2.$$

where

- $\mathcal{G}(b; \alpha, \mu; q)$: Liouville conformal block:
 - Defined from representation theory of the Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}, \qquad c = 1 + 6(b+b^{-1})^2.$$

- Dependence on $\alpha = (\alpha_1, \ldots, \alpha_{3g-3+n}$ from choice of representation \mathcal{V}_{c,Δ_r} (highest weight $\Delta_r = \alpha_r(b + b^{-1} - \alpha_r)$) associated to curve c_r in gluing construction from conformal blocks corresponding to pairs of pants.
- Integration over α : Integration over Virasoro-representations in \mathcal{H}_{Liou} .

Relation to Liouville theory IV — Full dictionary

The dictionary: To a Riemann surface with pants decomposition associate

parameters $m = (m_1, m_2, ...)$ associated to the boundary components, parameters $a = (a_1, a_2, ...)$ associated to cutting curves

- $\mathcal{Z}(\epsilon_1, \epsilon_2; a, m; q)$: Moore-Nekrasov-Shatashvili instanton partition function for $\mathcal{G}_{\mathcal{C}}$ on $\mathbb{R}^4_{\epsilon_2, \epsilon_1}$ with scalar vevs given by a_r , hypermultiplet mass parameters m_r .
- $\mathcal{G}(b; \alpha, \mu; q)$: Liouville conformal block $\langle V_{\mu_n}(z_n) \dots V_{\mu_1}(z_1) \rangle_{\mathcal{C}}$ defined by gluing three-punctured spheres according to given pants decomposition and Virasoro representations \mathcal{V}_{c,Δ_r} associated to curves γ_r .

Then (AGT)

$$\mathcal{Z}(\epsilon_1,\epsilon_2;a,m;q) = \mathcal{G}(b;\alpha,\mu;q)$$

if
$$\alpha_r = \frac{Q}{2} + a_r/\hbar$$
, $\epsilon_1 = \hbar b$, $\epsilon_2 = \hbar/b$, $c = 1 + 6Q^2$, $Q = b + b^{-1}$.

S-duality vs. Crossing symmetry / modular invariance

Note that holomorphically factorized representation depends on choice of pants decomposition of C — Lagrangian representation of G_C .

S-duality invariance \Leftrightarrow Independence of pants decomposition.

This is highly nontrivial from the gauge theory point of view (instanton partition functions...), but **known** (J.T. '01) property of the Liouville correlation functions !

Remark: True in any "decent" CFT. Liouville theory is indeed decent despite the fact that $|0\rangle \notin \mathcal{H}_{Liou}$.

Towards explaining the AGT-relation I

Generalize $Z_{\mathcal{G}_C}(S^4)$ to expectation value of Wilson loop:

$$\mathcal{Z}_{\mathcal{G}_{\mathcal{C}}}\left(\bigcirc L_{c} \right) = \left\langle \bigcirc q \middle| L_{c} \middle| \bigcirc q \right\rangle$$

where

• $\mathcal{Z}_{\mathcal{G}_{\mathcal{C}}}\left(\bigcup_{\iota_{c}}\right)$ Partition function on S_{4} with Wilson loop in $SU(2)_{c}$.

• $\left\langle \bigcap^{q} \right|$ state created by performing path-integral over

• $\left| \bigcirc_{a} \right\rangle$ state created by performing path-integral over

• L_c: operator on $\mathcal{H}_{\mathcal{G}_{\mathcal{C}}}(S_3)$ representing Wilson loop.

Towards explaining the AGT-relation II

Note that indeed (Pestun; AGT; AGGTV; DGOT)

$$\mathcal{Z}_{\mathcal{G}_{\mathcal{C}}}\left(\bigoplus^{L_{c}}\right) = \int d\nu(a) \left(\mathcal{G}(b;\alpha,\mu;q)\right)^{*} \left[2\cos\pi a\right] \mathcal{G}(b;\alpha,\mu;q)$$

where $\mathcal{G}(b; \alpha, \mu; q)$: Liouville conformal block.

This suggests that

- Evaluation of partition function reduces to overlap in BPS-subspace $\mathcal{H}_{\rm BPS}$ of gauge theory on S_3 , defined by condition $\mathbb{Q}|\psi\rangle = 0$ for \mathbb{Q} : one of the supercharges.
- $\mathcal{G}(b; \alpha, \mu; q)$ is wave-function of projection $\Pi_{\text{BPS}} | \bigcirc \rangle$

• $\Pi_{BPS}L_c = [2\cos\pi a]$ in case of Wilson loop.

Towards explaining the AGT-relation III

Indeed, it is known (J.T. '03) that Liouville conformal block $\mathcal{G}(b; \alpha, \mu; q)$ is wave-function of a distinguished state $|q\rangle$ in **quantum Teichmüller theory**,

$$\mathcal{G}(b; \alpha, \mu; q) = \langle \alpha | q \rangle.$$

Quantum Teichmüller theory:

Basic coordinate functions on Teichmüller spaces $T_{g,n}$: Length functions $L_c = 2\cosh\frac{l_c}{2}$.

There exists natural Poisson structure on $\mathcal{T}_{g,n}$, $\{L_c, L_{c'}\} = \text{known}$.

