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Double Field Theory

• From sector of String Field Theory. Features 
some stringy physics, including T-duality, in 
simpler setting

• Strings see a doubled space-time

• Needed for non-geometric backgrounds

• Doubled space fully dynamic

• Strong constraint restricts to subsector in which 
extra coordinates auxiliary: get conventional 
field theory locally. Duality covariant sugra.

Hull & Zwiebach
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• Recent work: find finite gauge transformations 
& use to understand doubled geometry

• Hohm & Zwiebach: finite gauge 
transformations with non-associative 
composition.  Non-associative geometry?

• Park; Berman, Cederwall & Perry: Manifold, but 
finite transformations only work up to certain 
local symmetries. Effectively works only for 
subgroup of gauge group. Gerbe structure?

What is DFT geometry?
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Double trouble?

• CMH: doubled space from string theory is 
manifold, even for non-geometric 
backgrounds, giving different picture 

• Recent proposals: try to relate finite DFT 
gauge transformations to diffeomorphisms of 
doubled space. 

• Problems arise as these are different groups

• Constant ‘metric’   in DFT. Is doubled 
geometry flat?

⌘
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New Results:

• Simple explicit form of finite gauge 
transformations

• Associative, works for full symmetry group

• Doubled space is a manifold, not flat

• Gives geometric understanding of ‘generalised 
tensors’ & relation to generalised geometry

• Transition functions give global picture

arXiv:1406.7794
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = εab∂
b
X̃
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = εab∂
b
X̃

Need “auxiliary”     for interacting theory
i) Vertex operators 
ii) String field Kugo & Zwiebach

X̃

e
ikL·XL , e

ikR·XR

�[x, x̃, a, ã]
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Strings on Td

X = XL(σ + τ) + XR(σ − τ), X̃ = XL − XR

X X̃conjugate to momentum, to winding no.

dX = ∗dX̃ ∂aX = εab∂
b
X̃

Doubled Torus  2d coordinates
Transform linearly under
Sigma model on doubled torus

O(d, d; Z) X �
�

x̃i

xi

⇥

Strings on torus see DOUBLED GEOMETRY!

Tseytlin; Hull
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T-duality

• Takes S1 of radius R to S1 of radius 1/R

• Exchanges momentum p and winding w

• Exchanges S1 coordinate X and dual S1 

coordinate 

• Acts on “doubled circle” with coordinates 

• On d torus, T-duality group

• Stringy symmetry, absent in field theory

X̃

(X, X̃)

O(d, d; Z)
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Strings on a Torus

• States: momentum p, winding w

• String: Infinite set of fields

• Fourier transform to doubled space:

• “Double Field Theory” from closed string field 
theory. Some non-locality in doubled space            

• Subsector? e.g.

�(p, w)

�(x, x̃)

gij(x, x̃), bij(x, x̃), �(x, x̃)
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Double Field Theory

• Double field theory on doubled torus

• General solution of string theory: involves 
doubled fields 

• DFT needed for non-geometric backgrounds

• Real dependence on full doubled geometry, 
dual dimensions not auxiliary or gauge artifact. 
Double geom. physical and dynamical

�(x, x̃)

Hull & Zwiebach

(With weak section condition, not strong one)
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DFT gives O(D,D) covariant formulation
O(D,D) Covariant Notation

�M �
�

�i

�i

⇥

�MN =
�

0 I
I 0

⇥
M = 1, ..., 2D

XM �
�

x̃i

xi

⇥

Constraint �M�MA = 0

� ⌘ @

2

@x

i
@x̃i

=
1

2
@

M
@M

Arises from SFT constraint

L�
0  = 0, L�

0 = L0 � L̄0

Weak Constraint or
weak section conditionon all fields and parameters
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Projectors and Cocycles

Naive product of constrained fields doesn’t satisfy constraint

String product has explicit projection
Leads to a symmetry that is not a Lie algebra, but is a 
homotopy lie algebra.

SFT has non-local cocycles in vertices, DFT should too
Cocycles and projectors not needed in cubic action

L�0 �1 = 0, L�0 �2 = 0 but

�A = 0,�B = 0 �(AB) �= 0but

L�0 (�1�2) �= 0

Double field theory requires projections.
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• Weakly constrained DFT non-local

• ALL doubled geometry dynamical, evolution 
in all doubled dimensions

• Restrict to simpler theory: STRONG 
CONSTRAINT

• Fields then depend on only half the doubled 
coordinates

• Locally, just conventional SUGRA written in 
duality symmetric form
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Strong Constraint for DFT

�M�M (AB) = 0 (�MA) (�MB) = 0

If impose this, then it implies weak form,  but 
product of constrained fields satisfies constraint.

