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Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Supersymmetric Wilson loops

Let’s use our favourite theory as an example: N = 4 SYM

one can define locally supersymmetric Wilson loops!

W1/2

1/4
|◦

=
1

N
TrP exp

[
−i g

∫
Γ

dτ
(

Aµ ẋµ(τ) + i nI (τ) |ẋ |ΦI
)]

I = 1, . . . 6

Γ : x0 = 0 x1 =

τcos τsin θ cos τ

x2 =

0sin τsin θ sin τ

x4 =

0cos θ −∞0

≤ τ ≤

∞2π

n1 =

1cos θ

n2 =

0sin θ cos τ

n3 =

0sin θ sin τ

n4 = n5 = n6 = 0• coupling to scalars ΦI of N = 4 SYM via SO(6) vector

• preserves 1/2 of supercharges (locally), i.e. 1/2-BPS

• finite expectation value on spacial smooth contours

• natural object in N = 4: massive quarks via Higgsing

• strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]

vev computed via minimal surfaces

N

zi

aba

z0

M

• contours globally preserving susy:

1/21/21/4

-BPS

line, maximal circle or latitude (S3 and SO(6))

• conformal map from sphere to plane

• anomalous transformations [Drukker, Gross 01]

they are amenable of exact results via localization

[Erickson, Semenoff, Zarembo 00; Pestun 07]
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)]

I = 1, . . . 6

Γ : x0 = 0 x1 =

τcos τ

sin θ cos τ x2 =

0sin τ

sin θ sin τ x4 =

0

cos θ

−∞

0 ≤ τ ≤

∞

2π

n1 =

1

cos θ n2 =

0

sin θ cos τ n3 =

0

sin θ sin τ n4 = n5 = n6 = 0

• coupling to scalars ΦI of N = 4 SYM via SO(6) vector

• preserves 1/2 of supercharges (locally), i.e. 1/2-BPS

• finite expectation value on spacial smooth contours

• natural object in N = 4: massive quarks via Higgsing

• strong coupling AdS/CFT dual: [Maldacena; Rey, Yee 98]

vev computed via minimal surfaces

N

zi

aba

z0

M

• contours globally preserving susy:

1/21/2

1/4-BPS
line, maximal circle or latitude (S3 and SO(6))

• conformal map from sphere to plane

• anomalous transformations [Drukker, Gross 01]

they are amenable of exact results via localization

[Erickson, Semenoff, Zarembo 00; Pestun 07]



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Localization
[Pestun 05]

• theories on a compact manifold

• invariance under fermionic symmetry (conserved supercharge)

• ∞-dim path integral reduces to a finite-dim matrix model (MM)

• can compute expectation values of operators preserving supercharge as
MM average

• often this simplifies in the planar limit (saddle point approx)

Example:

can compute the exact vev of supersymmetric Wilson
loops in N = 4 SYM from a (gaussian) matrix model
(λ = g 2N)

〈W 1/21/4
|◦〉 = 1

1

N
L1
N−1

(
− λ

4N

)
e
λ

8N =
2√
λ

I1(
√
λ) +O

(
1

N2

)
〈W ◦

1/2〉
∣∣
λ→λ cos2 θ

[Erickson, Semenoff, Zarembo 00; Drukker, Gross 01

; Pestun 07

][Drukker, Giombi, Ricci, Trancanelli 07; Pestun 09]
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Cusps

cusp anomalous dimension

• even supersymmetric WL develop UV divergences for cusped contours

• renormalization: cusp anomalous dimension Γcusp(φ)

[Polyakov 80; Korchemsky and Radyushkin 87]

If the rays are light-like, φ→ i∞, additional divergence: Γcusp(φ) ∼ ϕ Γ∞cusp
where φ = i ϕ:

• controls IR divergence of amplitudes of massless particles
[Magnea, Sterman, 90; Bern, Dixon, Smirnov, 05]

• anomalous dimension of twist-2 operators
[Korchemsky 89; Korchemsky and Marchesini 93]

• in planar N = 4 (’t Hooft coupling λ = g 2N):

• sl(2) sector anomalous dimensions (large spin)

• AdS/CFT description GKP string (folded string
rotating in AdS) [Gubser, Klebanov, Polyakov 02]

• computed up to four loops at weak coupling (λ4) and up to two loops at

strong coupling order ( 1√
λ

) [Bern, Carrasco, Czakon, Dixon, Johanson, Kosower, Smirnov...
Kruczenski; Giombi, Ricci, Roiban, Tirziu, Tseytlin, Vergu...]

