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{ Motivation }

Elucidate holography

o Fundamental nature of spacetime & its relation to entanglement
o Structure/characterization of CkTs (& states) w/ gravity dual

Start w/ situations with large amount of symmetry (e.g. pure AdS)
o Explicit calculations possible, can obtain analytical expressions
o Use these to guess duality relations ~ entry in gauge/gravity dictionary

But this has limitations

o How 1o generalize! (e.g.time dependence)
o Often symmetry brings degeneracy between logically distinct concepts

Need to “‘covariantize”

o Define a quantity which is purely geometrical (e.g. independent of any
choice of coordinate systems) and fully general



{ Utility of covariant constructs }

» Gives a general prescription

o Definition of a quantity is equally robust on both sides of duality

» Once beyond analytically tractable cases, might as well go for full
generality (within the class of systems we want to consider; ie. N = )

We can learn a lot from classical bulk geometry!



{ Utility of covariant constructs }

» Gives a general prescription

o Definition of a quantity is equally robust on both sides of duality

» Once beyond analytically tractable cases, might as well go for full
generality (within the class of systems we want to consider; ie. N = )

* [Ime dependence Interesting In its own right

» Novel phenomena in out-of-equilibrium systems
» New Insight into the structure of the theory

° Breaks degeneracy between distinct constructs

o Allows us to identify the true dual ~ underlying nature of the map

» Natural covariant constructs motivate new relations
o Even If a given construct i1s not the sought dual, it eventually finds its use



{ -xample: Holographic EE }

Proposal [RT=Ryu & Takayanagi,'06] for static configurations:

In the bulk, entanglement entropy S 4 for
a boundary region A is captured by the
area of a minimal co-dimension-2 bulk

surface m gt constant t anchored on p——
: V/ aA
entangling surface 9.4 & homologous to A m /
Area(m |
E . o«

om=0A 4Gy

‘Pf’" In [Lewkowycz, Maldacena 'l 3]



{ Covariant Holographic EE }

But the RT prescription I1s not well-defined outside the context of
static configurations:

o |In Lorentzian geometry, we can decrease
the area arbrtrarily by timelike deformations

gRlillnesdependent context, no natural
notion of “const. t slice. ..

In time-dependent situations, R1 prescription must be covariantized:

Simplest candidate: [H RT =vH, Rangamani, Takayanagi ‘O7:|
minimal surface m = extremal surface & ¢
at constant time in the full bulk e =3 4

This gives a well-defined quantity in any (arbitrarily
time-dependent asymptotically AdS) spacetime
= equally robust as in CFT

“Pf" In [Dong, Lewkowycz, Rangamani '| ]



[ Curious features of EE: }

o Extremal surfaces can have intricate behavior:

» & can have discontinuous jumps under smooth variations of A

~ phase transitions in EE

o ¢ can be topologically nontrivial even for simply-connected regions A

» Holographic EE seems too local:
o sharply-specified both on boundary and in bulk

° but: » we can reconstruct the bulk metric (modulo caveats) solely
from the set {S 4} for a suitable set of { A}

» Holographic EE seems too non-local:

o global minimization condition + homology constraint makes S 4
sensitive to arbitrarily distant regions in the bulk...



Covariant Holographic EE

In fact, [HRT] identified 4 natural candidates:
(all co-dim.2 surfaces ending on 0.4, and coincident for ball regions A in pure AdS)

« & = Extremal surface b L |
* W = Minimal-area surface on maximal-volume slice & s ‘correct pPAE -
/ = 'HRT prescription

« ® = Surface with zero null expansions

« = = Causal wedge rim
B | ater known as Causal Information Surface:

w/ area = causal holographic information X [VH, Rangamani ' 2]




Power of covariant constructs

o ‘Natural geometrical constructs (defined for general bulk spacetimes, independent of
coordinates) provide useful candidates for dual of ‘natural’ quantrities in CFT

e dual of ,0_,47 [Bousso, Leichenauer, Rosenhaus; Czech, Karczmarek, Nogueira,Van Raamsdonk;. .. ]

o In generic Lorentzian spacetime, null congruences which define a causal set
provide useful characterization of ‘natural bulk regions.

/ 2 options: G
...starting from bdy: ...starting from bulk:
D[A] ~ Causal Wedge: ¢ ~ Entanglement Wedge:
= future and past = spacelike-separated
causally-separated (toward A) from &
from bdy region [Headrick,VH, Lawrence, Rangamani]
determined by p4 also cf. [Wall],[CKNVR]

[VH & Rangamani]

Argued to be the correct one:
[Dong, Harlow, Wall "1 6] via QEC & operator algebra
[Cotler, Hayden, Salton, Swingle, Walter ' 7] via recovery
channels



Power of covariant constructs

o ‘Natural geometrical constructs (defined for general bulk spacetimes, independent of
coordinates) provide useful candidates for dual of ‘natural’ quantrities in CFT

e dual of ,0_,47 [Bousso, Leichenauer, Rosenhaus; Czech, Karczmarek, Nogueira,Van Raamsdonk;. .. ]

o In generic Lorentzian spacetime, null congruences which define a causal set
provide useful characterization of ‘natural bulk regions.

