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Supersymmetric Wilson loops
Let's use our favourite theory as an example: N' =4 SYM

one can define locally supersymmetric Wilson loops!

Conclusions
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Supersymmetric Wilson loops
Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops!

Conclusions
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Wip = %Tr’P exp [—ig/dT (A#)'(‘“(T)-Fl'nl(T) |X|d)’):| I
r

e coupling to scalars ®' of N =4 SYM via SO(6) vector
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
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Supersymmetric Wilson loops
Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops! J

Wi :%Trp exp [—ig/dT (A#x“(7)+in:(7)|k|¢’)} I=1,...6
r

e coupling to scalars ®' of N =4 SYM via SO(6) vector
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS

o finite expectation value on spacial smooth contours

e natural object in N' = 4: massive quarks via Higgsing

e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98] Q ’

vev computed via minimal surfaces
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Supersymmetric Wilson loops

Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops!

[e]e]e}

Wi = %Trp exp [—ig/dT (A#)'(“(T)+im(7) |>'<|¢’)} I=1,...6
r

r- x=0 xt=r x2=0 x*=0 —oc0o <7< 00
m=1 n=20 n3 =0 ng=ns=ne=20
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
o finite expectation value on spacial smooth contours
e natural object in N' = 4: massive quarks via Higgsing
e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]
vev computed via minimal surfaces
e contours globally preserving susy: 1/2-BPS
line
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Supersymmetric Wilson loops

Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops!

Wi )o® = %Trp exp [—ig/dT (A#)'(“(T)+im(7) |>'<|¢’)} I=1,...6
r

r x=0 x'=cosr x? =sint x*=0 0 <7<27
m=1 n=20 n3 =0 ng=ns=ne=20
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
o finite expectation value on spacial smooth contours
e natural object in N' = 4: massive quarks via Higgsing
e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]
vev computed via minimal surfaces
e contours globally preserving susy: 1/2-BPS
line, maximal circle
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Supersymmetric Wilson loops

Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops!

Wia® = %Trp exp [—ig/dT (A#)'(“(T)+im(7) |>'<|¢’)} I=1,...6
r

M x=0 x'=sinfcost x*=sinfsint x*=cosd 0 <7<2m
n =cos ny=sinfcost n3=sinfsint ng=ns =ng =0
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
o finite expectation value on spacial smooth contours
e natural object in N' = 4: massive quarks via Higgsing
e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]
vev computed via minimal surfaces
e contours globally preserving susy: 1/4-BPS
line, maximal circle or latitude (S* and SO(6))
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Supersymmetric Wilson loops
Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops! )

Wia® = %Trp exp [—ig/dT (A#)'(“(T)+im(7) |>'<|¢’)} I=1,...6
r

0 1 . 2 . . 4
' x =0 x =sinfcost x“=sinfsint x" =cosf 0 <7t

IN
N
B

n =cos ny=sinfcost n3=sinfsint ng=ns =ng =0
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
o finite expectation value on spacial smooth contours
e natural object in N' = 4: massive quarks via Higgsing

e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]
vev computed via minimal surfaces

e contours globally preserving susy: 1/4-BPS
line, maximal circle or latitude (S* and SO(6))

e conformal map from sphere to plane

e anomalous transformations [Drukker, Gross 01]
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Supersymmetric Wilson loops
Let's use our favourite theory as an example: N/ =4 SYM

one can define locally supersymmetric Wilson loops!

Conclusions
[e]e]e}

L1 . . . .
Wi,.° = NTrP exp [—/g/dT (A#XH(T)—FIHI(T) |x|¢.’)}
r

r: x°=0 x'=sinfcost x*=sinOsint x"=cosb

n =cos ny=sinfcost n3=sinfsint ng=ns =ng =0
e preserves 1/2 of supercharges (locally), i.e. 1/2-BPS
o finite expectation value on spacial smooth contours
e natural object in N' = 4: massive quarks via Higgsing

e strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]
vev computed via minimal surfaces

e contours globally preserving susy: 1/4-BPS
line, maximal circle or latitude (S* and SO(6))

e conformal map from sphere to plane
e anomalous transformations [Drukker, Gross 01]

they are amenable of exact results via localization )

I=1,...6

0 <7

IN
N
B

[Erickson,-Semenoff, Zarembo 00; Pestun-07}
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Localization

[Pestun 05]
e theories on a compact manifold

e invariance under fermionic symmetry (conserved supercharge)
e oo-dim path integral reduces to a finite-dim matrix model (MM)

e can compute expectation values of operators preserving supercharge as
MM average

e often this simplifies in the planar limit (saddle point approx)



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0O@00000 00000000 00000 000000 [e]e]e}

Localization

[Pestun 05]
e theories on a compact manifold

e invariance under fermionic symmetry (conserved supercharge)
e oo-dim path integral reduces to a finite-dim matrix model (MM)

e can compute expectation values of operators preserving supercharge as
MM average

e often this simplifies in the planar limit (saddle point approx)

Example:

can compute the exact vev of supersymmetric Wilson
loops in NV =4 SYM from a (gaussian) matrix model
(A =g°N)

(W) =1

[Erickson, Semenoff, Zarembo 00; Drukker, Gross 01 ]
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Localization

[Pestun 05]
e theories on a compact manifold

e invariance under fermionic symmetry (conserved supercharge)
e oo-dim path integral reduces to a finite-dim matrix model (MM)

e can compute expectation values of operators preserving supercharge as
MM average

e often this simplifies in the planar limit (saddle point approx)

Example:

can compute the exact vev of supersymmetric Wilson
loops in NV =4 SYM from a (gaussian) matrix model
(A =g°N)

vy

[Erickson, Semenoff, Zarembo 00; Drukker, Gross 01; Pestun 07]
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Localization

[Pestun 05]
e theories on a compact manifold

e invariance under fermionic symmetry (conserved supercharge)
e oo-dim path integral reduces to a finite-dim matrix model (MM)

e can compute expectation values of operators preserving supercharge as
MM average

e often this simplifies in the planar limit (saddle point approx)

Example:

can compute the exact vev of supersymmetric Wilson
loops in NV =4 SYM from a (gaussian) matrix model
(A =g°N)

<W1/4O> = <Wlo/2> |)\—>>\c0529

[Drukker, Giombi, Ricci, Trancanelli 07; Pestun 09]
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Cusps

cusp anomalous dimension
e even supersymmetric WL develop UV divergences for cusped contours

e renormalization: cusp anomalous dimension I .5, ()

[Polyakov 80; Korchemsky and Radyushkin 87]



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
00@0000 00000000 00000 000000 [e]e]e}

Cusps

cusp anomalous dimension
e even supersymmetric WL develop UV divergences for cusped contours

e renormalization: cusp anomalous dimension I .5, ()

[Polyakov 80; Korchemsky and Radyushkin 87]

e’}

If the rays are light-like, ¢ — i 0o, additional divergence: Tcusp(P) ~ @ TSy
where ¢ = i ¢:
e controls IR divergence of amplitudes of massless particles

[Magnea, Sterman, 90; Bern, Dixon, Smirnov, 05]

e anomalous dimension of twist-2 operators
[Korchemsky 89; Korchemsky and Marchesini 93]
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Cusps

cusp anomalous dimension
e even supersymmetric WL develop UV divergences for cusped contours

e renormalization: cusp anomalous dimension I .5, ()

[Polyakov 80; Korchemsky and Radyushkin 87]

e’}

If the rays are light-like, ¢ — i 0o, additional divergence: Tcusp(P) ~ @ TSy
where ¢ = i ¢:

e controls IR divergence of amplitudes of massless particles
[Magnea, Sterman, 90; Bern, Dixon, Smirnov, 05]

e anomalous dimension of twist-2 operators
[Korchemsky 89; Korchemsky and Marchesini 93]

e in planar A = 4 ('t Hooft coupling A = g*N):

e s/(2) sector anomalous dimensions (large spin)

e AdS/CFT description GKP string (folded string
rotating in Ads) [Gubser, Klebanov, Polyakov 02]

e computed up to four loops at weak coupling (A\*) and up to two loops at

. 1
Strong coupllng order (ﬁ) [Bern, Carrasco, Czakon, Dixon, Johanson, Kosower, Smirnov...
Kruczenski; Giombi, Ricci, Roiban, Tirziu, Tseytlin, Vergu...]

e integrability...