Locally, it implies fields only depend on at most half 
of the coordinates, fields are restricted to null 
subspace N.
Looks like conventional field theory on subspace N

This gives Restricted DFT, a subtheory of DFT

on all fields and parameters

Hohm, H &Z
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• If fields supported only on submanifold N of 
doubled space M, recover Siegel’s duality 
covariant form of (super)gravity on N

• In general get this only locally. In each 2D-dim 
patch of doubled space, fields supported on 
D-dim sub-patch, but sub-patches don’t fit 
together to form a manifold with smooth 
fields.
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• In string theory, T-duality acts on torus or 
fibres of torus fibration, relates local modes 
and winding

• Winding modes: doubling of torus or fibres

• Other topologies may not have windings, or 
have different numbers of momenta and 
windings. No T-duality. No doubling?

• DFT ‘background independent’ HHZ. Can 
write on doubling of any space. What is 
double if not derived from string theory?
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Generalised Metric Formulation

HMN =
�

gij �gikbkj

bikgkj gij � bikgklblj

⇥
.

HMN � �MPHPQ�QN

HMPHPN = �M
N

2 Metrics on double space HMN , �MN

Constrained metric

Hohm, H &Z
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Generalised Metric Formulation

HMN =
�

gij �gikbkj

bikgkj gij � bikgklblj

⇥
.

hP
MhQ

NH�
PQ(X �) = HMN (X)

X � = hX h � O(D,D)

HMN � �MPHPQ�QN

HMPHPN = �M
N

2 Metrics on double space HMN , �MN

Constrained metric

Covariant O(D,D) Transformation

Hohm, H &Z
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L =
1
8
HMN�MHKL �NHKL �

1
2
HMN�NHKL �LHMK

� 2 �Md �NHMN + 4HMN �Md �Nd

S =
�

dxdx̃ e�2d L

��HMN = ⇥P ⇤PHMN

+ (⇤M⇥P � ⇤P ⇥M )HPN + (⇤N⇥P � ⇤P ⇥N )HMP

��HMN = �L�HMN

Gauge Transformation

Rewrite as “Generalised Lie Derivative”

O(D,D) covariant action
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Generalised Lie Derivative

�L�AM
N ⇥ �P ⇥P AM

N

+(⇥M�P�⇥P �M )AP
N + (⇥N�P � ⇥P �N )AM

P

�L�AM
N = L�AM

N � �PQ�MR ⇤Q⇥R AP
N

+ �PQ�NR ⇤R⇥Q AM
P

A M1...
N1...
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Gauge Algebra

Parameters

Gauge Algebra [��1 , ��2 ] = �[�1,�2]C

C-Bracket:

[�1,�2]C ⇥ [�1,�2]�
1
2

�MN�PQ �P
[1 ⇤N �Q

2]

Lie bracket + metric term

Parameters               restricted to N
Decompose into vector + 1-form on N
C-bracket reduces to Courant bracket on N

�M (X)

Same covariant form of gauge algebra found in similar context by Siegel

� ⇤L�1 , ⇤L�2

⇥
= � ⇤L[�1,�2]C

⌃M
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J(�1,�2,�3) � [ [�1,�2] ,�3 ] + cyclic ⇥= 0

Jacobi Identities not satisfied!

for both C-bracket and Courant-bracket 

How can bracket be realised as a symmetry algebra?

[ [��1 , ��2 ] , ��3 ] + cyclic = �J(�1,�2,�3)
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Symmetry is Reducible

�M = �MN⇤N⇥Parameters of the form
do not act

cf 2-form gauge field
Parameters of the form
do not act

⇥B = d�
� = d⇥

Gauge algebra determined up to such transformations
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Symmetry is Reducible

�M = �MN⇤N⇥Parameters of the form
do not act

cf 2-form gauge field
Parameters of the form
do not act

⇥B = d�
� = d⇥

Gauge algebra determined up to such transformations

Resolution:

J(�1,�2,�3)
M = �MN⌅N⇥

�J(�1,�2,�3) does not act on fields
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O(D,D) covariant vectors and tensors

V M =

✓
vm

ṽm

◆

X

M =

✓
x

m

x̃m

◆
Doubled space coordinates

HMN

Suggestive of tensors on doubled space, but 
transformations not those of diffeomorphisms on 
doubled space, as generated by generalised Lie derivative, 
not usual Lie derivative.

