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Motivation and goal

Supergravity is the (ultra-)low energy effective action of
string or M-theory. Certainly not the full story since theory
contains many more states: Winding, wrapping, ...

Aim: Study M-theory effective action beyond supergravity, in
particular higher derivative correctionsin D =11 — d

dimensions with 7¢

Tools
# Hidden symmetries F,;(R) and U-duality £;(7Z)
o Exceptional field theory structures

# Relation between field theory loops
and BPS-protected string corrections

# Automorphic forms
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String theory scattering amplitudes

Low-energy limit of perturbative amplitudes

=7 S oot

E.g. four gravitons (in D = 10 type Il) at tree level

string scale
of = (2

5 4 T(1—=ds)I'(1 —a't)T 1—au

toa) =
Als;t,u) = gq ﬁuF1+@sF1+&%F1+@u
1
= 49 *R* ——+(a a/)3-2¢(3)+(a)° (5% +t* +u?)-C(5)+ . ..

X

dimensionful — massive string states
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Low energy effective action

Higher order o’ = higher derivative terms in
contributions to A low energy effective action
Type |IB

d=y+ie? e =g

e 1L =P [R — %G]J(@)aqﬂaqﬂ + . ]

(0,0)

ENB (p) = 2((3)e 3%/2 4 ...

48D [5{370)@)34 b } 12D {55’0)(@)V4R4 b

+ 4D [8{871)(<I>)V6R4 + .. } T
Scalar moduli fields ® belong to quantum moduli space
Ey(Z)\EqR)/K(Eq)  (d=11-D)
K(FE;): max. compact subgroup of CJ symmetry £;(R)

[Cremmer, Julia]

FEy(7Z):  Discrete U-duality (zu11, townsena

,)
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Higher derivative corrections

Coefficient functions £ /(@) (s? + 1* + u?)P(s7 + 17+ u?)

o satisfy &P  (y®k) = &P

(p.q) (p,Q)(q)) for v € Eq4(Z), k € K(Ey)

# A lot known for lowest 5@ 2 from supersymmetry and

internal COﬂSiS’[enCy [Green, Gutperle, Kiritsis, Miller,

Obers, Pioline, Russo, Sethi, Vanhove, ...]

5(18’0) R* correction (A — )\(13’0)) 5(1370) = ()
ehy  V'R'comection (A AR )R =0

2
b, VR correction (A _ Ag),l)) D =- (5{3’0))

# Contain perturbative and non-perturbative information
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Example: Type 1IB

Hidden symmetry SL(2,R); U-duality SL(2,7Z). Scalars
C=7=71+4+1720=x+ ie?. Define

By = Y =) Y [y o)

e + d?s
Lo ~EB(Z)\SL(2,Z)
Note: Im7 = 7 = ¢ ¢ = g . Rewriting is sum ﬁ\\
over U-duality orbits. 7< N
Eiy(r) i holomorphic Eisenstein series. /.
s (7) is @ non-holomorphic Eisenstein series. %%\&V%}ﬂ{
g(loog) — E[g/z] R4 CorreCtion [Green, Gutperle]
g(llog) — %E[5/2] V4R4 CorreC’[iOn [Green, Vanhove]
5(100{3) VO R* correction. Not Eisenstein, ex-

pl|C|t form by [Green, Miller, Vanhove]
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Relation to field theory loops

Four-graviton process is very special. Low order corrections
R*, V*R* and V°R* enjoy (some) SUSY protection.

— Only BPS states contribute; no other M-theory states
visible at low energies

Used by (creen, vannove; de wit, rust) tO perform supergravity
loop calculations including BPS momentum (and winding)

states to find 5(10070) and 5(110,0) for type I1A/IIB.

Aim: Investigate 5@ ,) for D < 10 by similar methods in

manifestly U-duality covariant formalism
— Exceptional field theory loops
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Exceptional field theory

[de Wit, Nicolai; Hull; Waldram et al.; 2 Ed
Hohm, Samtleben; West; ...] .—.—I— ——9
Formalism to make hidden £;(IR)

(continuous!) manifest. Combine diffeomorphisms with
gauge transformations.

Consider extended space-time
MP x pmHaa)
Coordinates z*,y™ with u=0,....D —1and M =1, ....d(ay).
d(ag) = dim R, : hst. weight rep. on node o

R, decomposes under ‘gravity line’ GL(d,R) C F;(R)

yM — (ymj Ymn)» Yma...ms)> - - ) (mv n,..=1,.., d)
> ~
KK momenta M2 wrappings
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Generalised coordinates "' € R, ,

Ed ROéd Ra/l

SO(5,5) |16 10 2 E,
o .—Q—I———.

F 27 27 o6 ——o

Ly 51§} 133

Lg 248 38751

Generalised coordinates v/ have to obey section constraint

0A 0B

=0

oyM oyN

R,

for any two fields A(z#,y*), B(z",y"). LHS belongs to

R,, ® Ro, = Ra, @ ...
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Section constraint

0A OB
Oy Oy |g,,

Possible solution: ‘M-theory’: v™ = (v, y5. yp s - - )

Alternative: Type lIB (g1air, maiex, rark). These are the only
two vector space solutions (sx;

=0

Here: ‘Toroidal’ extended space for v'. Conjugate
momenta are quantised charges

Uy = (Mg, M2 "m0 00) € 7, ca)
Section constraint becomes £-BPS constraint on charges

IxT|, =0 = writel xI' =0 for brevity
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Amplitudes in ExFT (I)

Exceptional field theory is mainly a classical theory. QFT
treatment complicated due to section constraint.