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

000e000 00000000 00000 000000 000
Integrability
N = 4 SYM integrability
spectral problem of planar N' = 4 SYM is described by an integrable spin chainJ

[Minahan, Zarembo 02; Beisert, Staudacher 03 + many more]
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Integrability

N = 4 SYM integrability
spectral problem of planar N'= 4 SYM is described by an integrable spin chain

[Minahan, Zarembo 02; Beisert, Staudacher 03 + many more]

o all order results for anomalous
dimensions of composite sl )
= B Z
operators =g 2 &
P hard
o mutual test of AdS/CFT %"‘ g interacting quantum strings
? S0 9 50y quantum gauge theory
= genus =
= .—S 5 expansion AN E
B Mo
S free
planar limit e <—'5E0C
0 gauge loops A worldsheet loops

[from Beisert et al. review]
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Integrability

N = 4 SYM integrability
spectral problem of planar N'= 4 SYM is described by an integrable spin chain

[Minahan, Zarembo 02; Beisert, Staudacher 03 + many more]

e all order results for anomalous
dimensions of composite sl )
operators =g 2 4
P hard
o mutual test of AdS/CFT %"‘ g interacting quantum strings
? S0 9 50y quantum gauge theory
(prOOf') 5]8 expansion °l3
e for (light-like) cusp anomalous  £f% = e g
. . . o 2 i 3 =
dimension BES equation, = Y i
valid to all orders in A! 5 planar limit Uihe * strings
[Beisert, Eden and Staudacher 05] 0 gauge loops 5 worldsheet loops >

[from Beisert et al. review]
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Integrability

N = 4 SYM integrability
spectral problem of planar N'= 4 SYM is described by an integrable spin chain

[Minahan, Zarembo 02; Beisert, Staudacher 03 + many more]

e all order results for anomalous
dimensions of composite sl )
operators =g 2 4
P hard
o mutual test of AdS/CFT %"‘ g interacting quantum strings
S0 9 50y quantum gauge theory
(prOOf?) 5]8 expansion 38
e for (light-like) cusp anomalous  £f% = e g
. . . o 2 < 3 =
dimension BES equation, = Y i
valid to all orders in A! 5 planar limit Uihe * strings
[Beisert, Eden and Staudacher 05] 0 gauge loops 5 worldsheet loops >

[from Beisert et al. review]

For space-like (supersymmetric) cusps? J ‘?
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Supersymmetric cusps in N =4 SYM

Two Wilson lines at an angle ¢:

e IR behaviour of scattering of
massive colored particles
[Korchemsky, Radyushkin 92]
¢ Regge limit of 4-pt massive

amplitudes
[Henn, Naculich, Schnitzer, Spradlin 10]

o quark-antiquark potential on
sphere at angle m — ¢

Conclusions
[e]e]e}
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Supersymmetric cusps in N =4 SYM

Two Wilson lines at an angle ¢:

e IR behaviour of scattering of
massive colored particles
[Korchemsky, Radyushkin 92]
¢ Regge limit of 4-pt massive

amplitudes
[Henn, Naculich, Schnitzer, Spradlin 10]

o quark-antiquark potential on
sphere at angle m — ¢

locally 1/2-BPS cusp
constructed with two 1/2-BPS rays at a (geometric) angle ¢ J
e change of angle in the internal space as well: Inn11|‘\r:122| = cos

[Drukker, Gross, Ooguri 99]

e BPS condition for ¢* = §° the cusp is supersymmetric (1/4-BPS):
rcu5p(¢ = :|:9) =0
e computation at weak and strong coupling [Correa, Henn, Maldacena, Sever 12
Henn, Huber 13

Grozin, Henn, Korchemsky, Marquard 15
Drukker, Forini 09-10]
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

I_cusp = —B(g, N) ¢2 =+ ...

e in a CFT energy emitted by a heavy quark: AE =27 B/dt V2
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

I_cusp = —B(g, N) ¢2 =+ ...

2
e in a CFT energy emitted by a heavy quark: AE = 2% dt v
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

I_cusp = —B(g, N) ¢2 =+ ...

Conclusions
[e]e]e}

e in a CFT energy emitted by a heavy quark: AE =27 B/dt V2

exact computation by both integrability and localization ) !

[Correa, Henn, Maldacena, Sever 12]
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

I_cusp = —B(g, N) ¢2 =+ ...

e in a CFT energy emitted by a heavy quark: AE =27 B/dt V2

exact computation by both integrability and localization ) !
1. localization based [Correa, Henn, Maldacena, Sever 12]

e exploits BPS condition Icysp(¢? = 02) = 0
e derivation passes through relation of B with displacement operator on line
defect and latitude 1/4-BPS WLs

1 1 VALV N
e exact expression: B= ? )\aA<W10/2> = ﬁ W + O(N 2)

N )
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

rcusp = —B(g, N) ¢)2 + ...

e in a CFT energy emitted by a heavy quark: AE =27 B/dt V2

exact computation by both integrability and localization ) !
1. localization based [Correa, Henn, Maldacena, Sever 12]

e exploits BPS condition Icysp(¢? = 02) = 0
e derivation passes through relation of B with displacement operator on line
defect and latitude 1/4-BPS WLs
1 1 VAh(/A) _9
ion: | B= == AO\(W2),) = — ———~ 4+ O(N
e exact expression: o2 A ( 1/2> a2 (V) +O( )
2. integrability based: spectrum of operators on WL with boundary
reflection matrix — set of TBA equations, QSC

[Correa, Maldacena, Sever; Drukker; Gromov, Sever 12
Gromov, Levkovich-Maslyuk, Sizov 13]



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000080 00000000 00000 000000 [e]e]e}

The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

rcusp = —B(g, N) ¢)2 + ...

e in a CFT energy emitted by a heavy quark: AE =27 B/dt V2

exact computation by both integrability and localization ) !
1. localization based [Correa, Henn, Maldacena, Sever 12]

e exploits BPS condition Icysp(¢? = 02) = 0
e derivation passes through relation of B with displacement operator on line
defect and latitude 1/4-BPS WLs
1 1 VAh(/A) _9
ion: | B= == AO\(W2),) = — ———~ 4+ O(N
e exact expression: o2 A ( 1/2> a2 (V) +O( )
2. integrability based: spectrum of operators on WL with boundary
reflection matrix — set of TBA equations, QSC

[Correa, Maldacena, Sever; Drukker; Gromov, Sever 12
Gromov, Levkovich-Maslyuk, Sizov 13]

Comment: comparing the two exact results
one can determine potential finite renormalization of coupling constants J




Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
000000 00000000 00000 000000 [e]e]e}

To summarize

N =4 SYM is cool
e spectral problem is integrable
e exact susy Wilson loop vev via localization
e Bremsstrahlung function can be computed exactly by BOTH

can this program be extended to other theories?

e |ocalization

o integrability ‘?

Natural candidates o
e ABJM theory in 3 dimensions
e N' =2 SCFTs in 4 dimensions

[Fiol, Gerchkovits, Komargodski 15]




Supersymmetric Wilson loops in ABJM theory
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ABJM theory

[Aharony, Bergman, Jafferis, Maldacena 08]

e d =3, N =6 SCFT 0OSp(46)
e Chern-Simons with gauge group U(N)x x U(N)_x, k € Z — (A, A)

e Bifundamental matter fields (Y',4,), I =1,2,3,4, (N,N)
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ABJM theory

[Aharony, Bergman, Jafferis, Maldacena 08]

e d =3, N =6SCFT OSp(4/6)

Chern-Simons with gauge group U(N)x x U(N)_x, k € Z — (A, A)

Bifundamental matter fields (Y’,zﬁ,), 1=1,2,34, (N, N)

e low energy theory on N M2 branes probing a C*/Z;

M-th on AdS; x §7/Zi N > k°
AdS,/CFT :
d54/ CFTs correspondence: |\ i o th on AdSs x CP° k < N < k°

>
Il
=~z
u]
o)
I
i
it
1
© +
»
?)
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d =3, N =6 SCFT OSp(4]6)