/ 2 options: G
...starting from bdy: ...starting from bulk:

D[A] ~ Causal Wedge: ¢ ~ Entanglement Wedge:
= future and past ; = spacelike-separated
causally-separated (toward A) from &
from bdy region [Headrick,VH, Lawrence, Rangamani]
determined by p4
[VH & Rangamani] ¥

¢ Z_: NB: in pure AdS,

R | & for spherical A,

in Adss3 these coincide,
but not In general.




Causal wedge vs. Entanglement wedge

o Even in pure AdSs, these can differ for composite regions A = A; U As

Entanglement Wedge

contains

A, Causal Wedge




Causal wedge vs. Entanglement wedge

o crucial difference: in which direction can null generators cross...

D|A] ~ Causal Wedge: ¢ ~ Entanglement Wedge:

~ Crossover

s€am
crossover

A




[ Power of covariant constructs J

D|A] ~ Causal Wedge: ¢ ~ Entanglement Wedge:

...continued past Z: ~ Causal Shadow Qg4

o We can prove the inclusion property  [Headrick,VH, Lawrence, Rangamani; Wall]

@ @ EVY

or equivalently, & C Qg4

e Consequences:

o HRT Is consistent with CFT causality
(= non-trivial check of HRT)

o Entanglement plateaux

o Entanglement wedge can reach
deep Inside a black holel



[ Covariant re-formulations }

* Covariance Is pre-requisite to construct being physically
meaningful, but it need not be unique

» Distinct geometrical formulations can turn out equivalent (cf. € = @)

° [his redundancy Is useful

o [Each formulation can have its own advantages

» e.g different properties may be manifest in different formulations
(cf. gauge / coordinate choice)

o Re-formulation can reveal deeper relations (cf. ER=EPR [Maldacena, Susskind])



Covariant re-formulations of HEE

« & = Extremal surface

= o (relatively) easy to find
o minimal set of ingredients required in specification

e need to include homology constraint as extra requirement

» & = Surface with zero null expansions

@%A o (cf.light sheet construction & covariant entropy bound [Bousso, 99];
Bulk entropy through light sheet of surface ¢ < Area(0)/4
® = surface admitting a light sheet closest to bdy

« Maximin surface [Wall,"| 2]

o maximize over minimal-area surface on a spacelike slice

o requires the entire collection of slices & surfaces
o Implements homology constraint automatically
o useful for proofs (e.g. SSA)



{ @6 arlanit cesformulations @i }

All of these are the same ? - =2
seometrical construct. == A s, e

BUT 1t does not elucidate the relation to quantum information:

> \Where does the information live!

* Mutual information [(A:B) = S(A) + S(B) - S(AB) Is given by surfaces
located In different spacetime regions.

BEShictEc proot of SSA . ( S(AB) + S(BC) = S(B) + S(ABGE S
obscures Its meaning as monotonicity under inclusion of correlations



Bit thread picture of (static) EE W

° Reformulate EE in terms of flux of flow lines [Freedman & Headrick, 1 6]
* let v be avector field satisfying V-v =0 and |v| < 1. Then EE is given by

(Y

&:mM/v el
A

° By Max Flow - Min Cut theorem, equivalent to RT:
(bottleneck for flow = minimal surface)

> Useful reformulation of holographic EE
* flow continuous under varying region (while bottlenecks can jump discontinuously)
e automatically implements homology constraint and global minimization of RT
° maximal flow defined even without a regulator (when flux has UV divergence)
° can be computed more efficiently (via linear programming methods)
° Iimplements QI meaning of EE and its inequalities more naturally

e provides more intuition: think of each bit thread as connecting an EPR pair



[ Bit threads - Interpretation }

Nesting: 3 common maximizer flow for nested regions

Suppose we maximize on AB.
— Then we can additionally maximize on erther A or B, but not both.

* Conditional entropy H(A:B) = S(AB) - 5(B) S(A)=S(B)=2, S(AB)=3:
~ bits in A which are uncorrelated with B
= # of threads left on A when we measure B

A B

e Mutual information [(AB) = S(A) + 5(B) - S(AB)
~ correlations (redundancy) between A and B
= # of threads which can flop between A and B

S(A)=S(B)=2, S(AR)=1:
A B

° Entangled qubits are threads between A and B
which switch direction.
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Bit thread picture of (static) EE

° Reformulate EE in terms of flux of flow lines [Freedman & Headrick, 1 6]

let v be a vector field satisfying V-v =0 and |v| < 1. Then EE is given by

(Y
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By Max Flow - Min Cut theorem, equivalent to RT:
(bottleneck for flow = minimal surface)

o Useful reformulation of holographic EE

behaves more naturally
is more computationally efficient
ties better to QI quantities

provides more inturtion

° How does this extend to time-dependent settings!



