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The simplicity of N'= 8 supergravity

@ Obtained as the low energy regime of M-theory upon
compactification on T’

@ Inherits E7 7 (R) symmetries broken to E77)(Z) at the
quantum level cremmer and Julia (1978), etc

@ In perturbation theory, UV finite up to 4, maybe 8, loops
Bern et al. (2009), etc

@ In perturbation theory, amplitudes enjoy remarkable
properties : square of N =4 SYM, etcC xawai, Lewellen, Tye (1986), et

@ The theory cannot be decoupled from string theory creen,

Ooguri, Schwarz (2007)

@ The theory contains BPS extremal black holes with known
microscopic counting in M-theory wmaldacena, strominger, witten (1997).
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Ideal setup to address black hole microscopics

@ All known non-extremal black holes in string theory obey

Cveti¢ and Larsen (1997)
S.S_en?Z
@ All known extremal black holes have SL(2,R) x U(1)
— SL(2,R) x Virasoro symmetries and obey
7T2 71‘2
S+ = ?CJTJ = ?CQTQ

Are there other “IR” universal formulae ? Is there a proof
from the “UV"?

In this talk, I will present the most general asymptotically
flat non-extremal black hole of N' = 8 supergravity and
derive some of its properties.
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(Next to simple) Gauged N = 8 SO(8) supergravity

@ Obtained as the low energy regime of M-theory upon
compactification on S’

@ Admits AdS, as a N = 8 vacuum

@ When embedded in M-theory, the dual CFT is the AB]M
theory atlevel k =1. Aharony, Bergman, Jafferis, Maldacena (2008)

@ New sugra theories labelled by a continuous parameter
have been recent].y found Dall’Agata, Inverso, Trigiante (2012)

@ Much less is known on solutions and “IR" relations
@ Known black holes in AdS, obey cuetic, Gibbons, Pope 2010)

S,S_S;S_jer*itz

In this talk, I will present some black holes of this theory and
discuss subtleties with their thermodynamics
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Based on work done with David Chow (ULB)

@ “Seed for general rotating non-extremal black holes of
N = 8 supergravity”, arXiv :1310.1925

@ “Dyonic AdS black holes in maximal gauged
supergravity”, arXiv :1311.1204

@ “Black holes in N = 8 supergravity from SO(4,4) hidden
symmetries”, arXiv :1404.2602
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Outline

@ STU supergravity and hidden symmetries
© The general black hole and its properties
© Microscopic counting for extremal branches

@ Dyonic black holes of maximal gauged supergravity
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I. STU supergravity and hidden
symmetries
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From N = 8 to STU supergravity

Under U-dualities, the 4d metric will be unchanged. The
matter field will be shuffled around.

There are 28 abelian gauge fields in N' = 8 supergravity. If
one starts with a dyonic rotating black hole with 3 additional
electric charges (5 charges in total), one can perform
U-dualities and generate the general black hole. cvetic-un, 1996

A suitable sector of N' = 8 supergravity isa N =2
supergravity with three vector multiplets known as the STU
supergravity cremmeretal 'ss; pufet al. 96, 1T his is the theory that we
will study here.
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STU supergravity

In a specific U-duality frame the Lagrangian has the general
form pusretas ‘96

L, = d4xwﬁ—g<R— éfAB(z)auzAa“zB
4 uvt po

—1kU(z)FLl,FJ””+ihlj(z)e“”p"FI F )

where
@ zj=x;+1y;,j=1,2,3 are three complex scalar fields
o Al = (A1 A% A3 A%) are the four U(1) gauge fields.

