

Sergei Alexandrov

Laboratoire Charles Coulomb Montpellier

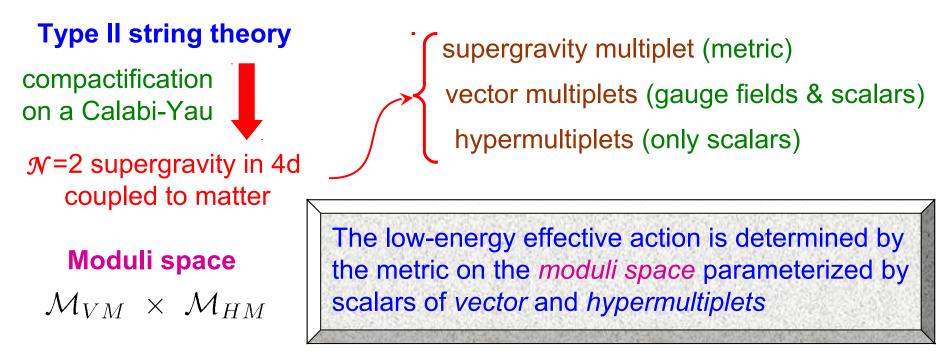
S.A., S.Banerjee ar

arXiv:1405.0291

arXiv:1403.1265

Calabi-Yau compactifications

The goal: to find the complete non-perturbative effective action in 4d for type II string theory compactified on arbitrary CY



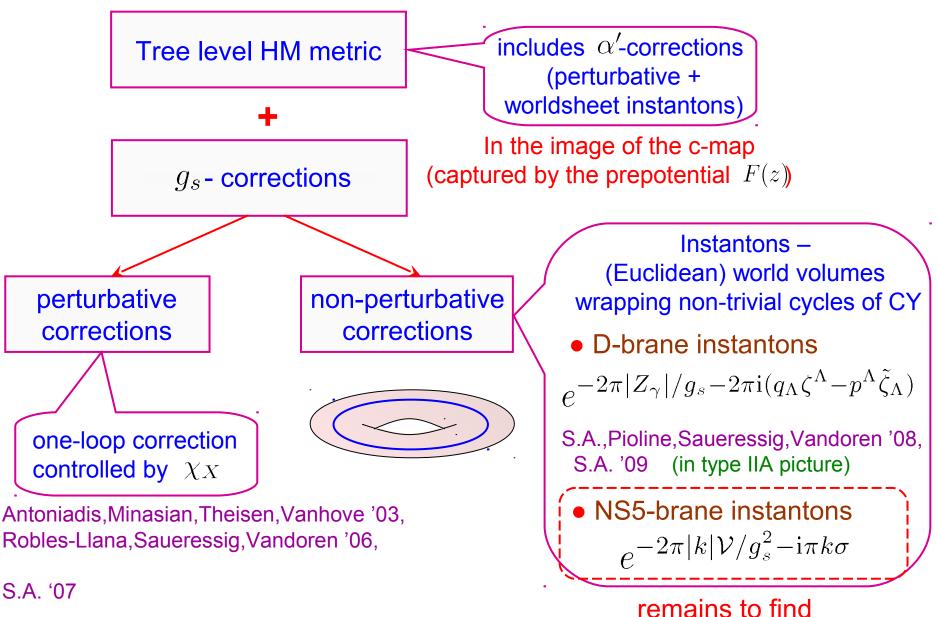
• \mathcal{M}_{VM} - special Kähler (given by F(z)) • \mathcal{M}_{HM} - quaternion-Kähler

- F(z) is classically exact (no corrections in string coupling g_s) <u>known</u>
- receives all types of g_s -corrections