000000 [e]e]e}

theory

[Aharony, Bergman, Jafferis, Maldacena 08]

Chern-Simons with gauge group U(N)x x U(N)_x, k € Z — (A, A)

Bifundamental matter fields (Y’,zﬁ,), 1=1,2,34, (N, N)

low energy theory on N M2 branes probing a C*/Z;

AdS;/ CFTs correspondence:

integrable in the planar limit

M—th on AdSs x S7/Zi N > k°
IIA string-th on AdS; x CP® k < N < k°

[Minahan, Zarembo; Gromov and Vieira 08 + many more]

=~z
+

u]
o)

I

i
it
1
)
»
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The interpolating h-function

The h(\) function

ABJM (or AdS, x CP?) integrability features a nontrivial interpolating function
of the 't Hooft coupling A = %

[Gaiotto, Giombi, Yin; Grignani, Harmark, Orselli; Nishioka, Takayanagi; Gromov, Vieira 08]

e magnon dispersion relation for ABJM spin chain

1 P
_ = 2 2 F
E—2\/1—|—16h()\)sm 5

e scaling function (twist-2 / light-like cusp anomalous dimension)
[Gromov and Vieira 08]

Mem(A) = = r/\/ 4(Avm) ‘ Avm = g°N
2 VoYM _yp(N)
e h()\) appears in all integrability based predlctlons, it is needed for

comparisons with results obtained by other methods
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The interpolating h-function
The h(\) function

ABJM (or AdS, x CP?) integrability features a nontrivial interpolating function
of the 't Hooft coupling A = %

[Gaiotto, Giombi, Yin; Grignani, Harmark, Orselli; Nishioka, Takayanagi; Gromov, Vieira 08]

e magnon dispersion relation for ABJM spin chain

1 P
_ = 2 2 F
E—2\/1—|—16h()\)sm 5

e scaling function (twist-2 / light-like cusp anomalous dimension)
[Gromov and Vieira 08]

Meam(A) = 5 I =a(Avm) Avm = g°N

‘ VoYM _yp(N)
e h()\) appears in all integrability based predlctlons, it is needed for
comparisons with results obtained by other methods

e conjecture for its value to all orders, inspired by analogy with localization
[Gromov, Sizov 14]

_sinh2wh()) 1113 .,
A= o 3k (2,2,2.1,2, sinh® 2mh(\)



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000000 00@00000 00000 000000 [e]e]e}

The interpolating h-function: expansions
e weak and strong coupling expansions from conjecture:

23 + 57”4/\5 _ 893x°

A= 12 1260

N+00N) Ax1

3
h(\) =

1 log 2
1 _ _ —27v2X
2<)\ 24> o +O(e ) A>1
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The interpolating h-function: expansions

e weak and strong coupling expansions from conjecture:

2 4
5
A=A+ TN S RN LON) A<l
h(\) =
La—a ) -le2 +O(e*2”m) A1
2 24 27

e tests against perturbative results:
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The interpolating h-function: expansions

e weak and strong coupling expansions from conjecture:

2 4
5
A=A+ TN S RN LON) A<l
h(\) =
La—a ) -le2 +O(e*2”m) A1
2 24 27

e tests against perturbative results:
SU(2) x SU(2) sector dispersion relation to 2 loops
[Minahan, Ohlsson-Sax, Sieg 09]
IR divergence of 2-loop scattering amplitudes/ UV of cusped WL
[MSB, Leoni, Mauri, Penati, Santambrogio; Chen, Huang 12; Henn, Plefka, Wiegandt 10]
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The interpolating h-function: expansions

e weak and strong coupling expansions from conjecture:

2 4
5
AN+ TN - RN LO(N) A<l
h(\) =
La—a ) -le2 +O(e*2”m) A1
2 24 27

e tests against perturbative results:

SU(2) x SU(2) sector dispersion relation to 4 loops
[Leoni, Mauri, Minahan, Ohlsson Sax, Sieg, Tartaglino-Mazzuchelli 10]
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The interpolating h-function: expansions

e weak and strong coupling expansions from conjecture:

2 4
5
A=A+ TN S RN LON) A<l
h(\) =
L(a - ) -le2 +O(e*2”m) A1
2 24 27

e tests against perturbative results:
AdS; x CP® spinning string computation
[Mc Loughlin, Roiban; Alday, Arutyunov, Bykov; Krishnan 08 + more]
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The interpolating h-function: expansions

e weak and strong coupling expansions from conjecture:

2 4
5
A=A+ TN S RN LON) A<l
h(\) =
L —a ) -le2 +O(e*2”m) A1
2 24 27

e tests against perturbative results:
AdS; x CP® worldsheet perturbation theory at two loops
[Bianchi, MSB, Bres, Forini, Vescovi 14]

confirms predicted anomalous radius shift
[Bergman, Hirano 09]
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The interpolating h-function: expansions
e weak and strong coupling expansions from conjecture:

2 4
TNy 2
AN T

1 log 2
1 _ _ —27v2X
2<)\ 24> o +O(e ) A>1

e tests against perturbative results:
AdS; x CP® worldsheet perturbation theory at two loops
[Bianchi, MSB, Bres, Forini, Vescovi 14]

N8BT L ON) A< 1

h(\) =

confirms predicted anomalous radius shift
[Bergman, Hirano 09]

e mutual consistency of several computations and ingredients: conjecture
must be correct, but proof desirable

A proof of the exact h(\) could be derived computing the
same observable exactly by two independent methods, e.g.
integrability and localization: Bremsstrahlung is a candidate
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Supersymmetric Wilson loops
e 1/2 locally supersymmetric WL in A’ =4 SYM : coupling to a scalars

W[l = %TrP exp [—i/rdT (A->'< —i|x|n @' ) (T)}

Conclusions
[e]e]e}
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Supersymmetric Wilson loops

1/6 locally supersymmetric WL in A" = 6 ABJM: coupling to a scalars
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]

W16l = %TrP exp [—i/rdT (A->'< - i277r|5<|M,J v’»‘q) (T)}

M = diag (—1,—1,1,1)
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Supersymmetric Wilson loops

1/6 locally supersymmetric WL in A" = 6 ABJM: coupling to a scalars
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]

VIA/l/ﬁ[F] = 7/1/ Tr'P exp [—i/dv— <AA - X — i—2k |x|I\A/I,J Y, YJ> (7‘):|
r
m = diag(—1,-1,1,1)

e companion W1/e for the other gauge group



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000000 000e0000 00000 000000 000

Supersymmetric Wilson loops

1/6 locally supersymmetric WL in A" = 6 ABJM: coupling to a scalars
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]

W16l = %TrP exp [—i/dT (A-k - i%xw/ \4 »‘q) (T)}
r
M = diag (-1, —1,1,1)

e companion W1/6 for the other gauge group

e 1/2 Jocally supersymmetric WLs in ABJM require coupling to both scalars
and fermions

o U(Ni|N,) supermatrix structure

Lo — bosonic N; x N ‘ fermionic Np X N
/2= \ “fermionic No x N; ‘ bosonic N> x N»

e 1/2-BPS WLs are cohomologically equivalent to comb of 1/6-BPS WLs
(under supercharge Q)
[Drukker, Trancanelli 10]

Wi/6 0 . .
Wi, — A =QV diff -exact
1/2 ( 0 Wa s ) Q ifference is Q-exac
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Supersymmetric Wilson loops

1/6 locally supersymmetric WL in A" = 6 ABJM: coupling to a scalars
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]

W16l = %TrP exp [—i/dT (A-k - i27”|5<|/\/1/ \4 »‘q) (T)}
r
M = diag (-1, —1,1,1)

e companion W1/e for the other gauge group

e 1/2 Jocally supersymmetric WLs in ABJM require coupling to both scalars
and fermions

o U(Ni|N,) supermatrix structure

Lo — bosonic N; x N ‘ fermionic Np X N
/2= \ “fermionic No x N; ‘ bosonic N> x N»

e 1/2-BPS WLs are cohomologically equivalent to comb of 1/6-BPS WLs

under supercharge Q
( ) [Drukker, Trancanelli 10]

Wi/6 0 . .
Wi, — A =QV diff -exact
1/2 ( 0 Wa s ) Q ifference is Q-exac

o these WLs were given an interpretation via Higgsing [Lee, Lee 10]
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1/2 BPS Wilson loop in details