Triality symmetry : SL(2,R) x SL(2,R) x SL(2,R) and their
permutations.
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From N = 8 to STU supergravity

N =38
supergravity
U-duality

STU supergravity

A= A3

ST? supergravity
(reduction of 6d
minimal supergravity)

. / \ AL A2 = A8

S?% supergravity —iX9X1! supergravity
(reduction of 5d (truncation of
minimal supergravity) = 4 supergravity)
A2 = A3 = A4 / \ Al = / \Q A4 A2 = A3 = 0
Einstein—-

Einstein-Maxwell—

Maxwell theory dilaton—axion theory

(N = 2 supergravity)

T

Kaluza—Klein theory




Known solutions

e
N =38
supergravity
U-duality
Extremal + Rotating 4-electric +
STU supergravity
Static Rotating 4-dyonic %
A2 = A3

— ¥ %
ST? supergravity
(reduction of 6d

minimal supergravity)

A2 =A% = A4; :A At A% = A3

S supergravity —ix0x?! supergravity
(reduction of 5d (truncation of
minimal supergrawty = 4 supergravity)
A2 — A3 — g4 / \ Al — / \{ A% 42— A370
Einstein—

Einstein-Maxwell—

Kaluza—Klein theory Maxwell theory dilaton-axion theory

(N = 2 supergravity)

TWEE



Algorithm for solution generation

@ Reduce on time. Get Euclidean 3d Einstein gravity
coupled to scalars.

SO(4,4)
SL(2,R)

@ Take Kerr-Taub-NUT (a,m,n) as a seed
@ Act with SL(2,R)* ¢ SO(4,4) hidden symmetries
@ Generate all 4 Q; + 4 P! charges

@ Cancel the total NUT charge at the end by tuning the
initial NUT charge n

o Iterate the loop "Recognize patterns — Simplify —
Rewrite — Recognize patterns — ..."

@ Scalars form the coset model sreitentonner, Maison, Gibbons, 88
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II. The general black hole and its
properties
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The Kerr metric (1963)

R-U dr? du? RU
2 _ 2 2
ds® = W (dt + w3) +W( R + i +a2(R—U) do )
where
W(r,u) =r?+u?,
2mrU
w3(r,u) = m(w,
and

R(r)=r?—-2mr+a?,
Uu) = a? — u?,

The standard spherical polar angle 6 is u = a cosé.
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The N = 8 black hole metric

Input : M,N.m.n,a + 2 harmonic functions L(r), V(u) :

"R-U dr?  du? RU 9
S () +W<R — +a2(R_U)d¢)

ds? =

where

W2(r,u)=(R-U)2+ (2Nu+L)2 +2(R-U)(2Mr+V),
2N(u—-n)R+U(L +2Nn)

w3 (r,u) = AR=0) de,
R(r)=r?—-2mr+a®—-n?,
U(u) = a* - (u—n)?,
L(T') :Llr—i_LZ’
V(U) =Viu+V,

The standard spherical polar angle 6 is u =n + a cos¥.
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Separability and hidden conformal symmetry

Define the string frame metric

-2 r?2yu?

2
ds W ds®.

It admits an irreducible Killing-Stackel tensor K,;, obeying

V(aKpe) = 0.

=2
The massive Klein-Gordon equation on ds is separable.

Therefore, the metric ds? admits an irreducible conformal
Killing-Stackel tensor with components Q% = K% obeying

V(aQbe) = q(aGnc)-

The massless Klein-Gordon equation on ds? is separable.
[Subcases include : chow 08; Keeler, Larsen, '12]
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Gauge fields : All is known!

We have

1
Al = Wa% (—W(dt+ wg)) .

The electric and magnetic charges are

oM ; ON
QI—Za—(SI, P ——28—51

TR



Scalar fields

The three axions and dilatons are :

fi w

e_wi —

Xi:r2+u2+gi7 _T2+U2+gi7

where

fi(r,u) = 2(mr + nu)&; + 2(mu — nr)é; +4(m?* +n?)és,
gi(r,u) = 2(mr + nu)n;y + 2(mu — nr)n +4(m? + n?)n;s,

are linear functions of r and u.
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Thermodynamics

First law and Smarr relation hold

0M =T8S, + Q0] + ¥, 6Q; + ¥} 6P,
M =2T,S; +20.J+oLQ; + \Iflﬂ_DI,

Also at the inner horizon,

SM =T_6S_ +Q_4] + & 6Q; + U7 6P,
M=2T S +20 J+3 Q;+ ;P
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Quartic invariant