• integrability...
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Integrability

N = 4 SYM integrability

spectral problem of planar N = 4 SYM is described by an integrable spin chain

[Minahan, Zarembo 02; Beisert, Staudacher 03 + many more]

• all order results for anomalous
dimensions of composite
operators

• mutual test of AdS/CFT
(proof?)

• for (light-like) cusp anomalous
dimension BES equation,
valid to all orders in λ!

[Beisert, Eden and Staudacher 05]

[from Beisert et al. review]

For space-like (supersymmetric) cusps?
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Supersymmetric cusps in N = 4 SYM

Two Wilson lines at an angle φ:

• IR behaviour of scattering of
massive colored particles

[Korchemsky, Radyushkin 92]

• Regge limit of 4-pt massive
amplitudes

[Henn, Naculich, Schnitzer, Spradlin 10]

• quark-antiquark potential on
sphere at angle π − φ

φ

θ

φ

θ

locally 1/2-BPS cusp

constructed with two 1/2-BPS rays at a (geometric) angle φ

• change of angle in the internal space as well: n1·n2
|n1||n2|

= cos θ
[Drukker, Gross, Ooguri 99]

• BPS condition for φ2 = θ2 the cusp is supersymmetric (1/4-BPS):
Γcusp(φ = ±θ) = 0

• computation at weak and strong coupling [Correa, Henn, Maldacena, Sever 12
Henn, Huber 13

Grozin, Henn, Korchemsky, Marquard 15
Drukker, Forini 09-10]
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The Bremsstrahlung function

Bremsstrahlung function

We define B as the small angle limit of the cusp anomalous dimension:

Γcusp = −B(g ,N)φ2 + . . .

• in a CFT energy emitted by a heavy quark: ∆E = 2π B

2e2

3

∫
dt v̇ 2

exact computation by both integrability and localization

1. localization based [Correa, Henn, Maldacena, Sever 12]

• exploits BPS condition Γcusp(φ2 = θ2) = 0
• derivation passes through relation of B with displacement operator on line

defect and latitude 1/4-BPS WLs

• exact expression: B =
1

2π2
λ ∂λ〈W ◦1/2〉 =

1

4π2

√
λ I2(
√
λ)

I1(
√
λ)

+O(N−2)

2. integrability based: spectrum of operators on WL with boundary
reflection matrix −→ set of TBA equations, QSC

[Correa, Maldacena, Sever; Drukker; Gromov, Sever 12
Gromov, Levkovich-Maslyuk, Sizov 13]

Comment: comparing the two exact results

one can determine potential finite renormalization of coupling constants
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To summarize

N = 4 SYM is cool

• spectral problem is integrable

• exact susy Wilson loop vev via localization

• Bremsstrahlung function can be computed exactly by BOTH

can this program be extended to other theories?

• localization

• integrability

Natural candidates

• ABJM theory in 3 dimensions
• N = 2 SCFTs in 4 dimensions

[Fiol, Gerchkovits, Komargodski 15]



Supersymmetric Wilson loops in ABJM theory
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ABJM theory
[Aharony, Bergman, Jafferis, Maldacena 08]

• d = 3, N = 6 SCFT OSp(4|6)

• Chern–Simons with gauge group U(N)k × U(N)−k , k ∈ Z → (A, Â)

• Bifundamental matter fields (Y I , ψ̄I ), I = 1, 2, 3, 4, (N, N̄)

• low energy theory on N M2 branes probing a C4/Zk

• AdS4/CFT3 correspondence:
M–th on AdS4 × S7/Zk N � k5

IIA string-th on AdS4 × CP3 k � N � k5

• integrable in the planar limit [Minahan, Zarembo; Gromov and Vieira 08 + many more]

N = 6 ABJM
SCFT in 3d

k � N

Type IIA ST on
AdS4 × CP3

k � N � k5

M-theory on
AdS4 × S7/Zk

N � k5

λ = N
k

INTEGRABILITY
(N →∞)
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The interpolating h-function

The h(λ) function

ABJM (or AdS4 × CP3) integrability features a nontrivial interpolating function
of the ’t Hooft coupling λ = N

k

[Gaiotto, Giombi, Yin; Grignani, Harmark, Orselli; Nishioka, Takayanagi; Gromov, Vieira 08]