[Drukker, Trancanelli 10]
Wir = 1 Tr [Pexp <fi/d7— ,C(T)):|
2N r
B A i/ I
—iy/ B XY e A
A=At — ZxM, Y Y

o _ ~ , M=diag(-1,+1,+1,+1)
A=At — ZxM, 'Yy,

L

e Tr denotes the standard matrix trace (and not the super-trace)
e M are matrices in R-symmetry space controlling coupling to bi-scalars

e 1), 7] are commuting spinors controlling coupling to fermions
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1/2 BPS Wilson loop in details

[Drukker, Trancanelli 10]
Wir = 1 Tr [Pexp <fi/d7— ,C(T)):|
2N r
B A i/ I
—iy/ B XY e A
A=At — ZxM, Y Y

o _ ~ , M=diag(-1,+1,+1,+1)
A=At — ZxM, 'Yy,

L

e Tr denotes the standard matrix trace (and not the super-trace)
e M are matrices in R-symmetry space controlling coupling to bi-scalars
e 1), 7] are commuting spinors controlling coupling to fermions

global susy

e contours exist where charges are preserved globally, e.g. line and circle

e amenable of an exact computation via localization
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]

Conclusions
[e]e]e}
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

z /].I—VI dx e"ﬂkkg ﬁ a e—iﬂ—kii HQ’<b5inh2(7T(>\a = Ap)) H;V<b Si"hz(ﬂ(j\a - X))
= a b 3
a=1 b=1 TT0L, TTiL cosh?(m(Xa — Ap))
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized }

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

kg [T sinh® (s — 2) TT2 sinh2(w(8 = 3p)

N N
imk A2 5
<W16°):/||d)\ae’" a[[dise =
! -1 b1 T, TIY; cosh?(m(Xa — Ap))

1 27 Aa
x5 ;e
e expectation value of 1/6 -BPS circular WLs

N 1 1 1 1
o . 2\ 2 1 2\ 3
(Wy6) 71+17r;+g(1+2N)7r ﬁ+6'N(4+N)W P ..
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized }

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2
: 2 - 2 sinh“(m(Ag — A sinh Aa — A
<W1/2 °) :/Hd)\a &mhAS Hd%b e TImkAL Ha<b (r(rs b))I;I <b A( (s b)) X
a=1 b=1 v, 1 cosh?(m(Xa — Ap))
1 N N <
il ZeZw)\a + ZEZw)\a
2N a=1 a=1

e expectation value of 1/6 and 1/2-BPS circular WLs

N 1 11 oy 31 (W) + (Wee)
(W) = Ltim ot (1+2N2)ﬁ2ﬁ+glm(4+N)w S, (W) = / - 1/
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2

P 2 < ik N2 sinh“ (7 (X A sinh A A
Wi "= /| [ dxa €™ [T dsp, e™ '™ 2% L2y st (r0a — 20)) [acs ( (Ba = %))
a=1 b=1 Ha 1 COShZ(ﬂ'()‘a Ab))

1 M ama LI
— e Ly et
AP AP

a=1
e expectation value of 1/6 and 1/2-BPS circular WLs

N 1 1 1. 2y 3 1 (We6)y + (Wee),
(Wiyeh = Thim 4o (1+2N2)w2k—2+g:N(4+N)7r T (Wi = - /60 T A T/6 ; /

e imaginary part in localization, due to framing of WL: removing it
[Calugareanu 59; Witten 89]

[Kapustin, Willet, Yaakov 09; Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 12]

2 (21\12 T 1)

<W10/6> iy (M +1) +..., <W1/2>0: —

6 k2
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2
. 2 - 2 sinh“(m(Ag — A sinh Aa — A
<W1/2 o>1 /H‘D\a SiTkAS H a3, o—imkXp Ha<b (m(Xa b))H <b (m(Aa b))
b=1

= X
v, ! cosh?(m(Xa — Ap))

1 M ama LI
— e Ly et
AP AP

a=1
e expectation value of 1/6 and 1/2-BPS circular WLs

N 1 1 1. 2y 3 1 (We6)y + (Wee),
<W10/6>1:1+,Tr;+g(1+2N2)ﬂ_2k7+glN(4+N)7\' T (Wi = %

e imaginary part in localization, due to framing of WL: removing it
[Calugareanu 59; Witten 89]

[Kapustin, Willet, Yaakov 09; Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 12]
(.2 ) 2 2
o\ x ) B 2 (202 +1)
<W1/6>071+‘:67 (sv +1)”‘+..4, <W1/2>071+ ——

e perturbative check of 1/6-BPS up to two loops at framing 0
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2
. 2 - 2 sinh“(m(Ag — A sinh Aa — A
<W1/2 o>1 /H‘D\a SiTkAS H a3, o—imkXp Ha<b (m(Xa b))H <b (m(Aa b))
b=1

= X
v, ! cosh?(m(Xa — Ap))

1 M ama LI
— e Ly et
AP AP

a=1
e expectation value of 1/6 and 1/2-BPS circular WLs

(W6)y + (W, /601

1 (1, 2y 3 1
i+“glN(4+N)7\' k—3‘+ (W) = ;

N 1
o _ P 2 2
<W1/6>171+17rk+6 (l+2N)7‘r 2

e imaginary part in localization, due to framing of WL: removing it
[Calugareanu 59; Witten 89]

[Kapustin, Willet, Yaakov 09; Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 12]
2 2 2
o x ) B 2 (202 +1)
<W1/6> 71+67(5N +1) 4+, <W1/2>071+T+

e perturbative check of 1/6-BPS at 3 Ioo[ps at framing 1

MSB, Griguolo, Leoni, Mauri, Penati, Seminara 16]
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2
. 2 - 2 sinh“(m(Ag — A sinh Aa — A
<W1/2 o>1 /H‘D\a SiTkAS H a3, o—imkXp Ha<b (m(Xa b))H <b (m(Aa b))
b=1

= X
v, ! cosh?(m(Xa — Ap))

1 M ama LI
— e Ly et
AP AP

a=1
e expectation value of 1/6 and 1/2-BPS circular WLs

N 1 1 1. 2y 3 1 (We6)y + (Wee),
(Wiyeh = Thim 4o (1+2N2)w2k—2+g:N(4+N)7r T (Wi = - /60 T A T/6 ; /

e imaginary part in localization, due to framing of WL: removing it
[Calugareanu 59; Witten 89]

[Kapustin, Willet, Yaakov 09; Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 12]

’ SEYATINRY
(W), =1+ o (2 42) o (wye),=1e T

e perturbative check of 1/2-BPS up to two loops at framing 0
[MSB, Giribet, Leoni, Penati; Griguolo, Martelloni, Poggi, Seminara 13]
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Exact results for ABJM WL

N = 2 CS-matter theories on S3 can be localized J

[Kapustin, Willet, Yaakov 09; Drukker, Marino, Putrov 10 + many more]
e ABJM matrix model (not gaussian)

N N 2 2 2
. 2 - L2 sinh“ (7 (A A sinh A A
<W1/2,no>1 = / I I d\, & ™Aa I dAp eIk Ha<b (r(2a b))H <b (r(Xs b))

= X
v, ! cosh?(m(Xa — Ap))

1 M ama LI
7 Aan wXan

— € + e

2NZ ;

a=1
e expectation value of 1/6 and 1/2-BPS circular WLs

N 1 1 1. 2y 3 1 (We6)y + (W60,
<W10/6>1:1+’7T;+6 (1+2N2)ﬁ2k7+g’N(4+N)W k—3+..., <W1/2> %

e imaginary part in localization, due to framing of WL: removing it
[Calugareanu 59; Witten 89]

[Kapustin, Willet, Yaakov 09; Closset, Dumitrescu, Festuccia, Komargodski, Seiberg 12]

