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Ordinary global symmetries 

• Generated by operators associated with co-dimension one 
manifolds 𝑀 

𝑈𝑔 𝑀  

     𝑔 ∈ 𝐺 a group element 

• The correlation functions of 𝑈𝑔 𝑀  are topological! 

• Group multiplication  𝑈𝑔1
𝑀 𝑈𝑔2

𝑀 = 𝑈𝑔1𝑔2
𝑀  

• Local operators 𝑂 𝑝  are in representations of 𝐺  

𝑈𝑔 𝑀 𝑂𝑖 𝑝 = 𝑅𝑖
𝑗

𝑔 𝑂𝑗 𝑝   

     where 𝑀 surrounds 𝑝 (Ward identity) 

• If the symmetry is continuous, 

𝑈𝑔 𝑀 = 𝑒𝑖 ∫ 𝑗 𝑔  

    𝑗(𝑔)  is a closed form current (its dual is a conserved current). 

 

 



𝑞-form global symmetries 

• Generated by operators associated with co-dimension         
𝑞 + 1 manifolds 𝑀  (ordinary global symmetry has 𝑞 = 0) 

𝑈𝑔 𝑀  

     𝑔 ∈ 𝐺 a group element 

• The correlation functions of 𝑈𝑔 𝑀  are topological! 

• Group multiplication  𝑈𝑔1
𝑀 𝑈𝑔2

𝑀 = 𝑈𝑔1𝑔2
𝑀 .        

Because of the high co-dimension the order does not matter    
and 𝐺 is Abelian. 

• The charged operators V 𝐿  are on dimension 𝑞 manifolds 𝐿.  
Representations of 𝐺 – Ward identity  

𝑈𝑔 𝑀 𝑉 𝐿 = 𝑅 𝑔 𝑉 𝐿   

      where 𝑀 surrounds 𝐿 and 𝑅(𝑔) is a phase. 

 

 



𝑞-form global symmetries 

If the symmetry is continuous, 

𝑈𝑔 𝑀 = 𝑒𝑖 ∫ 𝑗 𝑔  

𝑗(𝑔)  is a closed form current (its dual is a conserved current). 

 

Compactifying on a circle, a 𝑞-form symmetry leads to a 𝑞-form 
symmetry and a 𝑞 − 1-form symmetry in the lower dimensional 
theory. 

• For example, compactifying a one-form symmetry leads to an 
ordinary symmetry in the lower dimensional theory. 

 

No need for Lagrangian 

• Exists abstractly, also in theories without a Lagrangian 

• Useful in dualities 

 



𝑞-form global symmetries 

• Charged operators are extended (lines, surfaces) 

• Charged objects are extended – branes (strings, domain walls)    

– In SUSY BPS bound when the symmetry is continuous 

• Selection rules on amplitudes 

• Couple to a background classical  gauge field (twisted 
boundary conditions) 

• Gauge the symmetry (sum over these background fields) 

• The symmetry could be spontaneously broken 

• There can be anomalies and anomaly inflow on walls  



Example 1: 4𝑑 𝑈(1) gauge theory 

Two global 𝑈 1  one-form symmetries: 

• Electric symmetry 

– Closed form currents: 
2

𝑔2 ∗ 𝐹 (measures the electric flux) 

– Shifts the gauge field 𝐴 by a flat connection 

• Magnetic symmetry  

– Closed form currents: 
1

2𝜋
𝐹  (measures the magnetic flux) 

– Shifts the magnetic gauge field by a flat connection. 



Example 1: 4𝑑 𝑈(1) gauge theory 

The symmetries  are generated by surface operators 

𝑈𝑔𝐸=𝑒𝑖𝛼, 𝑔𝑀=𝑒𝑖𝜂 𝑀 = 𝑒
𝑖 𝜂
2𝜋

 ∫ 𝐹 + 
2 𝑖 𝛼
𝑔2  ∫∗𝐹 

 

 

• These are Gukov-Witten surface operators (rescaled 𝛼, 𝜂). 

• They measure the electric and the magnetic flux through the 
surface 𝑀. 

 

The charged objects are dyonic lines 
𝑊𝑛 𝐿 𝐻𝑚(𝐿)  

(𝑊𝑛 𝐿  are Wilson lines and 𝐻𝑚 𝐿  are ‘t Hooft lines) 

with global symmetry charges 𝑛 and 𝑚 under the two global  
𝑈 1  one-form symmetries. 

 

 

 



Example 2: 4𝑑 S𝑈(𝑁) gauge theory 

• Electric 𝒁𝑁 one-form symmetry 

– The Gukov-Witten operator is associated with a conjugacy 
class in 𝑆𝑈(𝑁).  When this class is in the center of 𝑆𝑈(𝑁) 
the surface operator is topological. 

– It shifts the gauge field by a flat 𝒁𝑁 connection. 