• magnon dispersion relation for ABJM spin chain

E =
1

2

√
1 + 16 h2(λ) sin2 p

2

• scaling function (twist-2 / light-like cusp anomalous dimension)
[Gromov and Vieira 08]

Γ∞ABJM(λ) =
1

2
Γ∞N=4(λYM)

∣∣∣∣√λYM
4π

→h(λ)

λYM = g 2N

• h(λ) appears in all integrability based predictions, it is needed for
comparisons with results obtained by other methods

• conjecture for its value to all orders, inspired by analogy with localization
[Gromov, Sizov 14]

λ =
sinh 2πh(λ)

2π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;− sinh2 2πh(λ)

)
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The interpolating h-function: expansions

• weak and strong coupling expansions from conjecture:

h(λ) =


λ −π

2

3
λ3

−π
2

3
λ3

+
5π4

12
λ5

5π4

12
λ5

− 893π6

1260
λ7 +O(λ9) λ� 1√√√√ 1

2

(
λ −

1

24

− 1

24

)
− log 2

2π

− log 2

2π

+O
(

e−2π
√

2λ
)

λ� 1

• tests against perturbative results:

SU(2)× SU(2) sector dispersion relation to 24 loopsAdS4 × CP3 spinning string computationAdS4 × CP3 worldsheet perturbation theory at two loops
[Leoni, Mauri, Minahan, Ohlsson Sax, Sieg, Tartaglino-Mazzuchelli 10][Minahan, Ohlsson-Sax, Sieg 09][Mc Loughlin, Roiban; Alday, Arutyunov, Bykov; Krishnan 08 + more][Bianchi, MSB, Bres, Forini, Vescovi 14]

IR divergence of 2-loop scattering amplitudes/ UV of cusped WLconfirms predicted anomalous radius shift
[MSB, Leoni, Mauri, Penati, Santambrogio; Chen, Huang 12; Henn, Plefka, Wiegandt 10][Bergman, Hirano 09]

• mutual consistency of several computations and ingredients: conjecture
must be correct, but proof desirable

A proof of the exact h(λ) could be derived computing the
same observable exactly by two independent methods, e.g.
integrability and localization: Bremsstrahlung is a candidate
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Supersymmetric Wilson loops
• 1/2

1/6

locally supersymmetric WL in N = 4 SYM

N = 6 ABJM

: coupling to a scalars

[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09]

W 1/2

1/6Ŵ1/6

[Γ] =
1

N
TrP exp

[
−i

∫
Γ

dτ

(
A

Â

· ẋ − i |ẋ | nI ΦI

2π

k
|ẋ |MJ

I Y I ȲJM̂J
I ȲIY

J

)
(τ)

]

M̂M = diag (−1,−1, 1, 1)

• companion Ŵ1/6 for the other gauge group

• 1/2 locally supersymmetric WLs in ABJM require coupling to both scalars
and fermions

• U(N1|N2) supermatrix structure

L1/2 =

(
bosonic N1 × N1 fermionic N1 × N2

fermionic N2 × N1 bosonic N2 × N2

)
• 1/2-BPS WLs are cohomologically equivalent to comb of 1/6-BPS WLs

(under supercharge Q)
[Drukker, Trancanelli 10]

W1/2 −
(

W1/6 0

0 Ŵ1/6

)
= Q V difference is Q-exact

• these WLs were given an interpretation via Higgsing [Lee, Lee 10]
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I ȲIY

J

)
(τ)

]

M

M̂ = diag (−1,−1, 1, 1)
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· ẋ − i
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

A ≡ Aµẋµ − 2πi
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• Tr denotes the standard matrix trace (and not the super-trace)

• M are matrices in R-symmetry space controlling coupling to bi-scalars

• η, η̄ are commuting spinors controlling coupling to fermions

global susy

• contours exist where charges are preserved globally, e.g. line and circle

• amenable of an exact computation via localization
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Exact results for ABJM WL
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• perturbative check

of 1/6-BPS up to two loops at framing 0of 1/6-BPS at 3 loops at framing 1of 1/2-BPS up to two loops at framing 0of multiple winding at 2, 3 loops (recursively)
[Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Tamaguchi 09][MSB, Giribet, Leoni, Penati; Griguolo, Martelloni, Poggi, Seminara 13][MSB, Griguolo, Leoni, Mauri, Penati, Seminara 16][MSB 16]