2 2 2
o ks 2 72 (2n? 41
<W1/6> -1+ G—Z(SN +1) .., <W1/2>0: (W )
e perturbative check of multiple winding at 2, 3 loops (recursively)
[MSB 16]
e multiple winding n [Klemm, Marino, Soroush 12]
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
" latitude” on S? partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
" latitude” on S? partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

e 2-parameter deformation: geometric and internal independent angles 6, «
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
" latitude’ on S? partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

e 2-parameter deformation: geometric and internal independent angles 6, «
e one obtains a bosonic 1/12-BPS Wg and a fermionic 1/6-BPS Wr WLs

e conjectured to be cohomologically equivalent (similar to undeformed case)
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
" latitude’ on S? partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

e 2-parameter deformation: geometric and internal independent angles 0, «
e one obtains a bosonic 1/12-BPS Wg and a fermionic 1/6-BPS Wr WLs

e conjectured to be cohomologically equivalent (similar to undeformed case)

e computed up to second order in PT:
e vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

e vev depends on a single parameter combination v = sin 2a cos 6

(Wg(0,0)) = wa(v)  (Wr(0,a)) = wr(v)
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
" latitude’ on S? partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

e 2-parameter deformation: geometric and internal independent angles 0, «
e one obtains a bosonic 1/12-BPS Wg and a fermionic 1/6-BPS Wr WLs

e conjectured to be cohomologically equivalent (similar to undeformed case)

e computed up to second order in PT:
e vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

e vev depends on a single parameter combination v = sin 2a cos 6

(Wg(0,0)) = wa(v)  (Wr(0,a)) = wr(v)

e strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

e an exact vev via localization is missing, but might be possible A



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000000 0000000e 00000 000000 [e]e]e}

Extremal limit
[MSB, Leoni 16]

The ABJ theory
Take the ABJ model, with gauge group U(Ni)k x U(N2)—k |[N1 — No| < k J
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Extremal limit
[MSB, Leoni 16]

The ABJ theory
Take the ABJ model, with gauge group U(Ni)k x U(N2)—k |[N1 — No| < k J

Consider 1/6-BPS (bosonic) WL relative to U(Ny):
e in the Ny >> N limit the WL reduces to pure CS — exact vev  [Witten 89]
e in the opposite limit | N2 > N1 | the leading approximation in N, is given
by two classes of diagrams to all orders in k (Ai = N;/k)

X1 X X%l

= A1 fym(A2) |;1

- - — f
— A1 fo(A2)

X — xe|?
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Extremal limit
[MSB, Leoni 16]

The ABJ theory
Take the ABJ model, with gauge group U(Ni)k x U(N2)—k |[N1 — No| < k }

Consider 1/6-BPS (bosonic) WL relative to U(Ny):
e in the Ny > N, limit the WL reduces to pure CS — exact vey  [Witten 89]
e in the opposite limit | N2 > N1 | the leading approximation in N, is given
by two classes of diagrams to all orders in k (Ai = N;/k)
X1 X X%l

= A1 fym(A2) |;1 = A1 fo(X2) |

— xo? X1 — xf?

e by requiring SUSY (finiteness on the line) and comparing to localization
results for the circular 1/6-BPS WL fixes the exact value of fym and fo

1 .
fo(X2) = frm(X2) = — sin T2
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Extremal limit
[MSB, Leoni 16]

The ABJ theory
Take the ABJ model, with gauge group U(Ni)k x U(N2)—k |[N1 — No| < k }

Consider 1/6-BPS (bosonic) WL relative to U(Ny):
e in the Ny > N, limit the WL reduces to pure CS — exact vey  [Witten 89]
e in the opposite limit | N2 > N1 | the leading approximation in N, is given
by two classes of diagrams to all orders in k (Ai = N;/k)
sin 7'(')\2 —)-(1 -)-(2 sin7r)\2 |X1HX2|
= )\ o7 _Pajiel

s |x1 — x2? ™ Ixi — x2|?

:/\1

e by requiring SUSY (finiteness on the line) and comparing to localization
results for the circular 1/6-BPS WL fixes the exact value of fym and fo

In the extremal limit N> > N,
e can compute vev of 1/6-BPS WL on all smooth contours '
e exact cusp anomalous dimension, Bremsstrahlung, h-function®

e can prove integrability of SU(2) sector

f conjecture for ABJ exact h-function
[Cavaglid, Gromov, Levkovich-Maslyuk 16}



Supersymmetric cusps in ABJM model
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Supersymmetric cusps
Construct locally BPS cusps in ABJM with:

wir] = % Tr [Pexp <fi/rd7 L1jo o I/Z(T)H

evaluated along the contour I': two rays intersecting at an angle 7 — ¢

Edge 1 Edge 2

/2 ¢/2

r- x*=o XIZTCOSég x2:\T|sin% —o00 <7< 00

L6 is the U(N) Lie-algebra connection for 1/6-BPS WL
L1/ is the U(N|N) Lie-superalgebra superconnection for 1/2-BPS WL

for the 1/6-BPS we could not find a globally preserved supercharge =
for the 1/2-BPS. ..
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The 1/2-BPS cusp

SUSY preserving cusp configuration

One can choose the parameters in such a way that 4/24 of
supercharges are preserved on the cusped contour

[Griguolo, Martelloni, Poggi, Seminara 12]
The fermionic couplings on each straight-line factorize

a .« d M _ M-
Nim = NimM;j an Nia = Ni Nia

e On the first edge mm = (cosﬁ sin? 0 0) ne=(e"’

7 7
cos & i%, — cos g - sineg
=M sin & = o e Y —sin & cos &
n, = 7 = ) M; = M, = 2 2
1 0 Mo (e”'%> 1 1 0 0
0 0 0
o while on the second edge
. P
n2M:(cos% —sin% 0 O) ny = (" e'7)
cos% _io —cos% sin &
-M —sin g = (e 4 Y sin cosé
ny = 4 oo = I i My = My, = 2 2
0 o s 0 0
0 0 0

o +=oOoO o

= OO o

= OO o

Conclusions
[e]e]e}
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The 1/2-BPS cusp

A second angle

The angle 0 is the counterpart of ¢ in R—symmetry space:
angular separation of the two edges in the internal space CP?

[Griguolo, Martelloni, Poggi, Seminara 12]
The fermionic couplings on each straight-line factorize

a .« d M _ M-
Nim = NimM;j an Nia = Ni Nia

e On the first edge mm = (cosﬁ sin? 0 0) ne=(e"’

7 7
cos & i%, — cos g - sineg
=M sin & = o e Y —sin & cos &
n, = 7 = ) M; = M, = 2 2
1 0 Ma (e”'%> 1 1 0 0
0 0 0
o while on the second edge
. P
n2M:(cos% —sin% 0 O) ny = (" e'7)
cos% _io —cos% sin &
-M —sin g = (e 4 Y sin cosé
ny = 4 oo = I i My = My, = 2 2
0 o s 0 0
0 0 0

o +=oOoO o

= OO o

= OO o

Conclusions
[e]e]e}
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Exact Bremsstrahlung for 1/6-BPS
[Lewkowycz, Maldacena 13]
Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S
3
Sw = (1—n0,)|log{W(Sp_ a))| |

e trade WL on S} with multiply wound W, on S°
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Exact Bremsstrahlung for 1/6-BPS
[Lewkowycz, Maldacena 13]
Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S
3
Sw = (1—n0,)|log{W(Sp_ a))| |

e trade WL on S} with multiply wound W, on S°

exact formula for 1/6-BPS lines Bremsstrahlung B,

1

Bl/6 = 477r2 On |<W10/6,n>1‘ ‘n:l

e tests:
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Exact Bremsstrahlung for 1/6-BPS
[Lewkowycz, Maldacena 13]
Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S
3
Sw = (1—n0,)|log{W(Sp_ a))| |

e trade WL on S} with multiply wound W, on S°

exact formula for 1/6-BPS lines Bremsstrahlung B,

D Sy 2\ \/

Bijg= | — — A1
1/6 5 5 A 75 = <

e tests: weak coupling 2-loop
[MSB, Griguolo, Leoni, Penati, Seminara 14]
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Exact Bremsstrahlung for 1/6-BPS

[Lewkowycz, Maldacena 13]

Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S

Sw=(1—non) |°g<W(Sl§:ﬁ)>‘ ’

e trade WL on S} with multiply wound W, on S°

n=

exact formula for 1/6-BPS lines Bremsstrahlung B,

AL, (L5

v

[Aguilera-Damia, Correa, Silva 14]

