Norldsheet and sugra analysis 200 2000 Dual CFT candidates

Strings on $AdS_3\times S^3\times S^3\times S^1$

Lorenz Eberhardt

July 6, 2017

Based on work with Matthias Gaberdiel, Rajesh Gopakumar and Wei Li [arXiv:1701.03552], [arXiv:1707.????].

Summary of the results

- ► The background supports the large N = 4 superconformal algebra and is thus very interesting, but still mysterious.
- ▶ We have analyzed the BPS spectrum of $AdS_3 \times S^3 \times S^3 \times S^1$ both in string theory and supergravity.
- The sugra calculation shows a discrepancy with the old result of [de Boer, Pasquinucci, Skenderis '99].
- We have made an explicit proposal for the dual CFT.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions		
• o	000	0000			
The large $M = 4$ superconfer	al algebra	000			
ine large $\mathcal{N} = 4$ superconformal algebra					

The large $\mathcal{N} = 4$ algebra A_{γ}

- R-symmetry [Sevrin, Troost, van Proeyen, Schoutens, Spindel, Theodoridis, Goddard, Schwimmer 88'-90']:
 - $\mathfrak{su}(2)_{k^+} \oplus \mathfrak{su}(2)_{k^-} \oplus \mathfrak{u}(1)$ -current algebra

(

Central charge:

$$c = \frac{6k^+k^-}{k^++k^-}$$

(日) (同) (三) (

э

• Global algebra (wedge-algebra): $D(2, 1|\alpha)$.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	000	0000	
The large $\mathcal{N}=4$ superconfor	mal algebra		

BPS bound

Representations are labelled by

Strings on $AdS_3 \times S^3 \times S^3 \times S^1$

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	000	0000	
•0	0000	000	
The global algebra $D(2, 1 \alpha)$			

The global algebra $D(2, 1|\alpha)$

- ▶ u(1)-current decouples: Only global su(2) ⊕ su(2)-symmetry remains
- Representations are labelled by

BPS bound [de Boer, Pasquinucci, Skenderis '99]:

$$h_{\rm BPS} = \frac{k^+ j^- + k^- j^+}{k^+ + k^-}$$

▲ □ ▶ ▲ □ ▶ ▲

3

BPS bounds

- ► The A_γ (stringy) BPS-bound is stronger than the D(2, 1|α) (sugra) BPS-bound, equality only for j⁺ = j⁻ and u = 0.
- Strange consequence: Sugra BPS states with j⁺ ≠ j⁻ have to acquire non-trivial quantum corrections to even satisfy the stringy BPS bound [de Boer, Pasquinucci, Skenderis '99; Gukov, Martinec, Moore, Strominger '04].
- ► According to the analysis of [de Boer, Pasquinucci, Skenderis '99], sugra contains such BPS states.

Lorenz Eberhardt

Superaigebras vvo	orldsheet and sugra analysis	Dual CFT candidates	Conclusions
00 00	0		
00 00	00	000	
Worldsheet analysis			

WZW model

For pure NS-NS background, the worldsheet theory of the string can be described by a supersymmetric WZW model based on [Elitzur, Feinerman, Giveon, Tsabar '99]:

$$\mathfrak{sl}(2,\mathbb{R})^{(1)}_k\oplus\mathfrak{su}(2)^{(1)}_{k^+}\oplus\mathfrak{su}(2)^{(1)}_{k^-}\oplus\mathfrak{u}(1)^{(1)}$$

Criticality of the string theory requires the total central charge to be 15:

$$k = \frac{k^+k^-}{k^+ + k^-}$$

► The sl(2, R)-spin j is identified with the conformal weight of the state in the dual CFT [Elitzur, Feinerman, Giveon, Tsabar '99].