• multiple winding n [Klemm, Marino, Soroush 12]
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• perturbative check

of 1/6-BPS up to two loops at framing 0

of 1/6-BPS at 3 loops at framing 1

of 1/2-BPS up to two loops at framing 0of multiple winding at 2, 3 loops (recursively)
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[MSB 16]

• multiple winding n [Klemm, Marino, Soroush 12]
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Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
”latitude” on S2 partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

• 2-parameter deformation: geometric and internal independent angles θ, α

• one obtains a bosonic 1/12-BPS WB and a fermionic 1/6-BPS WF WLs

• conjectured to be cohomologically equivalent (similar to undeformed case)

• computed up to second order in PT:
• vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

• vev depends on a single parameter combination ν = sin 2α cos θ

〈WB(θ, α)〉 = wB(ν) 〈WF (θ, α)〉 = wF (ν)

• strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

• an exact vev via localization is missing, but might be possible



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
”latitude” on S2 partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

• 2-parameter deformation: geometric and internal independent angles θ, α

• one obtains a bosonic 1/12-BPS WB and a fermionic 1/6-BPS WF WLs

• conjectured to be cohomologically equivalent (similar to undeformed case)

• computed up to second order in PT:
• vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

• vev depends on a single parameter combination ν = sin 2α cos θ

〈WB(θ, α)〉 = wB(ν) 〈WF (θ, α)〉 = wF (ν)

• strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

• an exact vev via localization is missing, but might be possible



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
”latitude” on S2 partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

• 2-parameter deformation: geometric and internal independent angles θ, α

• one obtains a bosonic 1/12-BPS WB and a fermionic 1/6-BPS WF WLs

• conjectured to be cohomologically equivalent (similar to undeformed case)

• computed up to second order in PT:
• vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

• vev depends on a single parameter combination ν = sin 2α cos θ

〈WB(θ, α)〉 = wB(ν) 〈WF (θ, α)〉 = wF (ν)

• strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

• an exact vev via localization is missing, but might be possible



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
”latitude” on S2 partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

• 2-parameter deformation: geometric and internal independent angles θ, α

• one obtains a bosonic 1/12-BPS WB and a fermionic 1/6-BPS WF WLs

• conjectured to be cohomologically equivalent (similar to undeformed case)

• computed up to second order in PT:
• vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

• vev depends on a single parameter combination ν = sin 2α cos θ

〈WB(θ, α)〉 = wB(ν) 〈WF (θ, α)〉 = wF (ν)

• strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

• an exact vev via localization is missing, but might be possible



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Latitude contour

Latitude

one can deform contour of 1/6- and 1/2-BPS WLs from the equator to a
”latitude” on S2 partly preserving supersymmetry

[Cardinali, Griguolo, Martelloni, Seminara 12; MSB, Griguolo, Leoni, Penati, Seminara 14]

• 2-parameter deformation: geometric and internal independent angles θ, α

• one obtains a bosonic 1/12-BPS WB and a fermionic 1/6-BPS WF WLs

• conjectured to be cohomologically equivalent (similar to undeformed case)

• computed up to second order in PT:
• vev is NOT given by a simple rescaling of the coupling (unlike N = 4 SYM)

• vev depends on a single parameter combination ν = sin 2α cos θ

〈WB(θ, α)〉 = wB(ν) 〈WF (θ, α)〉 = wF (ν)

• strong coupling dual description [Aguilera-Damia, Correa, Silva 14]

• an exact vev via localization is missing, but might be possible



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

Extremal limit
[MSB, Leoni 16]

The ABJ theory

Take the ABJ model, with gauge group U(N1)k × U(N2)−k |N1 − N2| < k

Consider 1/6-BPS (bosonic) WL relative to U(N1):
• in the N1 � N2 limit the WL reduces to pure CS −→ exact vev [Witten 89]

• in the opposite limit N2 � N1 the leading approximation in N2 is given
by two classes of diagrams to all orders in k (λi ≡ Ni/k)