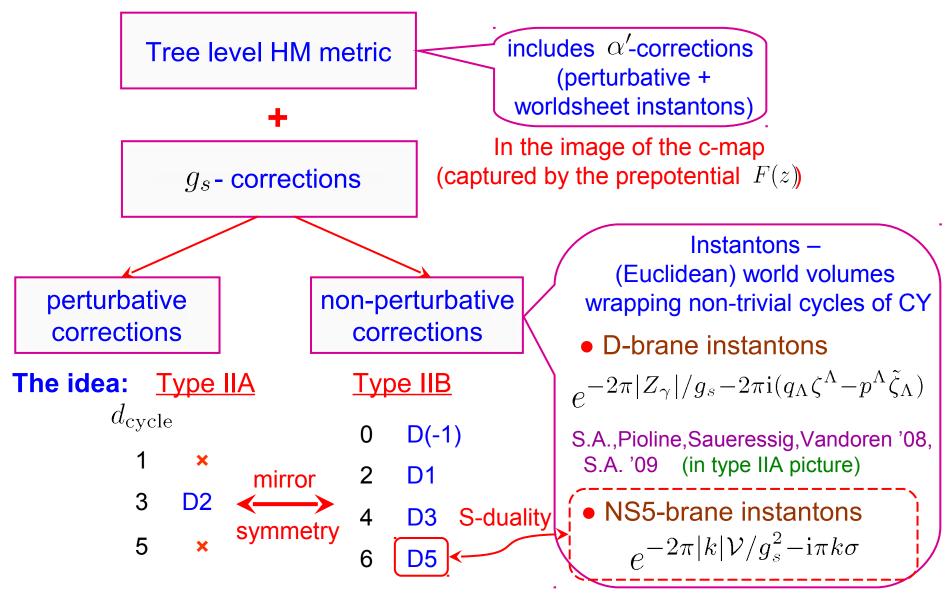
<u>unknown</u>

The (concrete) goal: to find the non-perturbative geometry of \mathcal{M}_{HM}

Quantum corrections



Quantum corrections



One-instanton approximation — S.A., Persson, Pioline '10

Twistor approach

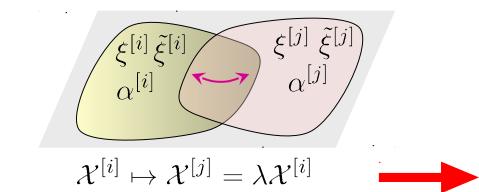
The idea: one should work at the level of the twistor space

Quaternionic structure: quaternion algebra of almost complex structures $J^i J^j = \varepsilon^{ijk} J^k - \delta^{ij}$

Twistor space

 $\mathbb{C}\mathrm{P}^1$ **t** \mathcal{M} q^{α}

The geometry is determined by *contact transformations* between sets of Darboux coordinates



• $\mathcal{Z}_{\mathcal{M}}$ is a Kähler manifold • carries holomorphic contact structure $\mathcal{X} \equiv d\alpha + \xi^{\Lambda} d\xi_{\Lambda}$ • symmetries of \mathcal{M} can be lifted to holomorphic symmetries of $\mathcal{Z}_{\mathcal{M}}$ **Holomorphicity** generated by holomorphic functions

 $h^{[ij]}(\overline{\xi_{[i]}}, \widetilde{\xi}^{[i]}, \alpha^{[i]})$

Contact Hamiltonians and instanton corrections

gluing conditions

$$\begin{pmatrix} \xi_{[j]}^{\Lambda} \\ \tilde{\xi}_{\Lambda}^{[j]} \\ \alpha^{[j]} \end{pmatrix} = e^{\{h^{[ij]}, \cdot\}} \begin{pmatrix} \xi_{[i]}^{\Lambda} \\ \tilde{\xi}_{\Lambda}^{[i]} \\ \alpha^{[i]} \end{pmatrix}$$

$$\begin{array}{l} \textbf{contact bracket} \\ \{h, \xi^{\Lambda}\} &= -\partial_{\tilde{\xi}_{\Lambda}}h + \xi^{\Lambda}\partial_{\alpha}h \\ \{h, \tilde{\xi}_{\Lambda}\} &= \partial_{\xi^{\Lambda}}h \\ \{h, \alpha\} &= h - \xi^{\Lambda}\partial_{\xi^{\Lambda}}h \end{array}$$

integral equations for "twistor lines"

