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Integrability of AdS5/CFT4 spectral problem

Weak coupling expansion for 

SYM anomalous dimensions.

Perturbative integrability: Spin chain

Strong coupling  from AdS-dual –

classical superstring sigma model

Classical integrability, algebraic curve

S-matrix 

Asymptotic Bethe ansatz

Y-system + analyticity

Thermodynamic 

Bethe ansatz (exact!)

Wronskian solution of Y/T-system via Baxter’s Q-functions                         

Finite system of integral non-linear equations (FiNLIE)

Q-system and Riemann-Hilbert eqs.

for quantum spectral curve (P-µ)
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SYM is dual to supersting σ-model on AdS5 ×S5

fermions

• 2D ϭ-model

on a coset

world sheettarget space

AdS time

• Metsaev-Tseytlin action

Energy of  a string state

• Super-conformal N=4 SYM symmetry PSU(2,2|4) →  isometry of string  target space 

Dimension of YM operator

Maldacena

Gubser, Klebanov, Polyakov

Witten



Classical integrability of superstring on AdS5×S5

 Monodromy matrix 

encodes infinitely many conservation lows

 String eqs. of motion and constraints recast  into flatness condition

Mikhailov,Zakharov

Bena,Roiban,Polchinski

world sheet

 Eigenvalues define quasi-momenta: V.K.,Marshakov,Minahan,Zarembo

Beisert,V.K.,Sakai,Zarembo

• Asymptotics fixed by  Cartan charges of PSU(2,2|4):      

for Lax connection  - double valued w.r.t. spectral parameter  

 Each quasi-momentum inherits the double-valuedness of Lax connection.



From classical to quantum Hirota in U(2,2|4) T-hook
Gromov, V.K., Tsuboi
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• We have to precise the order of operatorial factors along Dynkin diagram:

- expansion in 

• Quantization: replace classical spectral determinant  by quantum spectral functional

• The best parameterization is in terms of Baxter-like Q-functions:    Q-system

For spin chains :

Bazhanov,Reshetikhin

Cherednik

V.K.,Vieira (for the proof)

• T-functions in general (a×s) irrep

solve the Hirota equation (and thus the Y-system in T-hook) 



Q-system as a Grassmanian

• -form encodes all Q-functions with     indices:

• Example  for N=2:

Krichever,Lipan, Wiegmann,Zabrodin

Gromov, Vieira 

V.K., Leurent, Volin.

• Multi-index Q-function:   coefficient of

• Plücker’s QQ-relations:

Notations:

• One-form on N single indexed Q-functions:

• Notations in terms of subsets of indices:



(K|M)-graded Q-system

Tsuboi

Gromov,V.K., Leurent, Tsuboi
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• Split the full set of K+M indices as  

• Grading = re-labeling of F-indices (subset → complimentary subset of F)

• Examples for (4|4):

• New type of QQ-relations involwing 2 indices of opposite grading:

• Graded forms:

Now we can label:



Wronskian solution of Hirota eq.

• For  su(N) spin chain (half-strip) we impose: 

Tsuboi

V.K.,Leurent,Volin

• Example: solution of Hirota equation in a band of width N  in terms of  

exterior full-forms via 2N   arbitrary functions

a

s

• Solution of Hirota eq. for (K1,K2 | M1+M2)   T-hook

Krichever,Lipan, Wiegmann,Zabrodin



Algebraic symmetries of Q-system

• Satisfy the same QQ-relations if we impose:

(related to unimodularity of PSU(2,2|4)  )

• Hodge  duality is a simple relabeling:

Example for (4|4):

• H-symmetry: sl(4)×sl(4) rotation preserving QQ-relations

with i-periodic H-functions:

where

Examples:



Analyticity of  AdS/CFT   Q-system

• Comparing characters of classical monodromy matrix and their quantum

analogues  -- T-functions, we relate these functions to classical quasimomenta

• From  asymptotics of (quasi)classical quasi-momenta:

• To fix all Q-functions (and Riemann-Hilbert equations for AdS/CFT spectrum)

we have to know the monodromy around the branch points.

• The very existence of Q-system imposes strong restrictions on analyticity!   

Gromov, V.K., Leurent, Volin 2013

• AdS/CFT   T-system is defined on (2,2|4)-hook and is solved via wronskians of 

Q-functions with specific analytic properties.  Their simplest basic Q’s:

• They inherit one-cut structure on their defining Riemann sheets (checked from TBA!) 



H(ω)-transformation from upper- to lower-analytic Q’s

• Q-system allows to choose all Q-functions upper-analytic or all  lower-analytic.

Both representations are physically equivalent → related by H-rotations

with periodic coefficients rising and lowering indices

• Structure of cuts of Q-functions:

• We can “flip” all short cuts to long 

ones going through the short cuts  

from above  or from below. It gives 

the upper or lower-analytic P’s.   

• True only for 4×4  antisym. matrices: Exceptional role of  PSU(2,2|4) ! 