– It acts on the Wilson lines according to their 
representation under the 𝒁𝑁 ∈ 𝑆𝑈(𝑁) center. 

• No magnetic one-form symmetry.  

– In this theory there are no ‘t Hooft lines – they are not 
genuine line operators – they need a surface. 

– An open surface operator, whose boundary is an ‘t Hooft 
line. 



Example 3: 4𝑑 S𝑈(𝑁) gauge theory 
with matter in 𝑵 

The presence of the charged matter explicitly breaks the electric 
one-form 𝒁𝑁 symmetry.   

Hence, there is no global one-form symmetry.  

 



Significance of these symmetries 

• Consequence: selection rules, e.g. in compact space the vev 
of a charged line wrapping a nontrivial cycle vanishes 
[Witten]. 

• Dual theories must have the same global symmetries.  (They 
often have different gauge symmetries.) 

– The one-form symmetries are typically electric on one side 
of the duality and magnetic on the other.   

– 4𝑑  𝑁 = 1 SUSY dualities respects the global symmetries. 

– The 𝑆𝐿(2, 𝒁) orbit of a given 𝑁 = 4  theory must have the 
same global symmetry. 



Significance of these symmetries 

• Twisted sectors by coupling to background gauge fields  

– An 𝑆𝑈(𝑁) gauge theory without matter can have twisted 
boundary conditions – an 𝑆𝑈(𝑁)/𝒁𝑁  bundle, which is not 
an 𝑆𝑈(𝑁) bundle – ‘t Hooft twisted boundary conditions. 

• Gauging the symmetry by summing over twisted sectors – like 
orbifolds. 

– Discrete 𝜃-parameters are analogs of discrete torsion. 

• Can characterize phases of gauge theories by whether the 
global symmetry is broken or not… 



Characterizing phases 

• In a confining phase the electric one-form symmetry is 
unbroken. 

– The confining strings are charged and are classified by the 
unbroken symmetry. 

• In a Higgs or Coulomb phase the electric one-form symmetry 
is broken. 

– Renormalizing the perimeter law to zero, the large size 
limit of 𝑊  is nonzero – vev “breaks the symmetry.”  

– It is unbroken in “Coulomb” phase in 3𝑑 and 2𝑑. 



Example 1: 4𝑑 𝑈(1) gauge theory 

• There are two global 𝑈 1  one-form symmetries. 

• Both are spontaneously broken: 

–  The photon being their Goldstone boson 

0 𝐹𝜇𝜈 𝜖, 𝑝 = (𝜖𝜇𝑝𝜈 − 𝜖𝜈𝑝𝜇)𝑒𝑖 𝑝𝑥 

– Placing the theory on 𝑹3 × 𝑺1, each one-form global 
symmetry leads to an ordinary global symmetry and a one-
form symmetry.   

– These ordinary symmetries are manifestly spontaneously 
broken – the moduli space of vacua is 𝑻2 parameterized by 
𝐴4 and the 3𝑑 dual photon. 



Example 2: 4𝑑 S𝑈(𝑁) gauge theory 

In the standard confining phase the electric 𝒁𝑁 one-form 
symmetry is unbroken. 

• Charged strings 

• Area law in Wilson loops 

• When compactified on a circle an ordinary (𝑞 = 0) 𝒁𝑁, which 
is unbroken [Polyakov] 

If no confinement, the global 𝒁𝑁 symmetry is broken 

• No charged strings 

• Perimeter law in Wilson loops 

• When compactified on a circle an ordinary (𝑞 = 0) 𝒁𝑁, which 
is broken [Polyakov] 



Example 2: 4𝑑 S𝑈(𝑁) gauge theory 

Can also have a phase with confinement index 𝑡, where the 
global one-form symmetry is spontaneously broken  𝒁𝑁 → 𝒁𝑡.  

• 𝑊 has area law but 𝑊𝑡 has a perimeter law [Cachazo, NS, 
Witten]. 

• In this case there is a 𝒁𝑁/𝑡 gauge theory at low energies – long 

range topological order. 



Example 3: 4𝑑 S𝑈(𝑁) gauge theory 
with matter in 𝑵 

No global one-form symmetry.   

Hence we cannot distinguish between Higgs and confinement. 

This is usually described as screening the loop [Fradkin, Shenker; 
Banks, Rabinovici].   

From our perspective, due to lack of symmetry. 

 



Conclusions 

• Higher form global symmetries are ubiquitous. 

• They help classify  

– extended objects (strings, domain walls, etc.) 

– extended operators/defects (lines, surfaces, etc.) 

• As global symmetries, they must be the same in dual theories. 

• They extend Landau characterization of phases based on 
order parameters that break global symmetries.   

– Rephrase the Wilson/’t Hooft classification in terms of 
broken or unbroken one-form global symmetries. 

• Anomalies 

– ‘t Hooft matching conditions 

– Anomaly inflow 

– Degrees of freedom on domain walls 
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