Pue= T |4 e o Al

e tests: strong coupling: up to subleading order



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000000 00000000 [e]e] lele} 000000 [e]e]e}

Exact Bremsstrahlung for 1/6-BPS

[Lewkowycz, Maldacena 13]

Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S

Sw=(1—non) |°g<W(Sl§:ﬁ)>‘

e trade WL on S} with multiply wound W, on S°

n=

exact formula for 1/6-BPS lines Bremsstrahlung B,

v

1

Bl/6 = 477r2 On |<W10/6,n>1‘ ‘n:l

postulate exact Bremsstrahlung for 1/2-BPS cusp

1 o
Bijp = 12 On ’<W1/2,n>1| ‘n:l

41
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Exact Bremsstrahlung for 1/6-BPS

[Lewkowycz, Maldacena 13]

Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S

Sw=(1—non) |°g<W(Sl§:ﬁ)>‘

e trade WL on S} with multiply wound W, on S°

n=

exact formula for 1/6-BPS lines Bremsstrahlung B,

v

1

Bl/6 = 477r2 On |<W10/6,n>1‘ ‘n:l

postulate exact Bremsstrahlung for 1/2-BPS cusp

1 o o n 21/0
Bijz = 55 On [(Wiraaht] | = [(Wie.n) + (1) (Wi, |

41 n=1

V.

e use cohomological equivalence
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Exact Bremsstrahlung for 1/6-BPS

[Lewkowycz, Maldacena 13]

Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S

Sw=(1—non) |°g<W(Sl§:ﬁ)>‘

e trade WL on S} with multiply wound W, on S°

n=

exact formula for 1/6-BPS lines Bremsstrahlung B,

v

postulate exact Bremsstrahlung for 1/2-BPS cusp 6

1

Bl/6 = 477r2 On |<W10/6,n>1‘ ‘n:l

1 o o n 21/0
Bijz = 55 On [(Wiraaht] | = [(Wie.n) + (1) (Wi, |

41 n=1

V.

e use cohomological equivalence
e By, is an odd function of k (B, < 0 for k < 0 ?7)
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Exact Bremsstrahlung for 1/6-BPS

[Lewkowycz, Maldacena 13]

Consider small ¢ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

e connect Bremsstrahlung to stress tensor 1pt-function
e connect latter to entanglement entropy of sphere with Wilson line insertion
e in 3d branched sphere — squashed sphere S
3
Sw = (1—nd,)|log(W(Ss_5))l

e trade WL on S} with multiply wound W, on S°
exact formula for 1/6-BPS lines Bremsstrahlung B,

L v
Bl/6 = 477r2 On |<Wl/6,n>1‘ ‘

n=1

postulate exact Bremsstrahlung for 1/2-BPS cusp

1 o (o] n A/0 6
By = ywo) On }<W1/2,n>1| ‘n:l = |<W1/6,n> +(-1) <W1/6,n>1| ‘

n=1

V.

In summ.ary the situation with the 1 /2 BPS Wilson loop is confusing and requires

more thought.
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exact 1/2-BPS Bremsstrahlung via latitudes?
[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bl/g(k, N) = 4771_2 3,, IOg <WF(l/, k, N)>0

v=1
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bu/a(k N) = 75 O log (W vk, N))o |

2) use cohomological equivalence to bosonic WL's

Bualki M) = 453 | 0. tog (IWEW) + (WEGY)|_ + G o]
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bu/a(k. N) = 7 0, log (W2 (v, k. N))o Lzl
2) use cohomological equivalence to bosonic WL's
By ja(k, N) = — | 8, log (W2 W T tgo
20k N) = 25 | 0 log (W5 () + (WE())| _ + 7 te®s

3) trade deformation parameter with winding number

0. tog ({W5 (), + (WE (). ) o)

ov

= On log (<W10/6,n> + <Wlo/6vn>)

v= v=1
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bu/a(k. N) = 7 0, log (W2 (v, k. N))o ’ B
2) use cohomological equivalence to bosonic WL's
1 o T
Bualk. ) = 41 | 0. log (W4 50D+ o]
3) trade deformation parameter with winding number

90 log (W5 () + (WE()))| =0

v=1

4) the former quantity vanishes and can be neglected
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bu/a(k. N) = 7 0, log (W2 (v, k. N))o ’ B
2) use cohomological equivalence to bosonic WL's
1 o T
Bualk. ) = 41 | 0. log (W4 50D+ o]
3) trade deformation parameter with winding number

90 log (W5 () + (WE()))| =0

v=1

4) the former quantity vanishes and can be neglected

agrees with weak coupling calculation,
The exact 1/2-BPS Bremsstrahlung

)
)

and at strong coupling (up to sublead-

i |
Ing Order') [Aguilera-Damia, Correa, Silva 14;
Forini, Giangreco Puletti, Ohlsson Sax 12]

B, — i 10/6>1 - <W10/6
1/2 = _87 o e
T (We)1 + (Wi

1
1
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

1 o
Bu/a(k. N) = 7 0, log (W2 (v, k. N))o ’ B
2) use cohomological equivalence to bosonic WL's
1 o T
Bualk. ) = 41 | 0. log (W4 50D+ o]
3) trade deformation parameter with winding number

90 log (W5 () + (WE()))| =0

v=1

4) the former quantity vanishes and can be neglected

agrees with weak coupling calculation,
The exact 1/2-BPS Bremsstrahlung

and at strong coupling (up to sublead-

. o _ o H |
Bl/2 — _L < 1/6>1 < 1/6>1 ng Order') éAguiIera-lga;nia, (é)o':;'ea, Sislva 14];
1 Forini, Giangreco Puletti, sson Sax 12
BT (Wijeht + (Wie)s However . ..
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the

latitude WL wrt v
NOT PROVEN, though recent

1 o rogress by Bianchi, Griguolo
Bija(k, N) = — , log (WE(v, k, N ’ progress by , Griguolo,
172 ) 472 og (Wr (v Do v=1  Preti, Seminara
2) use cohomological equivalence to bosonic WL's

1 o T
Bualk. ) = 41 | 0. log (W4 50D+ o]
3) trade deformation parameter with winding number

90 log (W5 () + (WE()))| =0

v=1

4) the former quantity vanishes and can be neglected

agrees with weak coupling calculation,
The exact 1/2-BPS Bremsstrahlung

and at strong coupling (up to sublead-

. o _ o H |
Bl/2 — _L < 1/6>1 < 1/6>1 ng Order') éAguiIera-lga;nia, (é)o':;'ea, Sislva 14];
1 Forini, Giangreco Puletti, sson Sax 12
BT (Wijeht + (Wie)s However . ..
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NOT PROVEN, though recent
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agrees with weak coupling calculation,
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and at strong coupling (up to sublead-

. o _ o H |
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the

latitude WL wrt v
NOT PROVEN, though recent

1 o rogress by Bianchi, Griguolo
By ja(k, N) = —— 8, log (W2 (v, k, N ’ progress by . Griguolo,
172 ) 472 og (Wr (v Do v=1  Preti, Seminara
2) use cohomological equivalence to bosonic WL's NOT PROVEN
1 o ~ T
Bl/z(k, N) = 747[_2 [ 81, |Og <W B(V)> . + E tg¢3:|

3) trade deformation parameter with winding number

8, log ((WE(V))V + (A ,;(z/)>y) =0 NOT justified

v=1

4) the former quantity vanishes and can be neglected

agrees with weak coupling calculation,
The exact 1/2-BPS Bremsstrahlung

and at strong coupling (up to sublead-

. o _ o H |
Bl/2 — _L < 1/6>1 < 1/6>1 ng Order') éAguiIera-lga;nia, (é)o':;'ea, Sislva 14];
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BT (Wijeht + (Wie)s However . ..
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exact 1/2-BPS Bremsstrahlung via latitudes?

