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The simplicity of N = 8 supergravity

Obtained as the low energy regime of M-theory upon
compactification on T7

Inherits E7(7)(R) symmetries broken to E7(7)(Z) at the
quantum level Cremmer and Julia (1978), etc
In perturbation theory, UV finite up to 4, maybe 8, loops
Bern et al. (2009), etc

In perturbation theory, amplitudes enjoy remarkable
properties : square of N = 4 SYM, etc Kawai, Lewellen, Tye (1986), etc

The theory cannot be decoupled from string theory Green,

Ooguri, Schwarz (2007)

The theory contains BPS extremal black holes with known
microscopic counting in M-theory Maldacena, Strominger, Witten (1997).
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Ideal setup to address black hole microscopics
All known non-extremal black holes in string theory obey
Cvetič and Larsen (1997)

S+S− ∈ π2Z

All known extremal black holes have SL(2,R)×U(1)
→ SL(2,R)× Virasoro symmetries and obey

S+ =
π2

3 cJTJ =
π2

3 cQTQ

Are there other “IR” universal formulae ? Is there a proof
from the “UV"?

In this talk, I will present the most general asymptotically
flat non-extremal black hole of N = 8 supergravity and
derive some of its properties.
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(Next to simple) Gauged N = 8 SO(8) supergravity

Obtained as the low energy regime of M-theory upon
compactification on S7

Admits AdS4 as a N = 8 vacuum
When embedded in M-theory, the dual CFT is the ABJM
theory at level k = 1. Aharony, Bergman, Jafferis, Maldacena (2008)
New sugra theories labelled by a continuous parameter
have been recently found Dall’Agata, Inverso, Trigiante (2012)

Much less is known on solutions and “IR" relations
Known black holes in AdS4 obey Cvetič, Gibbons, Pope (2010)

S+ S− Si S−i ∈ π4`4Z

In this talk, I will present some black holes of this theory and
discuss subtleties with their thermodynamics

G. Compère (ULB) 4 / 35



Based on work done with David Chow (ULB)

“Seed for general rotating non-extremal black holes of
N = 8 supergravity”, arXiv :1310.1925

“Dyonic AdS black holes in maximal gauged
supergravity”, arXiv :1311.1204

“Black holes in N = 8 supergravity from SO(4,4) hidden
symmetries”, arXiv :1404.2602
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Outline

1 STU supergravity and hidden symmetries

2 The general black hole and its properties

3 Microscopic counting for extremal branches

4 Dyonic black holes of maximal gauged supergravity
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I. STU supergravity and hidden
symmetries
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From N = 8 to STU supergravity

Under U-dualities, the 4d metric will be unchanged. The
matter field will be shuffled around.

There are 28 abelian gauge fields in N = 8 supergravity. If
one starts with a dyonic rotating black hole with 3 additional
electric charges (5 charges in total), one can perform
U-dualities and generate the general black hole. Cvetič-Hull, 1996

A suitable sector of N = 8 supergravity is a N = 2
supergravity with three vector multiplets known as the STU
supergravity Cremmer et al ’85 ; Duff et al. ’96. This is the theory that we
will study here.
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STU supergravity

In a specific U-duality frame the Lagrangian has the general
form Duff et al. ’96

L4 = d4x
√−g

(
R− 12fAB(z)∂µzA∂µzB

−14kIJ(z)F
I
µνFJµν +

1
4hIJ(z)ε

µνρσFIµνFJρσ
)

where
zj = xj + iyj, j = 1,2,3 are three complex scalar fields
AI = (A1,A2,A3,A4) are the four U(1) gauge fields.

Triality symmetry : SL(2,R)× SL(2,R)× SL(2,R) and their
permutations.
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From N = 8 to STU supergravity
N = 8

supergravity

STU supergravity

ST 2 supergravity
(reduction of 6d

minimal supergravity)

�iX0X1 supergravity
(truncation of

N = 4 supergravity)

S3 supergravity
(reduction of 5d

minimal supergravity)

Einstein–Maxwell–
dilaton–axion theory

Einstein–
Maxwell theory

(N = 2 supergravity)

Kaluza–Klein theory

U-duality

A2 = A3

A1 = A4, A2 = A3A2 = A3 = A4

A1 = A4, A2 = A3 = 0AI = AA2 = A3 = A4 = 0

1
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Known solutions
N = 8

supergravity

STU supergravity

ST 2 supergravity
(reduction of 6d

minimal supergravity)