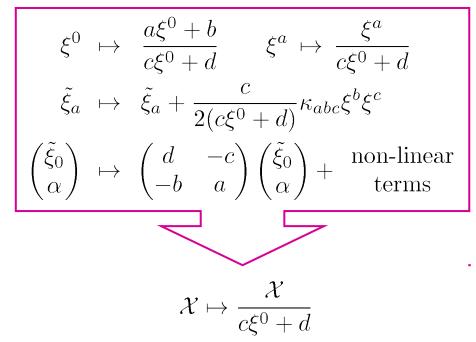
S.A., Banerjee '14

S-duality in twistor space

The idea: to add all images of the D-instanton contributions under S-duality with a non-vanishing 5-brane charge

One must understand how S-duality is realized on twistor space and which constraints it imposes on the twistorial construction

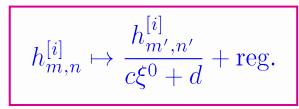
Non-linear holomorphic representation of SL(2,Z) –duality group on $\mathcal{Z}_{\mathcal{M}}$



contact transformation

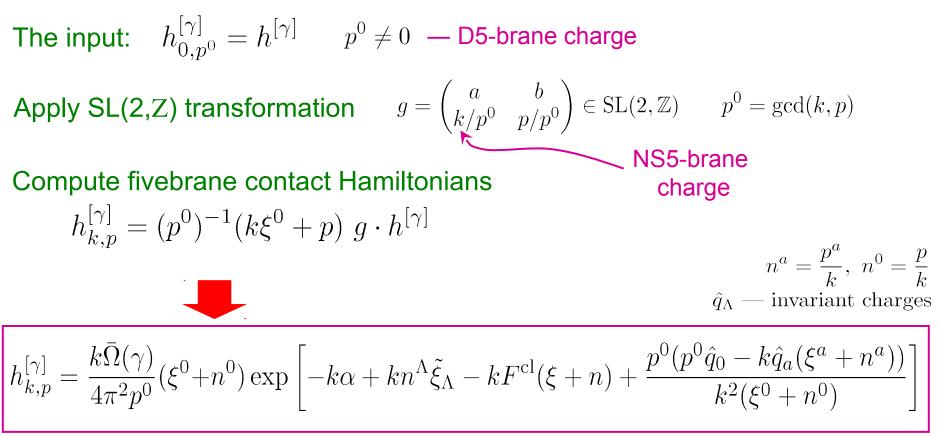
Transformation property of
the contact bracket
 $\varrho \cdot \{h, f\} = \{\lambda^{-1}\varrho \cdot h, \varrho \cdot f\}$ $\varrho \cdot \{h, f\} = \{\lambda^{-1}\varrho \cdot h, \varrho \cdot f\}$ $\varrho \cdot \mathcal{X} = \lambda \mathcal{X}$ Condition for $\mathcal{Z}_{\mathcal{M}}$ to carry

an isometric action of SL(2,Z)



 $\binom{m'}{n'} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \binom{m}{n}$

Fivebrane instantons



Encodes fivebrane instanton corrections to all orders of the instanton expansion

- One can evaluate the action on Darboux coordinates and write down the integral equations on twistor lines
- The contact structure is invariant under full U-duality group

Open issues

Manifestly S-duality invariant description of D3-instantons

Quantum corrections in type IIB:

- α' -corrections:
- pert. g_s-corrections:
- instanton corrections:

and mock modular forms w.s.inst. pert. S.A., Manschot, Pioline '12 1ℓ D5 D(-1) NS5 **D1**

 NS5-brane instantons in the Type IIA picture Can the integrable structure of D-instantons in Type IIA be extended to include NS5-brane corrections?

> **Inclusion of** quantum deformation **NS5-branes**

- Resolution of one-loop singularity
- Resummation of divergent series over brane charges (expected to be regularized by NS5-branes)

Relation to the topological string wave function

closely related to (0,4) elliptic genus

$$\sum_{p,\gamma} h_{1,p}^{[\gamma]} \sim \sum_{n^{\Lambda}} e^{-\alpha + n^{\Lambda} \tilde{\xi}_{\Lambda}} \Psi_{\mathbb{R}}^{\mathrm{top}}(\xi^{\Lambda} + n^{\Lambda})$$

A-model topological

wave function in

the real polarization