= λ1

fYM(λ2)
sinπλ2

π

−ẋ1 · ẋ2

|x1 − x2|2
= λ1

fO(λ2)
sinπλ2

π

|ẋ1||ẋ2|
|x1 − x2|2

• by requiring SUSY (finiteness on the line) and comparing to localization
results for the circular 1/6-BPS WL fixes the exact value of fYM and fO

fO(λ2) = fYM(λ2) =
1

π
sinπλ2

In the extremal limit N2 � N1

• can compute vev of 1/6-BPS WL on all smooth contours

• exact cusp anomalous dimension, Bremsstrahlung, h-function†

• can prove integrability of SU(2) sector

† conjecture for ABJ exact h-function
[Cavagliá, Gromov, Levkovich-Maslyuk 16]
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Supersymmetric cusps
Construct locally BPS cusps in ABJM with:

W [Γ] =
1

N Tr

[
P exp

(
−i

∫
Γ

dτ L1/6 or 1/2(τ)

)]
evaluated along the contour Γ: two rays intersecting at an angle π − φ

j�2j�2

Edge 2Edge 1

Γ : x0 = 0 x1 = τ cos
φ

2
x2 = |τ | sin

φ

2
−∞ ≤ τ ≤ ∞

• L1/6 is the U(N) Lie-algebra connection for 1/6-BPS WL

• L1/2 is the U(N|N) Lie-superalgebra superconnection for 1/2-BPS WL

• for the 1/6-BPS we could not find a globally preserved supercharge

• for the 1/2-BPS. . .
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The 1/2-BPS cusp

SUSY preserving cusp configuration

A second angle

One can choose the parameters in such a way that 4/24 of
supercharges are preserved on the cusped contour

The angle θ is the counterpart of φ in R−symmetry space:
angular separation of the two edges in the internal space CP3

[Griguolo, Martelloni, Poggi, Seminara 12]

The fermionic couplings on each straight-line factorize

ηαiM = niMη
α
i and η̄Miα = n̄M

i η̄iα

• On the first edge n1M =
(

cos θ
4

sin θ
4

0 0
)

ηα1 = (e−i φ
4 e i φ

4 )

n̄M
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cos θ4
sin θ

4
0
0

 η̄1α = i
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e i
φ
4

e−i
φ
4

)
M1 = M̂1 =


− cos θ2 − sin θ

2 0 0
− sin θ

2 cos θ2 0 0
0 0 1 0
0 0 0 1


• while on the second edge

n2M =
(

cos θ
4
− sin θ

4
0 0

)
ηα2 = (e i φ

4 e−i φ
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n̄M
2 =
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cos θ4
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4
0
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
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Exact Bremsstrahlung for 1/6-BPS
[Lewkowycz, Maldacena 13]

Consider small φ limit of cusp constructed from 2 locally 1/6-BPS rays (not a
supersymmetric configuration globally, though):

• connect Bremsstrahlung to stress tensor 1pt-function
• connect latter to entanglement entropy of sphere with Wilson line insertion
• in 3d branched sphere → squashed sphere S3

b

SW = (1− n ∂n)| log〈W (S3
b=
√

n)〉|
∣∣∣
n=1

• trade WL on S3
b with multiply wound Wn on S3

exact formula for 1/6-BPS lines Bremsstrahlung B1/6

B1/6 =

1

4π2
∂n
∣∣〈W ◦

1/6,n〉1
∣∣ ∣∣∣

n=1

λ2

2
− π2 λ4

2
+

47π4λ6

72
+ . . . λ� 1

√
2π2λ

4π2
− 1

4π2 +

(
1

4π2
− 5

96

)
+ . . . λ� 1

• tests:

weak coupling 2-loopstrong coupling: up to subleading order
[MSB, Griguolo, Leoni, Penati, Seminara 14][Aguilera-Damia, Correa, Silva 14]

postulate exact Bremsstrahlung for 1/2-BPS cusp

B1/2 =
1

4π2
∂n
∣∣〈W ◦

1/2,n〉1
∣∣ ∣∣∣

n=1

=
∣∣〈W ◦

1/6,n〉+ (−1)n 〈W̄ ◦
1/6,n〉1

∣∣ ∣∣∣
n=1

• use cohomological equivalence
• B1/2 is an odd function of k (B1/2 < 0 for k < 0 ??)
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exact 1/2-BPS Bremsstrahlung via latitudes?
[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let’s conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt ν

B1/2(k,N) =
1

4π2
∂ν log 〈W ◦

F (ν, k,N)〉0
∣∣∣
ν=1

NOT PROVEN, though recent
progress by Bianchi, Griguolo,
Preti, Seminara

2) use cohomological equivalence to bosonic WL’s

NOT PROVEN

B1/2(k,N) =
1

4π2

[
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)∣∣∣
ν=1((((((((((((((

+
π

2
tgΦB

]
3) trade deformation parameter with winding number

∂ν log
(
〈W ◦

B (ν)〉ν + 〈Ŵ ◦
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NOT justified