�iX0X1 supergravity
(truncation of

N = 4 supergravity)

S3 supergravity
(reduction of 5d

minimal supergravity)

Einstein–Maxwell–
dilaton–axion theory

Einstein–
Maxwell theory

(N = 2 supergravity)

Kaluza–Klein theory

U-duality

A2 = A3

A1 = A4, A2 = A3A2 = A3 = A4

A1 = A4, A2 = A3 = 0AI = AA2 = A3 = A4 = 0

1

Extremal

Static

Rotating 4-electric

Rotating 4-dyonic

G. Compère (ULB) 11 / 35



Algorithm for solution generation

Reduce on time. Get Euclidean 3d Einstein gravity
coupled to scalars.
Scalars form the SO(4,4)

SL(2,R)4
coset model Breitenlohner, Maison, Gibbons, ’88

Take Kerr-Taub-NUT (a,m,n) as a seed
Act with SL(2,R)4 ⊂ SO(4,4) hidden symmetries
Generate all 4 QI + 4 PI charges
Cancel the total NUT charge at the end by tuning the
initial NUT charge n
Iterate the loop "Recognize patterns → Simplify →
Rewrite → Recognize patterns → . . ."
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II. The general black hole and its
properties
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The Kerr metric (1963)

ds2 = −R−UW (dt+ ω3)2 +W
(dr2
R +

du2
U +

RU
a2(R−U)

dφ2
)
,

where

W(r,u) = r2 + u2,

ω3(r,u) =
2mrU
a(R−U)

dφ,

and

R(r) = r2 − 2mr + a2,
U(u) = a2 − u2,

The standard spherical polar angle θ is u = acos θ.

G. Compère (ULB) 14 / 35



The N = 8 black hole metric
Input : M,N,m,n,a + 2 harmonic functions L(r), V(u) :

ds2 = −R−UW (dt+ ω3)2 +W
(dr2
R +

du2
U +

RU
a2(R−U)

dφ2
)
,

where

W2(r,u) = (R−U)2 + (2Nu+ L)2 + 2(R−U) (2Mr + V) ,

ω3(r,u) =
2N(u− n)R+U(L+ 2Nn)

a(R−U)
dφ,

R(r) = r2 − 2mr + a2 − n2,
U(u) = a2 − (u− n)2,

L(r) = L1r + L2,
V(u) = V1u+ V2.

The standard spherical polar angle θ is u = n+ acos θ.
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Separability and hidden conformal symmetry
Define the string frame metric

d̃s2 =
r2 + u2
W ds2.

It admits an irreducible Killing-Stäckel tensor Kab obeying

∇(aKbc) = 0.

The massive Klein-Gordon equation on d̃s2 is separable.
Therefore, the metric ds2 admits an irreducible conformal
Killing-Stäckel tensor with components Qab = Kab obeying

∇(aQbc) = q(agbc).

The massless Klein-Gordon equation on ds2 is separable.
[Subcases include : Chow, ’08 ; Keeler, Larsen, ’12]
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Gauge fields : All is known !

We have

AI = W ∂

∂δI

(
− 1W (dt+ ω3)

)
.

The electric and magnetic charges are

QI = 2∂M
∂δI

, PI = −2∂N
∂δI

.
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Scalar fields

The three axions and dilatons are :

χi =
fi

r2 + u2 + gi
, e−ϕi =

W
r2 + u2 + gi

,

where

fi(r,u) = 2(mr + nu)ξi1 + 2(mu− nr)ξi2 + 4(m2 + n2)ξi3,

gi(r,u) = 2(mr + nu)ηi1 + 2(mu− nr)ηi2 + 4(m2 + n2)ηi3,

are linear functions of r and u.
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Thermodynamics

First law and Smarr relation hold

δM = T+δS+ + Ω+δJ + ΦI+δQI + Ψ+
I δP

I
,

M = 2T+S+ + 2Ω+J + ΦI+QI + Ψ+
I P

I
,

Also at the inner horizon,

δM = T−δS− + Ω−δJ + ΦI−δQI + Ψ−I δP
I
,

M = 2T−S− + 2Ω−J + ΦI−QI + Ψ−I P
I
.
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Quartic invariant

∆ = 1
16 [4(Q1Q2Q3Q4 + P1P2P3P4)

+ 2
∑
J<K QJQKPJPK −

∑
J(QJ)2(PJ)2].

