Spin Chains and Three-Point Functions in ${\cal N}=4$ Super Yang-Mills Theory

FLORIAN LOEBBERT Humboldt University Berlin

work with Yunfeng Jiang, Ivan Kostov, Didina Serban [JHEP 1404] [2014) 019]

Planar $\mathcal{N}=4$ super Yang–Mills Theory

 $\textbf{Conformal Field Theory} \rightarrow \text{We want Spectrum and Three-Point Functions!}$

Use Integrability [Review 2012] [Kazakov's] Talk

1. Spectrum (almost solved):

2. Three-Point Functions:

- ▶ Simplest subsector: Complex scalar fields X, Z in $\mathfrak{su}(2)$ sectors.
- ▶ Study one-loop correction (previously obtained in [Gromov Vieira, 12]).
- Compare to string theory result.

Asymptotic Spectrum: $\mathfrak{su}(2)$ -Sector

Higher Loops: Dilatation Operator $Q_2(g^2) = H_2 + g^2 \dots$

[^] 't Hooft coupling

Spin Chains (cyclic): \leftrightarrow Gauge invariant states:

$$|\downarrow\uparrow\uparrow\ldots\downarrow\rangle(x)$$
 \leftrightarrow $\mathcal{O}(x) = \text{Tr}(XZZ\ldots X)(x).$

Excitations: Characterized by sets of rapidities $\mathbf{u} = \{u_1, u_2, \dots, u_M\}$:

$$\frac{\mathbf{x}(u_j + \frac{i}{2})}{\mathbf{x}(u_j - \frac{i}{2})} = e^{ip_j} \quad \rightarrow \quad |\mathbf{u}\rangle \sim |\dots\uparrow\uparrow\uparrow\uparrow \stackrel{e^{ip_j}}{\downarrow} \uparrow\uparrow\uparrow\uparrow\dots\uparrow\uparrow\uparrow \stackrel{e^{ip_k}}{\downarrow} \uparrow\uparrow\uparrow\uparrow\dots \rangle$$

 $\underline{ \text{Integrability}}: \ \ \text{Tower of commuting charges:} \ \ \mathcal{Q}_r(g) \ \text{with} \ \ Q_2(g) = \mathcal{D}(g)$

 \Rightarrow Dilatation Operator diagonalized by Bethe Ansatz $[^{Minahan}_{Zarembo,\;02}]$

$$\left(\frac{x(u_k+\frac{i}{2})}{x(u_k-\frac{i}{2})}\right)^L = \prod_{\substack{j \neq k \\ i=1}}^M \frac{u_k-u_j+i}{u_k-u_j-i} \ e^{2i\phi(u_k,u_j)} \ \ \frac{\mathsf{BDS}\colon \left[\frac{\mathsf{Beisert}, \mathsf{Dippel}}{\mathsf{Staudacher}, 04} \right]}{\mathsf{Dressing}\colon \left[\frac{\mathsf{Arutyunov}, \mathsf{Beisert}}{\mathsf{Lopez}, \mathsf{Staudacher}, \dots \right]}}$$

- ▶ Valid up to wrapping order!
- Dressing Phase starts at four loops

Two Perturbative Definitions of Higher-Loop Spin Chains

I. Deformations using Boost Operators [Bargheer, Beisert]

Start with Heisenberg (XXX) spin chain with local charges H_r :

One loop:
$$Q_r(0) \equiv H_r$$
 with $[H_r, H_s] = 0$ $r, s = 2, 3, \dots$

Construct higher-loop integrable charges:

$$\frac{d}{dg}\mathcal{Q}_r(g) = \tau_s[\mathcal{B}_s(g),\mathcal{Q}_r(g)] \quad \Rightarrow \qquad \qquad \mathcal{Q}_r(g) = T_{\mathsf{Boost}}(g)H_rT_{\mathsf{Boost}}^{-1}(g) + \mathsf{wrapping}$$

II. Inhomogeneous Spin Chains [Beisert, Dippel] [Serban | Staudacher, 05] [Jiang, Kostov] [Staudacher, 05] [FL, Serban, 14]

 $\prod_{i=1}^{L} \frac{u_k - \theta_j(g) + \frac{i}{2}}{u_k - \theta_j(g) - \frac{i}{2}} = \prod_{i=1, i \neq k}^{M} \frac{u_k - u_j + i}{u_k - u_j - i}, \qquad \theta_j^{\text{BDS}}(g) = 2g \sin \frac{2\pi j}{L}$

$$\frac{u_k - u_j + i}{u_k - u_j - i},$$

$$\theta_j^{\text{BDS}}(g) = 2g \sin \frac{2\pi g}{L}$$

Works at leading orders, no general proof!

$$\mathcal{Q}_2(heta) = T_ heta(0)\,H_2\,T_ heta^{-1}(0) + ext{wrapping}$$

 $ightharpoonup T_{\mathsf{Boost}}$ and T_{θ} singular on periodic chains \to no similarity transformations

S-Operator

Two singular transformations T_{Boost} and T_{θ} generate the same singularity \to twist of the Bethe equations!