[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the

latitude WL wrt v
NOT PROVEN, though recent

1 o rogress by Bianchi, Griguolo
By ja(k, N) = —— 8, log (W2 (v, k, N ’ progress by . Griguolo,
172 ) 472 og (Wr (v Do v=1  Preti, Seminara
2) use cohomological equivalence to bosonic WL's NOT PROVEN
1 o ~ T
Bl/z(k, N) = 747[_2 [ 81, |Og <W B(V)> . + E tg¢5:|

3) trade deformation parameter with winding number

8, log ((WE(V))V + (A ,;(z/)>y) =0 NOT justified

v=1

4) the former quantity vanishes and can be neglected NOT PROVE'\_"
PT and numerics

agrees with weak coupling calculation,
The exact 1/2-BPS Bremsstrahlung

and at strong coupling (up to sublead-

. o _ o H |
Bl/2 — _L < 1/6>1 < 1/6>1 ng Order') éAguiIera-lga;nia, (é)or:;'ea, SiSIva 14];
1 Forini, Giangreco Puletti, sson Sax 12
BT (Wijeht + (Wie)s However . ..
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exact 1/2-BPS Bremsstrahlung via latitudes?
[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let's conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt v

NOT PROVEN, though recent

1 o rogress by Bianchi, Griguolo
By ja(k, N) = —— 8, log (W2 (v, k, N ’ progress by . Griguolo,
172 ) 472 og (Wr (v Do v=1  Preti, Seminara
2) use cohomological equivalence to bosonic WL's NOT PROVEN
1 o ~ T
Bl/z(k, N) = 747[_2 [ 81, |Og <W B(V)> . + E tg¢5:|

3) trade deformation parameter with winding number

3y log ((WE(V))V + (W é’(v)>u)

=0 NOT justified
v=1
4) the former quantity vanishes and can be neglected NOT PROVE'\_"
PT and numerics

agrees with weak coupling calculation,

The exact 1/2-BPS Bremsstrahlung | which is effectively only 1 loop

. and at strong coupling (up to sublead-
. o _ o H ]
B I < 1/6>1 < 1/6>1 ng Order') [Aguilera-Damia, Correa, Silva 14;
1/2 — 8 <W° >1 + <W° >1 Forini, Giangreco Puletti, Ohlsson Sax 12]
1/6 1/6

However . ..
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Three-loop prediction

Still, assuming the conjecture holds true }

we can derive a three-loop prediction at weak coupling

e using the localization expectation value for the 1/6-BPS Wilson loops
° . N 1 2 2 1 1. 2 3 1 —5
<W1/6>1:1+17r?+6(1+2N>7r P+6'N(4+N )7r F+O(k )
<W10/6>1 = <W10/6>f

and plugging them in the above conjecture we find

N N(N-3)

Bia(kN) = g% =2

+0 (k*“)

1-loop and (vanishing) 2-loop contributions agree with direct computation
[Griguolo, Martelloni, Poggi and Seminara 12]

first non-planar correction at three-loops
e B/, is an odd function of k (B < 0 for k < 0 ?7)

from the conjecture B;,, comes entirely from the imaginary part of Wf’/6
i.e. from the framing of the Wilson loop



Three-loop test
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Computing a three-loop cusp

o Fight topologies W W
e Fill them in with any possible

particle (here also fermions

can attach to Wilson line) W
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Computing a three-loop cusp

o Fight topologies W W
e Fill them in with any possible

particle (here also fermions
can attach to Wilson line)

In CS theories:
e CS theory contains ubiquitous € tensors (e.g. gauge propagator and
vertex, y-algebra)
e cusp lies on a plane, only contribution with even number of ¢ tensors can
contribute
e from the Feynman rules at odd loops: completely gluonic graphs 4+ many
more are ruled out
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Computing a three-loop cusp

o Fight topologies W W
e Fill them in with any possible

particle (here also fermions
can attach to Wilson line)

In CS theories:

e CS theory contains ubiquitous € tensors (e.g. gauge propagator and
vertex, y-algebra)

e cusp lies on a plane, only contribution with even number of ¢ tensors can
contribute

e from the Feynman rules at odd loops: completely gluonic graphs 4+ many
more are ruled out

Still. ...
it is a massive computation (if done just bruteforce) J
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Computing the cusp at 0 angle
Use BPS condition: 1o = —By ), (¢° — 6%) 9,0 <1

10

1 9
Bijp = LQ 962 r1/2‘¢:9:0

29 r ‘
2 062 Y*lyo—0 L

to extract Bremsstrahlung from cusp at ¢ = 0.

/ \ /% 7
—~_ - A [
_/ N
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Computing the cusp at 0 angle
Use BPS condition: 1o = —By ), (¢° — 6%) 9,0 <1

V272 962 12 $=0=0 [ 4
to extract Bremsstrahlung from cusp at ¢ = 0.
, 0
n7
\’// /‘) / p(\

Advantages:
e reduced number of diagrams

o diagram algebra is easier
e integrals are much easier: propagator-type (GPXT) [Chetyrkin, Kataev, Tkachov 80]
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Computing the cusp at 0 angle
Use BPS condition: 1o = —By ), (¢° — 6%) 9,0 <1

1 02

Bip= 3 562 r1/2‘¢:e:0 v

to extract Bremsstrahlung from cusp at ¢ = 0.

Advantages:
e reduced number of diagrams

o diagram algebra is easier
e integrals are much easier: propagator-type (GPXT) [Chetyrkin, Kataev, Tkachov 80]

Can use the Korchemsky-Radyushkin prescription [Korchemsky, Radyushkin 87]

log(W(0))|,_ = logV(6) ~log V(0)|

to compute only the 1Pl part.
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Renormalization of the cusp

divergences

the expectation value of the cusped WL suffers from both IR and UV
divergences

Conclusions
[e]e]e}

e regulate IR divergences with cutoff L
e use dimensional regularization for UV divergence d = 3 — 2¢ (DRED)
e renormalize the UV div multiplicatively (Wg(0)) = Zoa, (W(0))

e extract the cusp anomalous dimension

M eusp(k, N) _ dlog Zeusp simple poles in €
PR T oo dlogp lg=0 1 = renormalization scale

e in our case this is restricted to the ¢ = 0 limit

e extract Bremsstrahlung function, taking the double derivative

1
Bija(k, N) = 2 05 Tapa(k, N, 6 = 0,0) |
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HQET picture
[Gervais, Neveu 80; Korchemsky, Radyushkin 87]
o Fourier transforming the Wilson line wrt the parameters, one obtains a

heavy quark effective theory HQET propagator

k

Kb Enbe 8

+oo 0 1 d372e k 1
d drp —M8M M —
/0 " /70072 [(a — ><2)2]1/2_E / (2m)3—2¢ K2 (i k- v)?
1 v: velocity of quark

—ik-v
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HQET picture
[Gervais, Neveu 80; Korchemsky, Radyushkin 87]

o Fourier transforming the Wilson line wrt the parameters, one obtains a
heavy quark effective theory HQET propagator

b}

T2 1

N

|
|
|
\

|
|
|
L
1 d®2% k 1
dr / drp —— =
/ ' 1 — xa)2] /> (r)3~2 k2 (ik - v+ o)

e IR regulator: residual energy to massive quark

1 1 v: velocity of quark
—ik-v - —ik-v—2¢ 0: residual energy




Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions
0000000 00000000 00000 [e]e]e] Jele] [e]e]e}

HQET picture
[Gervais, Neveu 80; Korchemsky, Radyushkin 87]

o Fourier transforming the Wilson line wrt the parameters, one obtains a
heavy quark effective theory HQET propagator

My N

|
! —

T i !
|
L

1 R 1
dr / drp —MM ———
/ 1 2 X1 _ X2)2]1/2 € (271—)3—25 k2 (Ik v+ 6)2
e IR regulator: residual energy to massive quark
1 1 v: velocity of quark
—ik-v - —ik-v—2¢ 0: residual energy

e cusp: heavy-quark form factor, velocities at an angle ¢

Advantage of the HQET picture

can use powerful integration-by-parts (IBP) identities for reduction to master
integrals (MI)
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o IBP identities, e.g. [ d9k % -k m =0 [Chetyrkin, Tkachov 81]
e can reduce all integrals of a given topology to a set of master integrals;

e [aporta algorithm [Laporta 00]
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Reduction to master integrals

IBP identities, e.g. [d?k & -k m =0 [Chetyrkin, Tkachov 81]
e can reduce all integrals of a given topology to a set of master integrals;
Laporta algorithm [Laporta 00]
public implementations (FIRES, LiteRed, Reduze, Crusher, Mincer)