If not tensors on doubled space, what are they?

What is the Geometry of Generalised Tensors?
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Not diffeomorphisms of doubled space, as algebra given 
by C-bracket, not Lie bracket.

Finite transformations

What do you get by exponentiating infinitesimal 
transformations? Hohm, Zwiebach 

cf exponentiating usual Lie derivative 

x

0m = e

��k⇥k
x

m

A

�
m(x) = e

L⇠
Am(x)

gives transformations induced by coordinate transformation

Monday, 21 July 14



X ! X 0 = f(X)

A0
M (X 0) = FM

NAN (X)

FM
N � 1

2

⇣ �XP

�X 0M
�X 0

P

�XN
+

�X 0
M

�XP

�XN

�X 0P

⌘

FM
N =

�XN

�X 0M

HZ write finite transformations for DFT in form with

and generalised vectors transforming as

For conventional diffeos, would have

Important property:            invariant⌘MN
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Looks  a bit like a conventional geometry.
But there’s a catch....
Exponentiating gen. Lie derivative 

A�
M (X) = e

bL⇠ AM (X) ,

gives transformations of fields that form a group
(violation of Jacobi’s doesn’t act on fields)

These induce transformations of coordinates

X 0M = e��K(�)⇥KXM �K(�) � �K +O(�3) ,

Not a group. Strange composition law.
Non-associative geometry? Hohm, Lust, Zwiebach
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Write parameters                 as⇠M (X) ⇠A

Composite index A=(M,X) combining discrete index M 
and continuous variables X

�
[⇠1, ⇠2]C

�A
= �2fBC

A⇠B1 ⇠C2

C-bracket defines constants

Use as structure constants for closed algebra k

[TA, TB ] = fAB
CTC

[[TA, TB ], TC ] + cyclic permutations = gABC
DTD

Not Lie:

Algebraic Structure
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Finite transformations
give algebra K  with multiplication

Failure of C-bracket Jacobi identities      Non-associativity

(k1 · k2) · k3 6= k1 · (k2 · k3)

k(⇠)

For infinitesimal parameters

k(⇠1) · k(⇠2) = k(⇠12)

⇠12 = ⇠1 + ⇠2 �
1

2
[⇠1, ⇠2]C + . . .

k(⇠) ⇠ 1 + ⇠ATA + . . .

k1 · k2 = k12

=)
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Representations on Generalised Tensors?

If represent by generalised Lie derivative acting on 
Generalised Tensors

R(k) = exp(

bL⇠)

Perfectly consistent

R(k1)R(k2) = R(k1 · k2)

T 0
(X) = exp(

bL⇠)T (X)

⇣
R(k1)R(k2)

⌘
R(k3) = R(k1)

⇣
R(k2)R(k3)

⌘

Key point is redundant gauge transformations z are 
represented trivially, R(z)=1. R(k) generate Lie group 
of DFT gauge symmetries, the quotient of K by z’s

k(⇠)
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Hohm-Zwiebach proposal:

Represent K by new transformations S(k) acting 
on Generalised Tensors

T 0(X 0) = F(X,X 0)T (X)

But now apparent inconsistency as

S(k1)S(k2) 6= S(k1 · k2)

Idea is to try to rewrite active transformation as 
an passive one taking X to X’(X).
HZ find transformation reproducing R(k) 
transformation.
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To deal with this, they propose new composition of 
transformations

S(k1) ? S(k2) ⌘ S(k1 · k2)

Non-associativity of K

(k1 · k2) · k3 6= k1 · (k2 · k3)

leads to non-associativity of star product: 
⇣
S(k1) ? S(k2)

⌘
? S(k3) 6= S(k1) ?

⇣
S(k2) ? S(k3)

⌘
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In particular, each
gives a coordinate transformation

These coordinate transformations are composed not 
in the usual associative way
but are combined non-associatively using a star 
product.