The invariant is a Cayley hyperdeterminant, and is manifestly
invariant under SL(2,R)3 upon rewriting as [Duff, ’06]

∆ = 1
32ε

ii′εjj
′
εkk

′
εll

′
εmm

′
εnn

′aijkai′j′manpk′an′p′m′

with εij = ε[ij], ε01 = 1 and components aijk given by

(a000,a111) = −(Q1,P1), (a001,a110) = (P2,Q2),

(a010,a101) = (P3,Q3), (a011,a100) = (Q4,P4).

This invariant is a special case of a more general E7(7) quartic
invariant [Kallosh, Kol, ’96].
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Universal properties of horizons

Product of area law : Cvetič, Gibbons, Pope, ’10

A+

4
A−
4 = 4π2

(
J2 + ∆(QI,PI)

)
∈ π2Z

Angular momentum law :

8π2J =
Ω+

T+
(S+ − S−) ∈ 4π2Z

Kinematic relationship :

Ω+

T+
= −Ω−

T−
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A new E7(7)(R) invariant
Using these properties, one can prove Cardy’s form :

S+ = 2π
(√

∆ + F +

√
−J2 + F

)
Since S+, J,∆ are E7(7)(R) invariants, then F(M,QI,PI, zi∞) is
invariant as well.

Known special cases :
For BPS black holes, F = J = 0.
In the extremal “fast” rotating limit, F = J2.
In the extremal “slow” rotating limit, F = −∆

For Kerr-Newman : F = M4 −M2Q2.
In regime Q1,2,3 →∞ : F = 1

2Q1Q2Q3(M −MBPS) Cvetic-Larsen

(2014)

G. Compère (ULB) 22 / 35



F is not a rational function of the charges

For the Kaluza-Klein black hole (Rasheed-Larsen),

F = (M2 − 14P
2)(M2 − 14Q

2) +
1
3(M2 +

1
8(P2 +Q2))2H[x]

where 0 ≤ x ≡ 54M2(P2−Q2)2

(8M2+P2+Q2)3
≤ 1 and

H[x] = 2
√
1− xcos arcsin

√
x

3 + 6
√
x sin arcsin

√
x

3 − 2

increases monotonically from 0 to 1.

It remains a challenge to write it in terms of E7(7) invariants
and elucidate its structure.
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III. Microscopic counting for extremal
branches
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Brane intersection table

In Type IIA frame, the black hole corresponds to
t r θ φ z1 z2 z3 z4 z5 z6

D0 × · · · ∼ ∼ ∼ ∼ ∼ ∼
D2 × · · · × × ∼ ∼ ∼ ∼
D2 × · · · ∼ ∼ × × ∼ ∼
D2 × · · · ∼ ∼ ∼ ∼ × ×
D4 × · · · ∼ ∼ × × × ×
D4 × · · · × × ∼ ∼ × ×
D4 × · · · × × × × ∼ ∼
D6 × · · · × × × × × ×

with total energy M and angular momentum J.
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Two extremal limits
Attractor mechanism ⇒ Moduli(QI,PI)
Fast branch

S+ = 2π
√

∆ + J2

1/8− BPS D4−D4−D4 system modeled by
the MSW CFT ⇒IR (0,4) CFT (c = 6Q1Q2Q3).
Attempts to deform this theory have been
made to describe extremal Kerr-Newman
black hole

Slow branch
S+ = 2π

√
−∆− J2

non-BPS D0−D6 system, not understood
Contains rotating Kaluza-Klein 5d black hole
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Universal semi-classical counting at
extremality
The near-horizon solution is Kunduri, Lucietti, Reall, ’07

ds2 = W+

(
− r2 dt2 +

dr2
r2 +

du2
U + Γ2(dφ+ kr dt)2

)
,

AI = f I(dφ+ kr dt) + eI dφ/k,
ÃI = f̃I(dφ+ kr dt) + ẽI dφ/k.