[Smirnov 14]
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Reduction to master integrals

o IBP identities, e.g. [d’k & - k m =0 [Chetyrkin, Tkachov 81]
e can reduce all integrals of a given topology to a set of master integrals;
e Laporta algorithm [Laporta 00]
e public implementations (FIRES, LiteRed, Reduze, Crusher, Mincer)
[Smirnov 14]
e nonplanar integrals have linearly dependent denominators (peculiarity of
linear HQET propagators): reduce by partial fractioning
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Reduction to master integrals

e in particular there are 1, 2 and 741 master integrals at 1, 2 and 3 loops
aaa) Y\ AN

AN NN 0N

=
TN Lo

e relevant master integrals have been computed for generic d (GPXT) (Grozin]

WA
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000
e in particular there are 1, 2 and 741 master integrals at 1, 2 and 3 loops

WA

e
AN O 0N
=N

@ LA
Strategy

-
e relevant master integrals have been computed for generic d (GPXT) [Grozin]

perform tensor algebra
substitute expansions

of master integrals

reduce nonplanar
by partial fractioning
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Reduction to master integrals

e in particular there are 1, 2 and 741 master integrals at 1, 2 and 3 loops
la'a'a) Y\ AN

AN NN 0N

=
AN Lo

e relevant master integrals have been computed for generic d (GPXT) [Grozin]

WA

Strategy

substitute expansions reduce nonplanar
of master integrals by partial fractioning

Performance

The C++ reduction of FIRES5 reduces the needed 1259 planar + 584 nonplanar
needed integrals in a few minutes!
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The results

c9_1)+7r2N(C9—1) (N?*(Co—2)+ C§ +2) N

N
log{W(¢ =0,0)) = (2ke 36 k3¢

Properties: Cyp = cos g
e exponentiates,
e uniform degree of transcendentality,

e BPS condition, i.e. for 8 =0, (a bit trivial at ¢ = 0, but checked up to 2
loops for whole cusp)

e can extract cusp anomalous dimension

N(lfCg)77r2N(C9—1)(C92+N2(C@—2)+2)Jr

rEUSP(k7 Na ¢ = 0) = k 6 k3

Bremsstrahlung function
N 7N (N*-3) '
Bijpp(k,N) = — ————= |+ ...
e P U -

This result is in agreement with the conjecture (including nonplanar)
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Conclusions: take home messages

o the Bremsstrahlung function is an interesting limit of the cusp anomalous
dimension
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Conclusions: take home messages

o the Bremsstrahlung function is an interesting limit of the cusp anomalous
dimension

e it can be computed exactly in your favourite theory, N' =4 SYM, both by
localization and integrability

o looks like it can be computed exactly in my favourite theory as well

proposal

a conjecture exists for the exact 1/2-BPS Bremsstrahlung function in ABJM
theory in terms of supersymmetric circular Wilson loops

test

we have performed a successful 3-loop test of it at weak coupling, including
color subleading corrections




Conclusions
oeo

Intro

Outlook

Wishlist:

e compute the whole 3-loop cusp A elliptic functions

e integrability based computation of Bremsstrahlung and proof of exact h(\)
rogress. . .
prog [Bombardelli, Cavaglid, Fioravanti, Gromov, Tateo 17]

o The generalized cusp should be captured by some scattering of massive
particles in Higgsed ABJM. Partial results for massive amplitudes in ABJM
[Caron-Huot, Huang 12; MSB 15]

e computation of 1/2-BPS Bremsstrahlung can be easily extended
to the ABJ case, namely different ranks Ni, N.
The result, though, looks bizarre: no sign of exponentiation. .
How to interpret the divergence and extract cusp anomalous
dimension [cusp?



Thank you!
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A look at the whole cusp




A look at the whole cusp
Opening the angle

Complications:
e algebra of diagram is more involved, but doable

e reduction to master integrals is more intensive, but doable and here gives
2, 8 and 71 master integrals at 1, 2 and 3 loops

e master integrals are functions of ¢ rather than numbers

Strategy
Try to solve MlI's by differential equations J

[Grozin, Henn, Korchemsky, Marquard 15] ?

e 1 and 2 loop result computed, up to finite part «

e 3 loops is being computed

o difficulty: elliptic sectors
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Differential equations in canonical form

e set of MI's obey closed systems of differential equations
A F(x) = A(x, €) F(x) = (Ao(x) + Ar(x) e +...) F(x)
e can be used to solve integrals efficiently [Gehrman, Remiddi 01]

e have to provide boundary conditions
e a special case: Fuchsian system in e-form [Henn 13]

~ ~ 1
O« f(x) = e A(x) f(x) A= Z —x
Xj € alphabet

e iterative (and simple) expansion in € in terms of generalised
polylogarithms (HPL, Goncharov and more general dlog forms)

X dty -1 gt
O A
o U a 0 th dan

Existence of e-form guarantees uniform degree of transcendentality by
construction!
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An example in 3d

The problem: 2-loop 4-point massless scattering in 3d

e solved for ABJM and N' = 8 SYM by direct computation via MB

[Chen, Huang; MSB, Leoni, Mauri, Penati, Santambrogio 10; MSB, Leoni 12; Bianchi, MSB 13]

e the problem can be reduced in general to a set of 8 Ml's

= oo B T
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The problem: 2-loop 4-point massless scattering in 3d

e solved for ABJM and N' = 8 SYM by direct computation via MB

[Chen, Huang; MSB, Leoni, Mauri, Penati, Santambrogio 10; MSB, Leoni 12; Bianchi, MSB 13]

e the problem can be reduced in general to a set of 8 Ml's

@ G oo I
N T

fo f fs

1— o?)2
% = % and alphabet {0,+1, +/}
e Mls can be solved in terms of Goncharov polylogarithms to all orders in €

e 3 canonical basis with variable
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An example in 3d

The problem: 2-loop 4-point massless scattering in 3d

e solved for ABJM and N' = 8 SYM by direct computation via MB

[Chen, Huang; MSB, Leoni, Mauri, Penati, Santambrogio 10; MSB, Leoni 12; Bianchi, MSB 13]
e the problem can be reduced in general to a set of 8 Ml's

@ G oo I
N T

fo f fs
1— %)
% and alphabet {0,+1, +/}

Mls can be solved in terms of Goncharov polylogarithms to all orders in €

. L . s
3 canonical basis with variable : =

one of the basis element can be chosen to be the complete planar 4-pt
2-loop amplitude of ABJM

e proves uniform transcendentality of whole planar 4-pt amplitude of ABJM
by BDS exponentiation
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Elliptic sectors
e not all integrals can be solved in terms of

polylogarithms
e in particular elliptic sectors may arise

e coupled, irreducible, homogeneous differential
equations: NO e-form

e this happens for 3-loop cusp in 3d (unlike 4d!)
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Elliptic sectors
e not all integrals can be solved in terms of

polylogarithms
e in particular elliptic sectors may arise

e coupled, irreducible, homogeneous differential
equations: NO e-form

e this happens for 3-loop cusp in 3d (unlike 4d!)
e.g. 2 MI's sector: (f1(x), f(x))
e each MI at a given order in € expansion obeys 2" order DE:
(Bx*+1)f(x)  FA(x) _
x(x* — 1) x2

0

i)+

e homogeneous solution in terms of complete elliptic integrals:
i(x)=ca xK (x4) +o xK (1 —X4)
—— —_———
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A look at the whole cusp

Elliptic sectors
e not all integrals can be solved in terms of

polylogarithms
e in particular elliptic sectors may arise

e coupled, irreducible, homogeneous differential
equations: NO e-form

e this happens for 3-loop cusp in 3d (unlike 4d!)
e.g. 2 MI's sector: (f1(x), f(x))
e each MI at a given order in € expansion obeys 2" order DE:
B+ DR | A
x(x* — 1) x2

i)+
e homogeneous solution in terms of complete elliptic integrals:
i(x)=ca xK (x4) +o xK (1 —X4)
—— —_———
o o
e inhomogeneous problem by Euler’s variation of constants:
1 2 2 1
,fl( )(X) fl( )(y) + fl( )(X) fl( )
W(y)

i) = 00+ 2?0+ [ a )
X0

e this sector can be solved this way Wronskian
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