4) the former quantity vanishes and can be neglected

NOT PROVEN,
PT and numerics

The exact 1/2-BPS Bremsstrahlung

B1/2 = − i

8π

〈W ◦
1/6〉1 − 〈Ŵ ◦

1/6〉1
〈W ◦

1/6〉1 + 〈Ŵ ◦
1/6〉1

agrees with weak coupling calculation,

which is effectively only 1 loop

and at strong coupling (up to sublead-
ing order!)

[Aguilera-Damia, Correa, Silva 14;
Forini, Giangreco Puletti, Ohlsson Sax 12]

However . . .
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B (ν)〉ν

)∣∣∣
ν=1

=

0∂n log
(
〈W ◦

1/6,n〉+ 〈Ŵ ◦
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1/6〉1
〈W ◦

1/6〉1 + 〈Ŵ ◦
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1/6,n〉

) ∂n(ν)

∂ν

∣∣∣∣
ν=1

NOT justified

4) the former quantity vanishes and can be neglected

NOT PROVEN,
PT and numerics

The exact 1/2-BPS Bremsstrahlung

B1/2 = − i

8π

〈W ◦
1/6〉1 − 〈Ŵ ◦
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1/6〉1

agrees with weak coupling calculation,

which is effectively only 1 loop

and at strong coupling (up to sublead-
ing order!)

[Aguilera-Damia, Correa, Silva 14;
Forini, Giangreco Puletti, Ohlsson Sax 12]

However . . .



Intro SUSY WL in ABJM SUSY cusps in ABJM 3-loop test Conclusions

exact 1/2-BPS Bremsstrahlung via latitudes?
[MSB, Griguolo, Leoni, Penati and Seminara 14]

1) Let’s conjecture that the Bremsstrahlung is obtained by deriving the
latitude WL wrt ν

B1/2(k,N) =
1

4π2
∂ν log 〈W ◦

F (ν, k,N)〉0
∣∣∣
ν=1

NOT PROVEN, though recent
progress by Bianchi, Griguolo,
Preti, Seminara

2) use cohomological equivalence to bosonic WL’s

NOT PROVEN

B1/2(k,N) =
1

4π2

[
∂ν log

(
〈W ◦

B (ν)〉+ 〈Ŵ ◦
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B (ν)〉ν

)∣∣∣
ν=1

= 0

∂n log
(
〈W ◦

1/6,n〉+ 〈Ŵ ◦
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Three-loop prediction

Still, assuming the conjecture holds true

we can derive a three-loop prediction at weak coupling

• using the localization expectation value for the 1/6-BPS Wilson loops

〈W ◦
1/6〉1 = 1 + i π

N

k
+

1

6

(
1 + 2N2

)
π2 1

k2
+

1

6
i N
(

4 + N2
)
π3 1

k3
+ O(k−5)

〈Ŵ ◦
1/6〉1 = 〈W ◦

1/6〉∗1

and plugging them in the above conjecture we find

B1/2(k,N) =
N

8 k
−
π2 N

(
N2−3

)
48 k3

+O
(

k−4
)

• 1-loop and (vanishing) 2-loop contributions agree with direct computation
[Griguolo, Martelloni, Poggi and Seminara 12]

• first non-planar correction at three-loops

• B1/2 is an odd function of k (B < 0 for k < 0 ??)

• from the conjecture B1/2 comes entirely from the imaginary part of W ◦
1/6

i.e. from the framing of the Wilson loop



Three-loop test
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Computing a three-loop cusp

• Eight topologies

• Fill them in with any possible
particle (here also fermions
can attach to Wilson line)

In CS theories:

• CS theory contains ubiquitous ε tensors (e.g. gauge propagator and
vertex, γ-algebra)

• cusp lies on a plane, only contribution with even number of ε tensors can
contribute

• from the Feynman rules at odd loops: completely gluonic graphs + many
more are ruled out

Still. . .

it is a massive computation (if done just bruteforce)
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Computing the cusp at 0 angle

Use BPS condition: Γ1/2 = −B1/2

(
φ2 − θ2

)
φ, θ � 1

B1/2 =
1

2

∂2

∂θ2
Γ1/2

∣∣∣
φ=θ=0

= −1

2

∂2

∂φ2
Γ1/2

∣∣∣
φ=θ=0

to extract Bremsstrahlung from cusp at φ = 0.