H(µ)-transformation from upper- to lower-analytic Q’s

• Upper-analytic or all  lower-analytic functions with long cuts related by H-rotation

with periodic coefficients rising and lowering indices:

• Structure of cuts of P-functions:  the same picture, 

but with the exchange of roles of long and short cuts



Analytic Q-system

- lowers or rises “bosonic” indices and flips UHP and LHP analyticity

- lowers or rises “fermionic” indices and flips UHP and LHP analyticity

- flips all upper and lower indices by Hodge transformation

upper half-plane

analytic

lower half-plane

analytic



Gromov, V.K., Leurent, Volin 2013

is the analytic continuation of            through the cut:  

Pµ-system and reduction to SL(2) sector

• Cut structure on defining sheet and  asymptotics at

• SL(2)-reduction:

• H(µ) transformation defines monodromy through short cuts:

• Pµ -system containts the equation for µ  (follows from  a QQ-relation):



• QSC allows for analytic continuation

of exact dimension   

to continuous spins   

We need to find the appropriate    

analytic continuation of Q-functions.
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• BFKL is a double scaling limit:    

• In particular,  near the Regge pole

BFKL Dimension from  Quantum Spectral Curve 

Janik Gromov, V.K.

Gromov, Levkovich-Maslyuk, Sizov, Valatka

Alfimov Gromov V.K. 2014

• We will restore from QSC the leading order (LO) BFKL approximation for

already known up to NLO from direct summation of Feynman graphs    

• BFKL is an excellent test for the whole AdS/CFT integrability: it sums up 

“wrapped” graphs omitted in asymptotic Bethe ansatz

Kotikov, Lipatov

Kotikov, Lipatov, Rej, Staudacher

Bajnok, Janik, Lukowsky

Lukowski, Rej, Velizhanin,Orlova

Polchinski, Strassler, Tan

where



P-functions at LO BFKL

• We can split  P into regular and singular parts          

• Only poles at          

• In the regime                           singular part gives  poles  at                              

reminder:

• Due to asymptotics and  parity   P’s  are fixed at LO up to a single constant    

• To fix it we go through the cut. Uniformized by Zhukovsky map  



µ-functions at LO BFKL

• A “ladder” of cuts generating poles at

• Now we apply  the  Pµ-equation                          using the rule 

and fix  µ-functions by parity and regularity conditions:

• At the same time we fix the missing  coefficient in  P

• Asymptotics

suggests that     

µ are polynomials at LO        

• They also can be multiplied by a regular  periodic function 



Analytic properties of Q-functions

• A “ladder” of cuts generating poles at

• Natural objects for approaching BFKL are Q-functions: 

their asymptotics contain conformal charges, including ∆  

• From  purely algebraic relations of Q-system we get a 4-th order finite difference

equation with  4 solutions giving  all  4  Q-functions:

• The coefficients depend only on P-functions:

• Plugging here the LO P-functions we get an equation factorized as follows 

• 2-nd order equation is the Faddeev-Korchemsky-Baxter eq. for BFKL pomeron ! 



Finding the  BFKL dimension

• We need to find the NLO  for                       and  the LO  for

For that we also have to solve the Q-ω system at the leading order

• Using explicit LO solution for          and for                       we find

at the pole in  u=0



Finding the BFKL Dimension

• On the other hand, from the explicit knowledge of NLO        we find the 4’th 

order NLO equation for       which factorizes again, to give for    j=1,3    

with explicit solution  for  

• Comparing its value at the pole

and using that                      we fix 

• This allows to fix the dimension and restore the LO Kotikov-Lipatov

formula



Conclusions, comments, future directions 

• We proposed a concise system of  matrix Riemann-Hilbert equations – Quantum Spectral 
Curve - for exact spectrum of  anomalous dimensions of planar N=4 SYM theory in 4D. 

• BFKL dimension in LO is recovered;  regular BFKL expansion (NLO,NNLO,…) is 
possible. 

Consequences for scattering theory in Regge limit and a link to QCD pomeron.  

• Hopefully efficient for numeric. In particular, the full curve ∆(S,g) could be restored 
numerically.

• Applicable for Wilson loops and quark-antiquark potential in N=4 SYM

• Very efficient for various approximations: weak coupling (9 loops!) and strong coupling (3 
loops) expansions exact slope and curvature functions:

∆(S,g)- ∆0 = ∆’(g) S + ∆’’(g) S2 + O(S3 ) 

Gromov, Kazakov, Leurent, Volin

Gromov, Levkovich-Maslyuk, Sizov, ValatkaBasso

Volin



• Integrability allows to sum exactly enormous 

numbers of Feynman diagrams of N=4 SYM

Perturbative Konishi: integrability versus Feynman graphs

• Confirmed up to 5 loops by direct graph calculus (6 loops promised)
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(8 loops from FiNLIE)

Volin

(9-loops from  spectral curve)



AdS string quasiclassics and numerics in SL(2) sector:

twist-L   operators of spin S

Gromov,Shenderovich,

Serban, Volin

Roiban, Tseytlin

Vallilo, Mazzucato

Gromov, Valatka

Frolov

• 3 leading strong coupling terms were calculated for any S and L

• Numerics from Y-system, TBA, FiNLIE, at any coupling: 

- for Konishi operator

- and  twist-3 operator

They perfectly reproduce the TBA/Y-system or FiNLIE numerics

Gromov, Valatka,
Gubser,  Klebanov, Polyakov

Y-system numerics 
Gromov,V.K.,Vieira

Frolov

Gromov,Valatka

 AdS/CFT Integrability passes all known tests!
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