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P Motivation:

¶ M-theory: An unique set up

D.o.f. spinors 2b
D+1

2 c−1, d.o.f. of bosons pr(D). So there

is a maximal dimension D for super symmetric

representations.

Supersymmetry representation of physical theories singles

out especially two cases W. Nahm 1978.

• Eleven dimensional supergravity D = 11 X

• Six dimensional superconformal field theory
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The action of eleven dimensional supergravity was found

by Cremmer, Julia, Scherk 1978

S11d =
1

2κ2
11

∫ (
∗R̂S −

1

2
dĈ ∧ ∗dĈ − ∗i ¯̂

ΨMΓ̂MNPD̂NΨ̂P

)
− 1

192κ2
11

∫
∗ ¯̂
ΨMΓ̂MNPQRSΨ̂N(dĈ)[PQRS]−

1

2κ2
11

∫
dĈ∧∗11F̂

− 1

12κ2
11

∫
dĈ ∧ dĈ ∧ C + . . . ,

Here κ11 = ĜN , Ψ̂ the gravitino, Ĉ anti-symmetric

3-form, F̂[MNPQ] = 3
¯̂
Ψ[MΓ̂NPΨ̂Q], + . . . 4-fermion int.
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Simple unique beautiful starting point for K-K reduction

· G2 manifolds: To get N = 1 sugra in 4d, look in

Berger’s list of special holonomy manifolds. Beyond the

generic cases, ∃ two entries

• (vi) d = 7: Hol(g) = G2, G2-mfld, Ricci-flat Rij(g) = 0,

N = 1 covariant constant spinor; ϕ associative 3-form,

∗ϕ coassociative 4-form. X

• (vii) d = 8: Spin(7) : N+ = 1, ψ Cayley 4-form

That is we get an unique K-K compactification,

supposingly unifying non-perturbative String theories
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¸ Yet many questions:

• 1.) How to construct compact G2 manifolds?

• 2.) How to geometrical engineer the ones that yield

interesting N = 1 supergravities including the standard

model ?

• 3.) How to calculate Kaluza-Klein and M-theory

corrections to the effective N = 1 supergravity action?

• 4.) How those relate to other N = 1 vacua?
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P Constructing G2 Manifolds

¶ Structure theor. for SUn and G2 holonomy mflds: To

address 1.) recall the more familiar N = 2 situation of

CY manifolds X (n = 3)

• (iii) d = 2n, n ≥ 2: Hol(g) = SUn, CY-mfld, Ricci-flat,

Kähler, N± = 1 for n odd, N+ = 2 for n even, ω Kähler

(1, 1)-form and Ω hol.harm. (n, 0)-form.

Existence Theorem of Yau 1

KX = −c1(TX) = 0 → ∃ unique1 g with Ri̄(g) = 0
1Given complex– (Ω) and Kähler structure (ω)
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Controlling KX is trivial by multiplicative properties of

Chern characters. Take a Fano variety such as Pn and

Xn−1 as zero locus of a degree d hypersurface. Then

ch(TX) =
ch(TPn)

ch(NX)
=

(1 +H)n+1

1 + dH
= 1 + c1(TX) + . . .

= 1 + [(n+ 1)− d]H + . . . , i.e.

c1(TX) = 0⇔ d = (n+ 1). Strategy:

c1(TX) = 0→1 Ri̄(g) = 0, (Ri̄(g) = 0 & π1(X) fin.)→
Hol(g) = SU(n) → N = 2 4d− susy
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Remarks:

• Slight generalisations Pn→ P∆n with (∆n,∆
∗
n) a pair of

reflexive polyhedra, yields 108 families of compact CY

3-folds and 4319 non-compact CY 3 folds.

• Similar as above one can define a non-compact CY as

Xn = Pn \ {Pd=n+1(x) = 0}. For an easy example think

of n = 1, then X1 = {S2 \ 2 points} ∼ cylinder,

which clearly allows a flat metric. In higher dimensions

Tian & Yau established the existence of a no-where

vanishing Ω — trivializing KX — together with a

boundary asymptotic, so that Yau’s theorem still applies.
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G2 structure manifolds: G2 is a 14d simply connected

subgroup of SO(7). Geometrically it arises as follows. ∃
ϕ ∈ Λ3

+(R7)∗ a 3-form on R7 such that

Bϕ(X,Y ) = − 1

3!
(X yϕ) ∧ (Y yϕ) ∧ ϕ (1)

is a positive define bilinear form with respect to an

oriented volume form. GL(7,R) acts on ϕ and G2 is its

fourteen dimensional stabilizer group R.L. Bryant 1987.