$$\mathcal{Q}_2(g) \simeq T_{\mathsf{Boost}}(g) H_2 T_{\mathsf{Boost}}^{-1}(g)$$
 $\qquad \qquad \mathcal{Q}_2(\theta) \simeq T_{\theta}(0) \, H_2 \, T_{\theta}^{-1}(0)$

⇒ Inhomogeneous and Boost-Deformed Chains are related by similarity transformation up to wrapping order:

Bargheer [E], o] [Jiang, Kostov [Beisert, FL, o], o] [FL, Serban, 14]

Unitary S-Operator
$$S = T_{\mathsf{Boost}} \times T_{\theta}^{-1} \Rightarrow \mathcal{Q}_2(g) = S\mathcal{Q}_2(\theta)S^{-1}$$

- ▶ S is well-defined on periodic spin chains as opposed to T_{Boost} and T_{θ} !
- ▶ S defines exact morphism of the Yangian algebra/monodromy matrix:

Comparison with *Theta-morphism* of $[N_{\text{Vieira}, 12}^{\text{Gromov}}]$: [Exact]S-morphism = [Approximate]T-heta-morphism + [Cross-terms]

Three-Point Functions

Correlator of three eigenstates of the dilatation operator in three $\mathfrak{su}(2)$ sectors:

States:	$\mathcal{O}_1(x_1)$	$\mathcal{O}_2(x_2)$	$\mathcal{O}_3(x_3)$
Made of Scalars:	Z, X	\bar{Z}, \bar{X}	Z, \bar{X}
Bethe state:	$ \mathbf{u}_1 angle$	$ \mathbf{u}_2 angle$	$ {f u}_3 angle$

Conformal symmetry:

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\rangle = \frac{C_{123}(g^2)}{|x_{12}|^{\Delta_1 + \Delta_2 - \Delta_3}|x_{13}|^{\Delta_1 + \Delta_3 - \Delta_2}|x_{23}|^{\Delta_2 + \Delta_3 - \Delta_1}}$$

$$\frac{\textit{\textbf{C}}_{123}(\textit{\textbf{g}}^2)}{(\langle \mathbf{u}_1 | \mathbf{u}_1 \rangle \langle \mathbf{u}_2 | \mathbf{u}_2 \rangle \langle \mathbf{u}_3 | \mathbf{u}_3 \rangle)^{1/2}} [^{\text{Escobedo,Gromov}}_{\text{Sever,Vieira,10}}]$$

Scalar Products (of one on-shell and one off-shell Bethe state):

$$|\mathbf{u}|_{\text{loop}} \langle \mathbf{u}| = \langle \mathbf{u}, \boldsymbol{\theta} | S^{-1}$$
 $|\mathbf{u}|_{\text{loop}} = S | \mathbf{u}, \boldsymbol{\theta} \rangle$

⇒ Use Slavnov-Determinant-Formula for inhomogeneous scalar products:

$$_{\mathsf{loop}}\langle \mathbf{u}|\mathbf{v}\rangle_{\mathsf{loop}} = \langle \mathbf{u}, oldsymbol{ heta}|\mathbf{v}, oldsymbol{ heta}
angle \simeq A_{\mathbf{u}\cup\mathbf{v},oldsymbol{ heta}}, \qquad A_{\mathbf{u},oldsymbol{ heta}} = \mathrm{Det}(\mathbb{I}-K)[^{\mathsf{Jiang, Kostov}}_{\mathsf{FL, Serban, 14}}]$$

$$K_{jk} = \frac{iE_j}{u_j - u_k + i}, \qquad E_j = \frac{Q_{\theta}\left(u_j - \frac{i}{2}\right)}{Q_{\theta}\left(u_j + \frac{i}{2}\right)} \prod_{k=1; k \neq j}^{M} \frac{u_j - u_k + i}{u_j - u_k}, \qquad Q_{\theta}\left(u\right) = \prod_{j=1}^{L} \left(u - \theta_j\right).$$

Find Structure Constants $\langle u_1, u_2, u_3 \rangle$

Tree-level: Slavnov Escobedo, Gromov Foda Sever Vieira, 10

► Solved → Slavnov-determinants

One Loop: Two Types of Loop-Insertions

1. To the correlator: [Okuyama] [Roiban Volovich, 04] [Alday, David Tseng, 04] [Volovich, 04] [Gava, Narain, 05]

Insertion of the Heisenberg-Hamiltonian (one-loop Dilatation Operator) at the splitting points:

$$\mathbb{I}_a = 1 - g^2 (H_{2,k_a} + H_{2,j_a})$$
, $a=1,2,3$

2. To the eigenstates: [Jiang,Kostov] [FL,Serban,14]

Insertion from the S-operator at the splitting points:

$$\delta S_a = 1 - g^2 (H_{3,k_a} + H_{3,j_a})$$
, $a=1,2,3$

Combine Things

Skip some nontrivial steps: $[\begin{smallmatrix} Escobedo, Gromov \\ Sever, \ Vieira, 10 \end{smallmatrix}] [\begin{smallmatrix} Foda \\ 11 \end{smallmatrix}]$