・日・ ・ヨ・ ・

$$\Rightarrow$$
 Can study BPS spectrum

Lorenz Eberhardt

Strings on $AdS_3 \times S^3 \times S^3 \times S^1$

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	0000	0000	
Worldsheet analysis			

Worldsheet BPS spectrum: unflowed sectors

▶ In NS-sector: Use the one fermion to lower the $\mathfrak{sl}(2,\mathbb{R})$ -spin.

$$j = -\frac{1}{2} + \sqrt{\frac{1}{4} + k\left(\frac{j^+(j^++1)}{k^+} + \frac{j^-(j^-+1)}{k^-}\right)}$$

Compare with the BPS bound

$$j \ge \frac{k^+ j^- + k^- j^+}{k^+ + k^-} + \frac{(j^+ - j^-)^2}{k^+ + k^-}$$

• The BPS bound is saturated only for $j^+ = j^-$.

Lorenz Eberhardt

Strings on $AdS_3 \times S^3 \times S^3 \times S^1$

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	00 ● 0000	0000 000	
Worldsheet analysis			

Complete worldsheet BPS spectrum

- Spectrally flowed (long string) sectors contribute more BPS states.
- Complete BPS spectrum: [LE, Gaberdiel, Gopakumar, Li '17]:

$$\bigoplus_{j \in \frac{1}{2} \mathbb{Z} \setminus \left(\frac{1}{2} \lfloor k\mathbb{Z} \rfloor \setminus \frac{1}{2} \operatorname{lcm}(k^+, k^-)\mathbb{Z}\right)}^{\frac{c}{12}} [j, j, u = 0]_S \otimes \overline{[j, j, u = 0]_S} \ .$$

Taking into account the missing chiral primaries:

$$\bigoplus_{j\in \frac{1}{2}\mathbb{Z}}^{\frac{c}{12}} [j,j,u=0]_S \otimes \overline{[j,j,u=0]_S} \ .$$

• This should be matched with supergravity, which corresponds to the regime $k \to \infty$.

Lorenz Eberhardt Strings on ${\rm AdS}_3 \times {\rm S}^3 \times {\rm S}^3 \times {\rm S}^1$

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	000	0000	
	0000		
Supergravity BPS spectrum			

Sugra BPS spectrum

Structure of the result:

 \Rightarrow Looks like a KK-reduction, suggests that same conclusion should also hold true in supergravity.

э

Lorenz Eberhardt Strings on ${\rm AdS}_3 \times {\rm S}^3 \times {\rm S}^3 \times {\rm S}^1$

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
	0000		
Supergravity BPS spectrum			

Sugra BPS spectrum

- ► To fix the sign and to confirm this, we performed an explicit KK-reduction of 9d supergravity on S³ × S³.
- Result:
 - The spectrum arranges itself into $D(2, 1|\alpha)$ -multiplets.
 - Confirms the string theory result [LE, Gaberdiel, Gopakumar, Li '17]:

The only BPS states have $j^+ = j^-$.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
	0000		
Supergravity BPS spectrum	n		

Comparison with de Boer et al.

- \blacktriangleright Gives an elegant resolution of the previous puzzle: Sugra has no BPS states for $j^+ \neq j^-$
 - \Rightarrow There is no need for miraculous quantum corrections in string theory.
- Previously excluded candidates as dual CFTs are again "back in the game".

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclus
00	000	0000	
	0000		
Supergravity BPS spec	trum		

Matching of the BPS spectrum with the dual CFT

- At generic points in the moduli space and in the large spin limit, the BPS spectrum was independently analysed by [Baggio, Ohlsson Sax, Sfondrini, Stefanski, Torielli '17] using integrability techniques.
 - ⇒ This suggests that the full BPS spectrum is the same everywhere in moduli space, i.e., also the dual CFT should just have BPS states with $j^+ = j^-$.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
		0000	
	0000		
Brane construction			

Brane construction

► Wrap a special Lagrangian S³:

	0	1	2	3	4	5	6	7	8	9
Q_5^+ D5 branes	×					×	×	×	×	×
Q_1 D1 branes	\times					\times	\sim	\sim	\sim	\sim
Q_5^- D5 fluxes							0	0	0	

► This configuration gives the near-horizon geometry AdS₃ × S³ × S³ × S¹.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
00	000	0000 000	
Brane construction			

Worldvolume theory

- ► The low-energy theory on the 6-dimensional D5-brane worldvolume is a 3-dimensional U(Q⁺₅) Chern-Simons theory living in 059.
- ► Near-horizon limit: overall U(1) decouples. ⇒ Subtle issue: End up with SU(Q⁺₅) or SU(Q⁺₅)/Z_{Q⁺₂}.
- ▶ [Witten '99]: The latter is anomalous unless $Q_5^+ | Q_5^-$. ⇒ Brane picture is not consistent unless $Q_5^+ | Q_5^-$.