φ

θ

Advantages:

• reduced number of diagrams

• diagram algebra is easier
• integrals are much easier: propagator-type (GPXT) [Chetyrkin, Kataev, Tkachov 80]

Can use the Korchemsky-Radyushkin prescription [Korchemsky, Radyushkin 87]

log〈W (θ)〉
∣∣∣
φ=0

= log V (θ)− log V (0)
∣∣∣
φ=0

to compute only the 1PI part.
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Renormalization of the cusp

divergences

the expectation value of the cusped WL suffers from both IR and UV
divergences

• regulate IR divergences with cutoff L

• use dimensional regularization for UV divergence d = 3− 2ε (DRED)

• renormalize the UV div multiplicatively 〈WR(θ)〉 = Z−1
cusp 〈W (θ)〉

• extract the cusp anomalous dimension

Γcusp(k,N)
∣∣∣
φ=0

=
d log Zcusp

d logµ

∣∣∣
φ=0

simple poles in ε
µ = renormalization scale

• in our case this is restricted to the φ = 0 limit

• extract Bremsstrahlung function, taking the double derivative

B1/2(k,N) =
1

2
∂2
θ Γ1/2(k,N, φ = 0, θ)

∣∣∣
θ=0
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HQET picture
[Gervais, Neveu 80; Korchemsky, Radyushkin 87]

• Fourier transforming the Wilson line wrt the parameters, one obtains a
heavy quark effective theory HQET propagator

τ2 τ1

k

−L L

τ2 τ1

k

−L L

∫ +∞

L

0

dτ1

∫ 0

−∞

L

dτ2
1

[(x1 − x2)2]1/2−ε

∫
d3−2ε k

(2π)3−2ε

1

k2 (i k · v)2

1

k2 (i k · v + δ)2

• IR regulator: residual energy to massive quark

1

−i k · v

−→ 1

−i k · v − δ

v : velocity of quark

δ: residual energy

• cusp: heavy-quark form factor, velocities at an angle φ

Advantage of the HQET picture

can use powerful integration-by-parts (IBP) identities for reduction to master
integrals (MI)
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Reduction to master integrals
• IBP identities, e.g.

∫
ddk ∂

∂k
· k 1

k2(k−p)2 = 0 [Chetyrkin, Tkachov 81]

• can reduce all integrals of a given topology to a set of master integrals;
• Laporta algorithm [Laporta 00]

• public implementations (

FIREFIRE5

, LiteRed, Reduze, Crusher, Mincer)

[Smirnov 14]

• nonplanar integrals have linearly dependent denominators (peculiarity of
linear HQET propagators): reduce by partial fractioning

• in particular there are 1, 2 and 7+1 master integrals at 1, 2 and 3 loops

• relevant master integrals have been computed for generic d (GPXT) [Grozin]

Strategy

substitute expansions
of master integrals

reduce to masters
reduce nonplanar

by partial fractioning

perform tensor algebra
scalar products to

inverse propagators
write down diagram

Performance

The C++ reduction of FIRE5 reduces the needed 1259 planar + 584 nonplanar
needed integrals in a few minutes!
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The results

log〈W (φ = 0, θ)〉 =
N(Cθ − 1)

2 k ε
+
π2 N (Cθ − 1)

(
N2 (Cθ − 2) + C 2

θ + 2
)

36 k3 ε
+ . . .

Properties: Cθ = cos θ
2

• exponentiates,

• uniform degree of transcendentality,

• BPS condition, i.e. for θ = 0, (a bit trivial at φ = 0, but checked up to 2
loops for whole cusp)

• can extract cusp anomalous dimension

Γcusp(k,N, φ = 0) =
N (1− Cθ)

k
−
π2 N (Cθ − 1)

(
C 2
θ + N2 (Cθ − 2) + 2

)
6 k3

+ . . .

Bremsstrahlung function

B1/2(k,N) =
N

8 k
−
π2 N

(
N2−3

)
48 k3

+ . . .