$$\begin{split} \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle &= \sum_{i_1, \dots, i_{L_{12}} = \uparrow, \downarrow} \langle \mathbf{u}_2, \boldsymbol{\theta}_2 | \underline{\delta S_2^{-1}} \, \mathbb{I}_2 \, | i_1 \dots i_{L_{12}} \underbrace{\uparrow \dots \uparrow}_{L_{23}} \rangle \\ & \times \langle i_1 \dots i_{L_{12}} \underbrace{\downarrow \dots \downarrow}_{L_{13}} | \, \mathbb{I}_1 \, \underline{\delta S_1} | \mathbf{u}_1, \boldsymbol{\theta}_1 \rangle \\ & \times \underbrace{\langle \uparrow \dots \uparrow \downarrow \dots \downarrow}_{L_{23}} | \, \mathbb{I}_3 \, \underline{\delta S_3} | \mathbf{u}_3, \boldsymbol{\theta}_3 \rangle \end{split}$$
 to get simple form:
$$\begin{bmatrix} \mathbb{J}_{\text{lang,Kostov}} \\ \mathbb{J}_{\text{lang,Kostov}} \end{bmatrix}$$

Two steps to get simple form: [Jiang, Kostov] [FL, Serban, 14]

- 1. Rewrite insertions \mathbb{I}_a and δS_a in terms of derivatives $\partial_k = \partial/\partial \theta_k$
- 2. Fix θ to coupling dependent BDS-values $\theta_{a,\ell}^{\rm BDS}(g)=2g\sin\frac{2\pi\ell}{L_a}$

$$\langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle = F_{123}(\boldsymbol{\theta}) + g^2 \delta F_{123}(\boldsymbol{\theta}) = (1 + g^2 \hat{\boldsymbol{\Delta}}) F_{123}(\boldsymbol{\theta}) + \mathcal{O}(g^3) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{\mathsf{BDS}}}$$

$$F_{123}(\boldsymbol{\theta}) = A_{\mathbf{u}_{2} \cup \mathbf{u}_{1}, \boldsymbol{\theta}_{12}} + A_{\mathbf{u}_{3}, \boldsymbol{\theta}_{13}} \qquad \hat{\Delta} = \hat{\Delta}_{12} + \hat{\Delta}_{03} \qquad \delta E_{r}^{ab} = E_{r}^{b} - E_{r}^{a}$$
$$\hat{\Delta}_{ab} A_{\mathbf{u}_{a} \cup \mathbf{v}_{b}, \boldsymbol{\theta}_{bc}} = \left(\partial_{1}^{b} \partial_{2}^{b} - i \delta E_{2}^{ab} \partial_{1}^{b} + i \delta E_{3}^{ab} - \frac{1}{2} (\delta E_{2}^{ab})^{2}\right) A_{\mathbf{u}_{a} \cup \mathbf{v}_{b}, \boldsymbol{\theta}_{bc}}$$

lacktriangle Agrees with $\left[egin{smallmatrix} Gromov \ Vieira, 12 \end{bmatrix}$, but simpler ightarrow Can take thermodynamical limit.

Comparison With String Computation

Thermodynamical Limit (Gauge Theory):

- lacktriangle State of length L with M excitations.
- ▶ Take $L \to \infty$, $M \to \infty$, $\frac{M}{L}$ finite, $\lambda' = \frac{g^2}{L^2} \ll 1$.

Frolov-Tseytlin Limit (String Theory): [Frolov | Tseytlin, 02]

- ▶ Rotating string on S^3 with angular momentum J
- $g^2 \to \infty$, $J \to \infty$, $\lambda' = \frac{g^2}{J^2} \ll 1$

Spectrum: Known that first two orders in λ' agree in Gauge & String theory.

Three-point functions?: One-loop 3pt-function requires two-loop eigenfunction of dilatation operator.

 \rightarrow Expect match at first order in λ' .

Thermodynamical vs Frolov-Tseytlin Limit

Do contours match for first term? Does the second term vanish?

Last Slide Before Dinner

Summary:

Asymptotic Spectrum:

Inhomogeneous Bethe Ansatz \rightarrow Fix $\theta = \theta(g)$

Structure Constants (1 Loop):

Inhomogeneous Correlators $\ \ \rightarrow \ \ {\sf Fix} \ \theta = \theta(g) \ \& \ {\sf Act \ with} \ \hat{\Delta} \ {\sf on \ splitting \ points}$

ightarrow Matches string theory result in Frolov–Tseytlin limit.

Future Puzzles:

Two loops: Use above method \rightarrow Recursion for $\begin{array}{c} \nearrow & \nearrow \\ \nearrow & \nearrow \end{array}$?

Higher Loops: How to include Dressing Phase?

Asymptotic Spin Chain		Generator	Relation	
Inhomogeneous Chain		$T_{ heta}$	\bigcirc	
$\mathcal{N}=4$ SYM $\mathfrak{su}(2)$	Boost	T_{Boost}	$S = T_{Boost} \times T_{\theta}^{-1}$	
	Bilocal	$T_{\sf Bilocal}$	\$ @_	$=T_{\text{Bilocal}} \times 5$
2		435	\ \sigma^{\beta}	- I Bilocal × ちょう

Thank You!