A = 1=14(Q1Q2Q3Q4 + P P2P3P*)
+2 37k QIQkPIPK — 37,(Q))* (P2,

The invariant is a Cayley hyperdeterminant, and is manifestly
invariant under SL(2,R)3 upon rewriting as pus ‘o)

11 i” _kk' ll’ mm nn
A - 32 61] aukalj manpk/an p/m/

with e/ = elUl, 01 = 1 and components a;x given by
(aooo,a111) = —(Q1,Ph), (aoo1.a110) = (P%,Qy),
(ao10,a101) = (P3,Q3), (@o11,a100) = (Qa,P*).

This invariant is a special case of a more general E7(7) quartic
invariant ixaiosh, xol, ‘96].
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Universal properties of horizons

PT‘OdUCt Ofarea laW . Cveti¢, Gibbons, Pope, '10
A A
4 4

Angular momentum law :

— 42 (12 + A(QI,PI)> e 27,

8m%] = == (S, —S_) € 4n’Z
T,
Kinematic relationship :
9 __ 0
T. T
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A new E7 7 (R) invariant

Using these properties, one can prove Cardy’s form :

S+:27r< A+F+\/—J2+F>

Since S..J, A are E7(7)(R) invariants, then F(M,Qr, P, 2l) is
invariant as well.

Known special cases :
@ For BPS black holes, F =] =0.
@ In the extremal “fast” rotating limit, F = J2.
@ In the extremal “slow” rotating limit, F = —A
@ For Kerr-Newman : F = M* — M2Q2.

e Inregime Q23 — 00 : F = £Q1Q2Q3(M — Mpgps) ceetic-Larsen
(2014)
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F is not a rational function of the charges

For the Kaluza-Klein black hole (Rasheed-Larsen),

1 1 1 1
F o= (M*— gP)(M° — 2Q°) + (M + g (P* +Q%)’HIx]
where 0 < x = BAM2(P2—Q2)” <1 and

(8M2+P2+Q2)3

H[x] = szOSW+6ﬁSinW _9

increases monotonically from O to 1.

It remains a challenge to write it in terms of E7 (7 invariants
and elucidate its structure.
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III. Microscopic counting for extremal
branches
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Brane intersection table

In Type IIA frame, the black hole corresponds to

t\r 0 ¢|z1 29|23 24|25 Zg
DOl x| « |~ ~|~ ~|~ ~
D2 | x X X |~ ~|~ ~
D2 | x ~ o~ X X |~ o~
D2 | x ~ o~ ~ o~ X X
D4 | x ~ ~ | X X |XxX X
D4 | x X X |~ ~|x X
D4 | x X X | X X |~ ~
D6 | x X X | x X | X X

with total energy M and angular momentum j.
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Two extremal limits

Attractor mechanism = Moduli(Q;, P)

Fast branch
S, =2m\/A+J?

@ 1/8 — BPS D4 — D4 — D4 system modeled by
the MSW CFT =IR (0,4) CFT (C = 6Q1Q2Q3).

@ Attempts to deform this theory have been
made to describe extremal Kerr-Newman
black hole

S, =2m/-A—]J?

@ non-BPS DO — D6 system, not understood
@ Contains rotating Kaluza-Klein 5d black hole

Slow branch
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Universal semi-classical counting at

extremality
The near-horizon solution iS xunduri, Lucietti, Reall, 07

2 2
ds? =W, < —r?dt® + % + d% +T2(dg + krdt)z),
Al = fl(d¢ + krdt) + e do/k,
A; = fi(d¢ + krdt) + &;dg/k.

The entropy 1S Guica, Hartman, Song, Strominger, 2008 Hartman, Murata, Nishioka, Strominger

2008
2 2

S.:,. = %CJTJ = %CQlTQl =...
where
=12, Tj= 2%
cqu—672]  1g 1
! 8Q17 @ 2mel’
27/35
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Entropy of non-extremal black holes (?)