This result is in agreement with the conjecture (including nonplanar)



Conclusions
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Conclusions: take home messages

• the Bremsstrahlung function is an interesting limit of the cusp anomalous
dimension

• it can be computed exactly in your favourite theory, N = 4 SYM, both by
localization and integrability

• looks like it can be computed exactly in my favourite theory as well

proposal

a conjecture exists for the exact 1/2-BPS Bremsstrahlung function in ABJM
theory in terms of supersymmetric circular Wilson loops

test

we have performed a successful 3-loop test of it at weak coupling, including
color subleading corrections
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Outlook

Wishlist:

• compute the whole 3-loop cusp elliptic functions

• integrability based computation of Bremsstrahlung and proof of exact h(λ)
progress. . .

[Bombardelli, Cavagliá, Fioravanti, Gromov, Tateo 17]

• The generalized cusp should be captured by some scattering of massive
particles in Higgsed ABJM. Partial results for massive amplitudes in ABJM

[Caron-Huot, Huang 12; MSB 15]

• computation of 1/2-BPS Bremsstrahlung can be easily extended
to the ABJ case, namely different ranks N1, N2.
The result, though, looks bizarre: no sign of exponentiation.
How to interpret the divergence and extract cusp anomalous
dimension Γcusp?
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Thank you!
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A look at the whole cusp

Opening the angle

Complications:

• algebra of diagram is more involved, but doable

• reduction to master integrals is more intensive, but doable and here gives
2, 8 and 71 master integrals at 1, 2 and 3 loops

• master integrals are functions of φ rather than numbers

Strategy

Try to solve MI’s by differential equations

[Grozin, Henn, Korchemsky, Marquard 15]

• 1 and 2 loop result computed, up to finite part

• 3 loops is being computed

• difficulty: elliptic sectors



A look at the whole cusp

Differential equations in canonical form

• set of MI’s obey closed systems of differential equations

∂x ~f (x) = A(x , ε)~f (x) = (A0(x) + A1(x) ε+ . . . ) ~f (x)

• can be used to solve integrals efficiently [Gehrman, Remiddi 01]

• have to provide boundary conditions

• a special case: Fuchsian system in ε-form [Henn 13]

∂x ~f (x) = ε Ã(x)~f (x) Ã =
∑

xi∈alphabet

1

x − xi

• iterative (and simple) expansion in ε in terms of generalised
polylogarithms (HPL, Goncharov and more general dlog forms)

Ga1...an (x) =

∫ x

0

dt1

t1 − a1
. . .

∫ tn−1

0

dtn
tn − an

Existence of ε-form guarantees uniform degree of transcendentality by
construction!
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An example in 3d

The problem: 2-loop 4-point massless scattering in 3d

• solved for ABJM and N = 8 SYM by direct computation via MB
[Chen, Huang; MSB, Leoni, Mauri, Penati, Santambrogio 10; MSB, Leoni 12; Bianchi, MSB 13]

• the problem can be reduced in general to a set of 8 MI’s

f2f1 f5f4f3

f6 f7 f8

f2f1 f5f4f3

f6 f7 f8

• ∃ canonical basis with variable
s

t
≡ (1− q2)2

4q2
and alphabet {0,±1,±i}

• MIs can be solved in terms of Goncharov polylogarithms to all orders in ε

• one of the basis element can be chosen to be the complete planar 4-pt
2-loop amplitude of ABJM

• proves uniform transcendentality of whole planar 4-pt amplitude of ABJM
by BDS exponentiation
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Elliptic sectors
• not all integrals can be solved in terms of

polylogarithms

• in particular elliptic sectors may arise

• coupled, irreducible, homogeneous differential
equations: NO ε-form

• this happens for 3-loop cusp in 3d (unlike 4d!)

• e.g. 2 MI’s sector: (f1(x), f2(x))

• each MI at a given order in ε expansion obeys 2nd order DE:

f ′′1 (x) +

(
3x4 + 1

)
f ′1 (x)

x(x4 − 1)
+

f1(x)

x2
=

0r(x)

• homogeneous solution in terms of complete elliptic integrals:

f1(x) = c1 x K
(
x4
)︸ ︷︷ ︸

f
(1)

1

+c2 x K
(
1− x4

)︸ ︷︷ ︸
f

(2)
1

• inhomogeneous problem by Euler’s variation of constants:

f1(x) = c1 f
(1)

1 (x) + c2 f
(2)

1 (x) +

∫ x

x0

dy
−f (1)

1 (x) f
(2)

1 (y) + f
(2)

1 (x) f
(1)

1

W (y)
r(y)

• this sector can be solved this way
↑

Wronskian
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