Instanton moduli space

- The dual CFT should be identified with the low-energy theory living on the D1-D5 brane intersection.
- ▶ D1-branes can be viewed as instantons in the D5-branes, living on the transverse direction of the D1-branes: S³ × S¹.
- ► The dual CFT is the supersymmetric σ -model on the moduli space $\mathcal{M}_{Q_1,Q_5^+,Q_5^-}$ of Q_1 instantons of $\mathrm{SU}(Q_5^+)$ on $\mathrm{S}^3_{Q_5^--Q_5^+} \times \mathrm{S}^1$.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
		0000	
	0000		
Brane construction			

Instanton moduli space

• For $Q_5^+ = 1$, the moduli space is easy to determine:

$$\mathcal{M}_{Q_1,1,Q_5^-} \cong \operatorname{Sym}^{Q_1}(\operatorname{S}^3_{Q_5^--1} \times \operatorname{S}^1)$$
.

▶ In general hard, but when $Q_5^+ \mid Q_5^-$ there is a natural guess:

$$\mathcal{M}_{Q_1,Q_5^+,Q_5^-} \cong \operatorname{Sym}^{Q_1Q_5^+}(\operatorname{S}^3_{Q_5^-/Q_5^+-1} \times \operatorname{S}^1)$$
.

The theory \mathcal{S}_{κ}

► S_{κ} is the $\mathcal{N} = 1$ WZW model on $S^3 \times S^1 \cong SU(2) \times U(1)$ [Sevrin, Troost, van Proeyen '88].

(日) (同) (三) (三)

3

- κ is the level of the bosonic $\mathfrak{su}(2)$ -algebra.
- Fermions generate the current algebra $\mathfrak{su}(2)_1 \oplus \mathfrak{su}(2)_1$.
- Theory supports the A_{γ} algebra with levels $k^+ = 1$, $k^- = \kappa + 1$.

Superalgebras	Worldsheet and sugra analysis	Dual CFT candidates	Conclusions
	0000	000	
The symmetric orbifold of \mathcal{S}_{κ}			

The symmetric orbifold of \mathcal{S}_{κ}

- Moduli spaces were of the form $\operatorname{Sym}^N(\mathcal{S}_{\kappa})$.
- ► This supports the large N = 4 algebra with levels (N, N(κ + 1)).
- The same theories were considered before in [Elitzur, Feinerman, Giveon, Tsabar '98; Gukov, Martinec, Moore, Strominger '04], but discarded because of the wrong BPS spectrum.

The BPS spectrum of the symmetric orbifold of \mathcal{S}_{κ} and comparison

 Complete low-lying BPS spectrum: [Gukov, Martinec, Moore, Strominger '04; LE, Gaberdiel, Li '17]

$$\bigoplus_{j=0}^{\frac{c}{12}} [j,j,u=0]_S \otimes \overline{[j,j,u=0]_S} \ .$$

Perfect agreement with the string theory prediction!

Conclusions

- ▶ We have shown that the BPS spectrum of string theory and sugra on $AdS_3 \times S^3 \times S^3 \times S^1$ agrees and contains only states with $j^+ = j^-$.
- We analyzed the BPS spectrum of the symmetric product of the theory S_κ and found precisely the same BPS spectrum.
- Very convincing evidence in favour of the duality!

Superalgebras

Norldsheet and sugra analysis 200 2000 Dual CFT candidates

Conclusions

Thank you!

Lorenz Eberhardt Strings on $AdS_3 \times S^3 \times S^3 \times S^1$