X ! X 0(X)

X 0M ⌘ e�⇥P (⇠)@PXM

⇥M = ⇠M +
1

12
(⇠N@N⇠L)@M⇠L +O(⇠4)

X 00(X 0(X))

Does this imply some kind of non-associative 
geometry? Hohm, Lust, Zwiebach

k(⇠)
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Then each k in K is mapped to a diffeomorphism 
s(k) of the doubled spacetime

and these diffeomorphisms are not combined 
using the multiplication of the 
diffeomorphism group, but according to a 
non-associative star product.

This then attempts to impose a new algebraic 
structure on the set of diffeomorphisms, and 
this raises a number of issues.

s(k(⇠)) = e�⇥P (⇠)@P
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Consider 2 different Lie groups G,G’ of same dimension
e.g. 

S : G ! G0

S(g1) � S(g2) 6= S(g1 · g2)

(G, ·), (G0, �)

G = SU(2)⇥ SU(2)⇥ SU(2), G0 = GL(3,R)

Consider a non-homomorphic map

TOY MODEL

Monday, 21 July 14



Consider 2 different Lie groups G,G’ of same dimension
e.g. 

S : G ! G0

S(g1) � S(g2) 6= S(g1 · g2)

(G, ·), (G0, �)

g = exp(⇠ATA) 2 G ! S(g) = exp(f(⇠)AtA) 2 G0

e.g. if  G,G’ resepectively have generators TA, tA

G = SU(2)⇥ SU(2)⇥ SU(2), G0 = GL(3,R)

Consider a non-homomorphic map

TOY MODEL
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Consider 2 different Lie groups G,G’ of same dimension
e.g. 

S : G ! G0

S(g1) � S(g2) 6= S(g1 · g2)

(G, ·), (G0, �)

Can then formally try to define star product on G’
S(g1) ? S(g2) ⌘ S(g1 · g2)

g = exp(⇠ATA) 2 G ! S(g) = exp(f(⇠)AtA) 2 G0

e.g. if  G,G’ resepectively have generators TA, tA

G = SU(2)⇥ SU(2)⇥ SU(2), G0 = GL(3,R)

Consider a non-homomorphic map

TOY MODEL
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• Attempts to define a G multiplication on 
points of G’

• Attempts to ‘realise’ G transformations as 
G’ ones

• Algebraic structure of Lie group 
determines geometry. Can’t impose group 
on ‘wrong’ geometry

• Similar to ‘realising’ DFT gauge 
transformations as diffeomorphisms of 
doubled space?
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• Park; Berman, Cederwall, Perry map DFT 
gauge transformations to diffeomorphisms of 
doubled space, essentially by restricting to 
subgroup for which this is possible

• Another way to understand finite 
transformations?

• What is finite transformation of generalised 
tensors?

• What is the geometry significance of 
generalised tensors?
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X

M =

✓
x

m

x̃m

◆
@M =

✓
@m
@̃m

◆
�MN =

�
0 I
I 0

⇥

Constraint �M�MA = 0

Strong Constraint for restricted DFT

�M�M (AB) = 0 (�MA) (�MB) = 0

@̃i = 0

ÛGeneric solution in patch   : fields and parameters 
independent of half the coordinates:

Fields live on null patch U, coordinates x:
U ‘physical’ spacetime

�(xm)
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bLV W
M = V P@PW

M +WP (@MVP � @PV
M )

Generalised Lie derivative

V M =

✓
vm

ṽm

◆
Vectors
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bLV W
M = V P@PW

M +WP (@MVP � @PV
M )

Generalised Lie derivative

has the components

Lv is usual Lie derivative

V M =

✓
vm

ṽm

◆
Vectors

Lvw̃m = vp@pw̃m + w̃p@mvp
Lvw

m = vp@pw
m � wp@pv

m

( bLV W )m = Lvw̃m + wp(@mṽp � @pṽm)

( bLV W )m = Lvw
m

Monday, 21 July 14



Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
nDefine
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Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
n

�ŵm = Lvŵm

Define

Then

Monday, 21 July 14



Under infinitesimal transformation �WM = bLV W
M

�wm = Lvw
m

�w̃m = Lvw̃m + wp(@mṽp � @pṽm)

Introduce a gerbe connection b with transformations
�vbmn = Lvbmn + @mṽn � @nṽm

ŵm = w̃m � bmnw
n

�ŵm = Lvŵm

    transforms as 1-form under v-transformations and is 
invariant under   transformations!
ŵ