A G2 structure on an oriented 7d manifold Y is a 3-form

ϕ which is ∀p ∈ Y oriented isomorphic to

Λ3T ∗pY ' Λ3
+(R7)∗. Via (1) this defines a Riemannian
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metric on Y

gϕ(Xp, Yp) =
Bϕ(Xp, Yp)(∂1|p, . . . , ∂7|p)

volϕ(∂1|p, . . . , ∂7|p)
,

Theorem Fernández & Gray 1983 Y has a holomomy

Hol(gϕ) ⊂ G2 iff

dϕ = 0, d ∗gϕ ϕ = 0 .

Hol(gϕ) = G2 iff π1(Y ) is finite.

• Note the non-linearity in harmonicity condition for ϕ.
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• A harmonic G2 structure ϕ is called torsion free in the

sense that the Levi-Cevita connection has G2 holonomy.

• “Strategy”: (1) Show existence of torsion free ϕ on Y .

(2) show that π1(Y ) is finite.

• The first part has boring solutions: Y0 = X×S1, with θ

the angl. coord. on S1 one has torsion free G2 structure

ϕ0 = γ dθ ∧ ω + Re(Ω), ∗ϕ0 =
1

2
ω2 − γ dθ ∧ Im(Ω)

But π1(Y ) = Z and therefore → SU3 holonomy and
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N = 2 4d supergravity. (γ ∈ R)

· The twisted gluing construction

Mathematics : Donaldson (?) → Kovalev (2003) →
Corti, Haskins, Nordström, Pacini (2013), Crowley

Nordström (2015), Haskin, Hein, Nordström (2015)

Physics: Halverson and Morrison (2014,2015) → Braun

(2016) → Braun and del Zotto (2017)

Alternative approach: First compact examples

constructed by Dominic Joyce (1994) as Y = T̂ 7/G

resolutions. . . . Simons Collaboration
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Basic idea of the twisted connected gluing:

• Construct two non-compact Calabi-Yau 3-fold as

discussed by Tian and Yau, called XL/R, where L/R

stands for Left and Right

• Construct two product 7-folds YL/R = XL/R × S1
L/R,

with the “trivial” torsion free G2-structures ϕ0 L/R.

• Each XL/R has a K3 called SL/R removed.

• There is another canonical S∗1L/R in NSL/R ⊂ XL/R

parametrizing in polar coordinates |z| = et and θ∗ a disk
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DL/R ∈ XL/R.

• Glue YL to YR to obtain Y so that

– a) ϕ0 L/R extend to a torsion free G2 structure on

Y . This requires a hyperkähler rotation on the K3

boundaries

– b) the infinite π1(YL/R) becomes finite (π1(Y ) = 0).

This this achieved as in the Hopf gluing of two solid

tori here DL/R × S1
L/R to an S3 with π1(S

3) = 0.

By the structure theorem Y is then a manifold whose

metric has the full G2 holonomy.
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Let us visualize this as good as we can:

Figure 1: Kovalev’s twisted connected sum construction.
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Gluing the asymptotic regions: Before the K3 is cut out,

one needs to remove its self-intersection [S2] = [C].

That is achieved by blowing up along C. The asymptotic

region near the K3, that is cut out, has hence a simple

form, called asymptotically cylindrical Calabi-Yau 3-fold

X∞ = S ×∆cyl, with ∆cyl = {z ∈ C||z| > 1}. In this

region the Kähler- and the holomorphic 3-form are given

by

ω∞ = γ∗2
idz ∧ dz̄

2zz̄
+ ωS = γ∗2 dt ∧ dθ∗ + ωS ,

Ω∞ = −γ∗idz
z
∧ ΩS = γ∗(dθ∗ − idt) ∧ ΩS .

(2)
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Here (ωS,ΩS) are Kähler- and holomorphic two-form of

S, z = et+iθ
∗

and γ∗ the length scale of ∆cyl. Let K be

the compact part of X then there is a diffeomorphism

η : X∞→ X \K so that

η∗ω − ω∞ = dµ with |∇kµ| = O(e−λγ
∗ξ) ,

η∗Ω− Ω∞ = dν with |∇kν| = O(e−λγ
∗ξ) ,

with λ = min
{

1
γ∗, λS

}
. Here λS is the smallest positive

eigenvalue of ∇2
S. This ensures that one can glue the

asymptotic forms (2), which are fast enough

approximated to yield a torsion free ϕ on Y as follows:
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On the gluing region

Y ∞L/R = X∞L/R × S1
L/R = SL/R ×∆cyl

L/R × S
1
L/R, we define

ω∞SL/R = ωIL/R , Ω∞SL/R = ωJL/R + i ωKL/R .