The entropy is Guica, Hartman, Song, Strominger, 2008 Hartman, Murata, Nishioka, Strominger

2008

S+ =
π2

3 cJTJ =
π2

3 cQ1TQ1 = . . .

where

cJ = 12J, TJ =
1
2πk ,

cQ1 = 6∂|∆|
∂Q1

, TQ1 =
1

2πe1 .
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Entropy of non-extremal black holes ( ?)

For static non-extremal electrically charged black holes
Cvetič-Youm, 95, Horowitz-Lowe-Maldacena wrote in ’96 the
mysterious formula

S = 2π(
√nL +

√nR)(
√
N2 +

√
N2̄)(

√
N5 +

√
N5̄)(

√
N6 +

√
N6̄)

in terms of free D2, D̄2,D6, D̄6, NS5, ¯NS5 and string left/right
momentum nL,nR.

However, this formula does not generalize when a fifth
charge is added.
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IV. Dyonic black holes of maximal
gauged supergravity
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Dyonic black holes of gauged supergravity

Another theory of interest is N = 8 SO(8) gauged
supergravity that can be obtained from S7 reduction of
11-dimensional supergravity.

A consistent truncation exists to N = 2 U(1)4 gauged
supergravity. The action is

Lgauged = LSTU + g2V [zA] ? 1.

Cvetič, Duff, Hoxha, Liu, Lü, Martinez-Acosta, Pope, Sati, Tran, ’99

There are very few dualities remaining. Solutions are harder
to generate.
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Two new classes of dyonic AdS4 black holes
We guessed and checked :

Most general spherical or planar static black holes of
U(1)4 N = 2 gauged supergravity.
[4 electric and 4 magnetic charges] They admit two
conformal Killing tensors.
Most general spherical rotating black holes of N = 2
U(1)2 gauged supergravity.
[2 electric and 2 magnetic charges] They admit two
Killing-Yano tensors with torsion.

This generalizes previously known subcases
Duff, Liu, ’99, Chong, Cvetič, Lu, Pope, ’05, Chow, ’10, Lu, Pang, Pope, ’13, Lu, ’13.

We obtained a consistent black hole thermodynamics, except
in some dyonic cases. Lü, Pang, Pope, 2013
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Boundary conditions for dyons : free case
A U(1) gauge field in AdS4 obeys

A = A(0) +
1
r A

(1) + · · · = Pcos θdφ+
Q
r dt+ . . .

A free Maxwell field has

δS =

∫
∂M

ηabA(1)
a δA(0)

b .

Allowed boundary conditions :
Dirichlet (P fixed) or Neumann (Q fixed).
SL(2,Z) family of boundary conditions compatible with a
boundary CFT dual. Witten, ’03
Lorentz-violating boundary conditions exist when both
Q,P vary ⇒ Non-relativistic holography.
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Boundary conditions for dyons : our case

For interacting theories, non-trivial couplings might prevent
boundary conditions to be consistent. Then, the mass does
not exist and the first law does not make sense.

We found two consistent classes of boundary conditions with
dyons :

PI = ±QI ∀I = 1, ..,4
P1 = P4, P2 = P3 and Q1 = Q4, Q2 = Q3.
This class contains the AdS-Kerr-Newman solution

In those cases, the mass exists and the first law of
thermodynamics holds.
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Take-home results

Asymptotically flat black holes :
The general non-extremal stationary solution, including
the matter sector, is now written in a manageable form.
Two distinct extremal limits : BPS (⊃ Reissner-
Nördstrom) and non-BPS (⊃ Rasheed-Larsen)
Solution admits a conformal Killing tensor, implying
separability and hidden conformal symmetries.
Non-extremal entropy depends upon a new E7(7)

invariant, F(M,QI,PI, φi∞) ≥ J2, as

S+ = 2π
√
3 + F + 2π

√
−J2 + F.

The relation Ω+

T+
(S+ − S−) ∈ 4π2Z is also universal.

G. Compère (ULB) 34 / 35



Take-home results

Asymptotically AdS4 black holes :
General non-extremal stationary solution is beyond reach
Static dyonic solutions with 4 electric and magnetic
charges can be written in a nice form. They admit two
conformal Killing tensors.
Rotating dyonic solution with 2 electric and magnetic
charges can be written in a nice form. They admit two
Killing-Yano tensors with torsion.
Mass is defined only when boundary conditions exist,
which is prevented in general when both electric and
magnetic charges are varied independently.
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