Quantization: Algebra \mathcal{A}_b generated from operators L_c such that

$$[L_c, L_{c'}] = b^2 \{L_c, L_{c'}\} + \mathcal{O}(b^2).$$

Realized on Hilbert spaces $\mathcal{H}_{\mathrm{T}}(C) \simeq L^2(\mathbb{R}^{3g-3+n}_+; d\nu).$

Towards explaining the AGT-relation IV

Bear in mind that $\mathcal{Z}(\epsilon_1, \epsilon_2; a, m; q) \equiv \mathcal{G}_m(\alpha; q) \equiv \langle \alpha | q \rangle$: Wave-function of a distinguished state $|q\rangle$ in $\mathcal{H}_T(C)$.

We may thereby rewrite (DGOT)

$$\mathcal{Z}_{\mathcal{G}_{\mathcal{C}}}\left(\bigcirc^{\mathbf{L}_{c}}\right) = \langle q \, | \, \mathbf{L}_{c} \, | \, q \, \rangle \,.$$

Natural conjecture:

 $\mathcal{H}_{BPS} \simeq \mathcal{H}_{T}(C)$: space of states obtained by quantizing $\mathcal{T}_{g,n}$.

Towards explaining the AGT-relation V

On the other hand note that the Ω background $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ effectively "compactifies" \mathbb{R}^4 . Projection to Q-cohomology makes theory topological and allows to play with metric. With origins in the work of Nekrasov-Shatashvili, Nekrasov-Witten proposed to

replace
$$\mathbb{R}^4_{\epsilon_1,\epsilon_2}$$
 by circle fibration $\mathbb{R} \times [0,R] \times S_1 \times \tilde{S}_1$,

such that S_1 shrinks to a point at 0, \tilde{S}_1 shrinks to a point at R.

Compactification of $\mathcal{G}_{\mathcal{C}}$ **on** $S_1 \times \tilde{S}_1 \rightarrow$ open 2d sigma model on $R \times I$ with target $\mathcal{M}_{\mathrm{H}}(C)$.

Low energy theory: Q-invariant degrees of freedom $(\epsilon_2, \epsilon_1 \rightarrow 0)$

- Zero modes of scalars a_{γ} and
- (constant) spatial parts of gauge fields $A_{x,\gamma} = \varphi_{\gamma}/R$.

Canonically conjugate action-angle variables for **Hitchin system** !!!

Towards explaining the AGT-relation VI

Boundary conditions ("branes") \mathfrak{B}_1 , \mathfrak{B}_2 of open 2d sigma model at ends of [0, R] determined by 4d gauge theory. Q-cohomology $\mathcal{H}_{\epsilon_2\epsilon_1} \simeq \mathcal{H}_{BPS}$.

Nekrasov-Witten show that

a) $\mathcal{H}_{\epsilon_{2}\epsilon_{1}}$ carries commuting actions of \mathcal{A}_{b} , $\mathcal{A}_{1/b}$ —

— Quantized algebra of algebraic functions on $M_{
m H}(\mathcal{C})$

 $(\mathcal{A}_b: \text{ open strings from } \mathfrak{B}_1 \text{ to itself, } \mathcal{A}_{1/b}: \text{ open strings from } \mathfrak{B}_2 \text{ to itself.})$

b) $\mathcal{H}_{\epsilon_2\epsilon_1}$ can be realized as space of section of line bundle $K_N^{\frac{1}{2}}$ on $N = \operatorname{Op}_{\mathfrak{sl}_2}(\mathcal{C})$. a) supports the identification

$$\mathcal{H}_{\mathrm{T}}(\mathcal{C}) \, \simeq \, \mathcal{H}_{\epsilon_1 \epsilon_2} \, ,$$

since operators L_c : Generators of A_b .

That $\mathcal{H}_{T}(\mathcal{C})$ satisfies b) has recently been argued in [arXiv:1005.2846] (J.T.).

Towards explaining the AGT-relation VII

Open question:

Is
$$\mathcal{Z}(\epsilon_1, \epsilon_2; a, m; q)$$
 the wave-function of $\Pi_{\mathrm{BPS}} | \bigcirc_q \rangle$?

Related **basic question**:

How is the quantization of the Hitchin moduli spaces related to quantum Teichmüller/Liouville theory?

Answer to basic question: The main diagram [arXiv:1005.2846] (J.T.)

 $ig ext{Hitchin system} \ ig(\, \mathcal{M}_{ ext{H}}(\mathcal{C}) \,, \, I \, ig)$

Flat connections

 $\left(\mathcal{M}_{\mathrm{H}}(\mathcal{C}) \,,\, J \, \right)$

quantized Hitchin

 $\searrow (B)_{\epsilon_1}$

 \swarrow (D)_{ϵ_2}

systems

Liouville theory q-Teichmüller theory

where the arrows may be schematically characterized as follows:

 $(A)_{\epsilon_2} \swarrow$

 $(C)_{\epsilon_1} \searrow$

(A) Hyperkähler rotation within the Hitchin moduli space $\mathcal{M}_{\mathrm{H}}(C)$.

(B) Quantization

(C) Quantization

(D) This arrow will be referred to as quantum hyperkähler rotation.