Consider kinetic term in ExXFT 0¢ 0¢

/ i / dy Vé(x,y) - Vo(x, )

Rit=d  Tdlag) /section

y-Fourier expand ¢(z,y) = > ¢F($)€M—1F.y

I'cZ@q)
> [ dr[auerone = 2 ZDZ0) 0o
rezd(@d) pr1—g ~- d
I'xT'=0 charge dependent mass

/

Section constraint on v’ turned into constraint on charges
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Amplitudes in ExFT (II)

(Z(1)|Z(I")) is BPS-mass and depends on scalar moduli ¢

Momenta in propagators are effectively shifted by
Kaluza—Klein mass

p° —  pr L Z(())

and section constraint I'; x I'; = 0 at every vertex.

= Use this to compute exceptional field theory
amplitudes.
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Amplitudes in ExFT (11I)

Loop charge sum » | .« affects only adjacent charges.

Can violate section constraint globally!
E.g. ' = (n1,n92,n3.n'%) on 17

>—(0, 0, n3, 0){

(—nl, O, n3, O)

(nhOaO?O) (anaoanm)

(Oa 07 ns, _n12)

Scattering of two D = 11 KK-states into two |IB KK-states.
= T-fold transition

Makes sense in ExFT but not in a fixed duality frame
(solution to section constraint)

Quantum aspects of exceptional field theory — p.13



Amplitudes in ExXFT (1V)

Other example: I' = (ny, n??, nt?34> n 1234567y on 77

(nl,0,0,0) (0,0,0,fll)

>—<0 n*s,0, oh—m 0,767, F<
(_n17n237070)

(07 07 ﬁ677 _ﬁl)
_n677

= S-fold transition
Again makes sense in ExXFT but not in a fixed duality frame

Can show that up to two loops: No such complications

Next: Calculate L = 1 and L = 2 assuming reduction to
Sca|al‘ dlagramS as in [Bern et al.; Green, Vanhove]
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One-loop in ExFT (I)

Four-graviton amplitude reduces to scalar box

k1,€1 ko, €2

@ = {§t8t8 [The; EaR (KA, €A)} AP (K, ko, k3, ka)

A\ J/

N

ks, €3 kq,€q ®
Pull out kinematic part
dll—dp 1
AP (ky, ko, k3, ka) = %2/
| R N P (P e P

1
(02 + 21 Z12)((p = k1 — k2)? + L2 Z2)((p + ka)? + 72| Z]?)
+ perms.

X
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One-loop in ExFT (II)

[' = 0 term corresponds to SUGRA in D = 11 — d; usual log
threshold contribution = remove for analytic eff. action

Treat loop integral over d''~“p with usual Schwinger and
Feynman techniques:

00 1 1 T2
d
AP (ke ko, ks, k) = Amed 79 Z / ; / dxq / dzs / dzs
rezdear g U7 g 0 0

I'xI'=0

X exp [g (1= z1)(z2 — x3)s + x3(x1 — B2)t — K_Q\Z\Q)} + perms.

Low energy from expanding in Mandelstam variables

s=—(ki + ko), t=—(k1+ k) u=—(k1+k3)*
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Low energy correction terms

For lowest two orders o R* correction

AP (s ¢ u) = b ({(d —3)E,, a3
w2l (s% + 1 4 u”)
+ =50 §(d—|—1)Ead’%—|—...>
AN

V4R4 correction

Notation
® £(s)=m"%T(s/2)((s) [completed Riemann zeta]
® B = @ S |Z(I')| 7% [Eisenstein series]

I'#£0
I'xI'=0

Restricted lattice sum rewritable as single U-duality
orbit!
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Interpretation

Expressions converge for V**2* term on 7 when & > 35¢

® Fork =0 (R*) andd > 3 (D < 8) find after using
Langlands’ functional relation the correct correction

function 5(1370) (including numerical coefficient).

For d = 3 one has to regularise; related to known
one-loop R* divergence in SUGRA.

o For k=2 (V*R*) expressions converge. For d < 5 one
obtains only one supersymmetric invariant of (zossaxd,
verschining; 10r 7 < d < 5 full (unique) invariant with
correct coefficient. Should be renormalised. For d = 8
ancestor of 3-loop divergence.

Expressions also ok for d > 8; Kac—Moody case (rieciqg, 2x;
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Two loops in EXFT (I)

Bern et al.]1. cOmMbination of planar and non-planar scalar
diagram at L = 2

AN

After a few pages of Calculation

AZ10%P (g ¢ 1) ~ (O Z o~ (29| Z(T;))
detQ
ViR correction 1"z, VOR!

?132 +t2 4 u?) Ot + u3)‘q)/
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Two loops in ExF'T (1)

After a few pages of calculation (— details)

A2V (g ) = 8rl0¢(d — 4)E(d — B)E,, | s

_1’ )

# This gives the correct function and coefficient for
3 < d < 8 with the right coefficient. Case d =5 (D = 6)
trickier due to IR divergences

# Depends on non-trivial functional identities for
Eisenstein series

# Certain doubling of contributions from one loop and two
loops. Correct if one-loop result renormalised

# Can be extended to — three loops
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Summary and outlook

°

Explicitly evaluated loop amplitudes in ExFT

Reproduced known &, ) in

manifestly U-duality covariant form A1 Az
4A4

Useful tools for dealing with section

constraint

Analysis of differential equation for (34,)

higher order corrections and their (34,

wavefront sets, relation to DSR? \

nilpotent orbits and non-perturbative 24,% D*R*

iInstanton effects

Al ? R4

Thank you for your attention! 0 éR

Hasse diagram for F (7
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