For static non-extremal electrically charged black holes
cveticyoum, 95, HHOrowitz-Lowe-Maldacena wrote in ‘96 the
mysterious formula

$ = 2n(v/AL + vAR)(VNz + /No)(vNs + /N5) (v/Ne + /Ng)

in terms of free D2,D2,D6,D6, NS5,NS5 and string left/right
momentum nj, ng.

However, this formula does not generalize when a fifth
charge is added.
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IV. Dyonic black holes of maximal
gauged supergravity
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Dyonic black holes of gauged supergravity

Another theory of interest is A/ = 8 SO(8) gauged
supergravity that can be obtained from S’ reduction of
11-dimensional supergravity.

A consistent truncation exists to ' = 2 U(1)* gauged
supergravity. The action is

Egauged = LsTU + gzv[ZA] * 1.

Cveti¢, Duff, Hoxha, Liu, L, Martinez-Acosta, Pope, Sati, Tran, ‘99

There are very few dualities remaining. Solutions are harder
to generate.
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Two new classes of dyonic AdS, black holes

We guessed and checked :

@ Most general spherical or planar static black holes of
U(1)* N = 2 gauged supergravity.
[4 electric and 4 magnetic charges] They admit two
conformal Killing tensors.

@ Most general spherical rotating black holes of NV = 2
U(1)? gauged supergravity.
[2 electric and 2 magnetic charges] They admit two
Killing-Yano tensors with torsion.

This generalizes previously known subcases

Duff, Liu, ‘99, Chong, Cveti¢, Lu, Pope, ‘05, Chow, ‘10, Lu, Pang, Pope, ‘13, Lu, '13.

We obtained a consistent black hole thermodynamics, except
in some dyonic cases. vi, rang, Pope, 2013
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Boundary conditions for dyons : free case
A U(1) gauge field in AdS, obeys

A = A(O)—i-iA(l)—F"':PCOSQd(b-F?dt-ﬁ-...

A free Maxwell field has

0
5S=[ n®AlsAl.
oM

Allowed boundary conditions :
@ Dirichlet (P fixed) or Neumann (Q fixed).

@ SL(2,7) family of boundary conditions compatible with a
boundary CFT dual. witten, 03

@ Lorentz-violating boundary conditions exist when both
Q, P vary = Non-relativistic holography.
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Boundary conditions for dyons : our case

For interacting theories, non-trivial couplings might prevent
boundary conditions to be consistent. Then, the mass does
not exist and the first law does not make sense.

We found two consistent classes of boundary conditions with
dyons :
e Pl=+4Q;VI=1,.,4
o PL=P* P2=P3and Q; = Q4, Q2 = Q3.
This class contains the AdS-Kerr-Newman solution

In those cases, the mass exists and the first law of
thermodynamics holds.
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Take-home results

Asymptotically flat black holes :

@ The general non-extremal stationary solution, including
the matter sector, is now written in a manageable form.

@ Two distinct extremal limits : BPS (D Reissner-
Nordstrom) and non-BPS (> Rasheed-Larsen)

@ Solution admits a conformal Killing tensor, implying
separability and hidden conformal symmetries.

@ Non-extremal entropy depends upon a new E7 )
invariant, F(M, Q,PL, ¢ ) > J?, as

S, =270 +F+2my/—J2 +F.

@ The relation %(S+ —S_) € 47?7 is also universal.

G. Compere (ULB) 34/35



Take-home results

Asymptotically AdS, black holes :
@ General non-extremal stationary solution is beyond reach
@ Static dyonic solutions with 4 electric and magnetic

charges can be written in a nice form. They admit two
conformal Killing tensors.

@ Rotating dyonic solution with 2 electric and magnetic
charges can be written in a nice form. They admit two
Killing-Yano tensors with torsion.

@ Mass is defined only when boundary conditions exist,
which is prevented in general when both electric and
magnetic charges are varied independently.
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