[ Covariantizing bt threads }

|dentify the correct geometrical quantities of interest

Analogous to flow lines (vector field U ) in

|dentify the constraints they must satisty

Analogousto V-v =0 and |v| <1

ldentify the expression for EE obtained from these

Analogousto S 4 = max/ (
A

(Y

Test that it fulfills all requisite requirements

Extract lessons / implications



Iwo natural possibilities

Sieyery

extend threads in time keep |-d threads
flow sheets / \ flow lines




[ Requirements on constructs }

° |mperative:

o Reduces to bit threads In static case
o Equivalent to HRT (when null energy condition (NEC) is obeyed)
» Depends only on D|A] (i.e. 8. A + orientation), not on A itself

e Useful;

o Manifests CFT causality (directly rather than via equivalence to HRT)
o Manifests area law, positivity, subaddrtivity, SSA, etc.
e Elucidates role of NEC

o Elucidates role of homology constraint w/ time-dependence




{ Flow sheets J

Require:

ow sheets are timelike everywhere
ow sheets cannot end in the bulk

o density is bounded S ArealF; N R]
p =i 1

<
Vol[R] =

EE = sheets through DIA]

° Most “obvious’ generalization of bit threads
» entanglement lasts in time & cannot be changed a-causally ¢/

B nioer:
o Potentially too global (e.g. future singularity may prevent sheets in past)
o oo many sheets through D[A] by local boost



Flow lines

Require:

o flow lines start from D[A]
o flow lines dontend: l.e.keep v st. V-v =0
o but use Integrated norm bound:

For a unit normal vector w on any worldline ~, / w-v <1

a0
. Over full lifetime, any observer sees at most | thread / 4 Planck areas

EE counts bit threads In D[A]: §4 = max/ v
D[A]

* More promising:
o reduces to bit threads at const time in static case
o threads must all pass through extremal surface (for max flow)
» endpoints are floppy and can lie anywhere within D[A]
» Bonus: naturally picks out the entanglement wedge
o does not depend on spacetime in the far future

But: needs further specification for large regions



[ Flow lines }

But what is the QI interpretation ?

* Entanglement entropy counted by events !

o e.g # of Indep. measurements that can be performed within D|A]
e novel interpretation...

° Why are |-d structures natural!

o Why Is a specific measurement connected to another instantaneous
event somewhere in A ¢



Convex optimization as a tool

* Max-flow/min-cut Is an example of Lagrangian duality in theory
of convex optimization

Bl ellUD:

* start with:
e a vector space V'
e a non-empty convex subset D of V called the domain;
e a convex function fo : D — R called the objective function;
e a set of convex functions f; : D — R called the inequality constraint functions;
* and a set of affine functions h; : D — R called the equadlity constraint functions.

» Convex program P:minimize fo(y) over y € D such that Vi, f;(y) <0, V¥4, h;(y) =0

» use Lagrange multipliers L(y, A\, v) = fo(y) + Z i fily) + Z vi hi(y)
i J

» solution via convex optimization: p" =infsup L(y, A\, v)
¥y v

* Lagrangian duality:  swaporder  \/

o new extremization problem, in new variables



L Convex optimization as a tool }

e Strategy:
o Formulate the (Lorentzian) min cut side as convex relaxation
o Interpret the dual geometrically

g Eclo)r static case:
Min cut (RT): = Max flow (Bit threads):

S = min|Area(m)] ,U,u

/ 0,9| + - :max/ e
A
constraints:

convex | relaxation Lagrangian | duality Vi =10

el 1

Recast by introducing
a Lagrange multiplier

v (wy, — Ou9)

oM

/<§//
S
ey



{ Summary & Outlook }

° Holography conveniently seometrizes entanglement
» Finding bulk geometrical constructs is (relatively) easy!
o Useful iIn proving important properties!
o Why is EE related to geometry so simply?

o Duals of other measures of entanglement?

° (General covariance Is a powerful guiding principle
» Motivated entanglement wedge, causal wedge, ...
» Covariantize bit threads to elucidate essence of holographic EE

e Significance of instantaneous nature: (Why) |-d threads!?

e Convex relaxation and Lagrangian duality i1s a powerful tool
e Motivates new geometric constructs, new elegant proofs, connections...

e Other applications?

* Relation between spacetime (gravity) and entanglement?