ṽ

Define

Then
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WM =

✓
wm

w̃m

◆
Then given

can define ŴM =

✓
wm

ŵm

◆
=

✓
wm

w̃m � bmnwn

◆

�ŴM = LvŴ
M

It is invariant under    transformationsṽ

COVARIANT  TRANSFORMATIONS
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WM =

✓
wm

w̃m

◆
Then given

can define ŴM =

✓
wm

ŵm

◆
=

✓
wm

w̃m � bmnwn

◆

�ŴM = LvŴ
M

It is invariant under    transformationsṽ

w

0m(x0) = w

n(x)
@x

0m

@x

n
ŵ

0
m(x0) = ŵn(x)

@x

n

@x

0m

Gives finite transformations!

x ! x

0(x) = e

�vm@m
x

COVARIANT  TRANSFORMATIONS
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b

0
mn(x

0) = [bpq(x) + (@pṽq � @q ṽp)(x)]
@x

p

@x

0m
@x

q

@x

0n

w̃

0
m(x0) =

h
w̃n(x) + (@nṽq � @q ṽn)w

q(x)
i
@x

n

@x

0m

Can also find the transformation of w̃

Standard finite transformations of gerbe connection:

gives

w

0m(x0) = w

n(x)
@x

0m

@x

n
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w � ŵ is a section of 

This is Hitchin’s generalised tangent bundle on N

w transforms as a tangent vector on N and    transforms 
as a cotangent vector under diff(N). 
Both invariant under    transformations.

ŵ

ṽ

w � w̃

is section of E, which is            twisted by a gerbeT � T ⇤

0 ! T ⇤ ! E ! T ! 0

DFT and GENERALISED GEOMETRY
Consider case fields restricted to submanifold N of M

(T � T ⇤)N

Monday, 21 July 14



Then ‘generalized vectors’ WM =

✓
wm

w̃m

◆

are not really vectors on doubled space, but are sections 
of generalised tangent bundle over ‘physical space’ N, 
twisted by a gerbe

        symmetries are diffeomorphisms of N
        symmetries are b-field gauge transformations on N
v

m(x)
ṽm(x)

Gauge symmetry of DFT

Global O(D,D)

Di↵(N)n ⇤2
closed

(N)
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2D dimensional doubled space M, D dim. subspace N

Vector fields on M: 
        Sections of TM, 
        transform under diff(M)
Hatted generalised vector fields     on M:
        Sections of       
        transform under diff(N)
Generalised vector fields W on M
        Sections of  E(N)    
        transform under       

(T � T ⇤)N

Ŵ

Di↵(N)n ⇤2
closed

(N)

Extends to tensors, generalised tensors and 
untwisted generalised tensors

3 kinds of vectors V M (X)

Monday, 21 July 14



ĤMN =

✓
gmn 0
0 gmn

◆

Untwisted form of generalised metric

Finite transformations give usual ones for g,b

HMN =

✓
gmn � bmkgklbln bmkgkn

�gmkbkn gmn

◆

Generalised Metric

Natural metric on T � T ⇤
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⌘MN =

✓
0 1
1 0

◆
Matrix with constant components:

If this is tensor on M, then it is flat metric and this would 
greatly restrict possible M.  Not invariant under Diff(M)

Constant O(D,D) Metric
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⌘MN =

✓
0 1
1 0

◆

⌘̂MN = ⌘MN

Matrix with constant components:

If this is tensor on M, then it is flat metric and this would 
greatly restrict possible M.  Not invariant under Diff(M)

If it is generalised tensor, section of

Invariant under DFT gauge transformations, natural 
object in DFT. Metric for E(N), not T(M)
No restriction on geometry

Constant O(D,D) Metric

E⇤ ⌦ E⇤(N)
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Conclusions

• Doubled space M is manifold, need not be flat

• If fields live on submanifold N, DFT gives 
conventional field theory on N

• Generalised tensors in                                      
not

• E(N) is                  twisted by gerbe

• DFT gauge transformations just diffeos and b-
field gauge transformations on N

E ⌦ E · · ·⌦ E(N)
T ⌦ T · · ·⌦ T (M)

(T � T ⇤)N
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• DFT: sugra in duality symmetric formulation, 
using generalised geometry on N

• Covariant formulation of generalised 
geometry, indep. of choice of duality frame

• More generally, this applies locally in patches. 
Use DFT gauge and O(D,D) symmetries in 
transition functions. 

• DFT extends field theory to non-geometric 
spaces: T-folds, withT-duality transition 
functions.
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