We get then on Y ∞L/R a torsion free 3− form

ϕ∞0L/R = γL/RdθL/R ∧
(
γ∗ 2

L/RdtL/R ∧ dθ∗L/R + ω∞SL/R

)
+ γ∗L/Rdθ∗L/R ∧ Re(Ω∞SL/R

) + γ∗L/RdtL/R ∧ Im(Ω∞SL/R
) .

The gluing diffeomorphism: First we need the K3 to be

isometric with respect to a hyperkähler rotation
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r : SL→ SR

r∗ωIR = ωJL , r∗ωJR = ωIL , r∗ωKR = −ωKL .

Then there is a family (Λ ∈ R) of gluing diffeomorphisms

defined as Kovalev (2003)

FΛ : (θ∗L, tL, u
α
L, θL) 7→(θ∗R, tR, u

α
R, θR)=(θL,Λ−tR, r(uαL), θ∗L) ,

(θ∗L/R, tR/L) of ∆cyl
L/R, uαL/R coords of SL/R, and θL/R of

S1
L/R. With γ := γL = γR = γ∗L = γ∗R it is easy to check

that

F ∗Λϕ0R = ϕ0L .
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With XL/R(T ) = KL/R ∪ ηL/R(R<T+1) , YL/R(T ) =

XL/R(T )× S1
L/R

Y = YL(T ) ∪F2T+1
YR(T ) .

Kovalev’s checks that Y is a G2 manifold in two steps:

First he establishes analytically that

ω̃TL/R = ωL/R − d
(
α(t− T )µL/R

)
,

Ω̃T
L/R = ΩL/R − d

(
α(t− T )νL/R

)
,
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define an interpolating G2 structure on YL/R as

ϕ̃L/R(γ, T ) = γ dθ ∧ ω̃T
L/R + Re(Ω̃T

L/R) ,

which extend to a torsion free G2 structure on Y ,

because the latter can be approximated as

ϕ(γ, T ) = ϕ̃(γ, T )+dρ(γ,T) with
∣∣∇kρ(γ,T)

∣∣ = O(e−γλT) ,

in terms of the norm | · | and the Levi–Civita connection

∇ of the metric induced from the asymptotic

G2-structure.
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Secondly he shows topologically that

π1(Y ) = π1(XL)× π1(XR)

which completes his proof that Y has full G2 holonomy •
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Fibration Structures: YL/R is K3 fibrations over solid tori

TL/R ≡ S1
L/R ×DL/R

SL/R −→ YL/Ryπ
TL/R .

The gluing of two solid tori TL/R to an S3 induces the

fibration.
S −→ Yyπ

S3 .
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¸ Examples As we already mentioned there are 4319

examples of non-compact CY-folds X constructed in

weak Fano toric ambient spaces. To easily establish the

isometric map r : SL→ SR one needs the technical

condition of semi ample canonical class (semi Fano),

which leaves 899 P∆, for which ∆ contains no codim

2-points lattice points. The latter have different Kähler

cones, so roughly one gets 108 ×mg examples, where mg

is the gluing multiplicity of order O(10).

They have to be distinguished by their Betti numbers.

Using the Mayer-Vietoris sequence of the gluing map one
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gets these topological data as

H2(Y,Z) ' (kL ⊕ kR)⊕ (NL ∩NR) ,

H3(Y,Z) ' H3(ZL,Z)⊕H3(ZR,Z)⊕ kL ⊕ kR ⊕NL ∩ TR
⊕ NR ∩ TL ⊕ Z[S]⊕ L/ (NL +NR) .

Here [S] is the Poincaré dual three-form of a the K3 fibre

S in (ZL/R, SL/R), L ' H2(SL,Z) ' H2(SR,Z). The

inclusion ρL/R : SL/R ↪→ XL/R induce maps

ρ∗L/R : H2(XL/R,Z)→ L defining kernels

kL/R := ker ρ∗L/R, images NL/R := Im ρ∗L/R, and the

transc. lattices TL/R = N⊥L/R =
{
l ∈ L

∣∣ 〈l, NL/R〉 = 0
}

.
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Orthonogal gluing examples:

W = NL +NR = NL ⊥R NR, R = NL ∩NR and

N⊥L ⊂ NR. N⊥R ⊂ NL. Building blocks

No. rkN −K3 κ e e2 b3(Z)

MM273, K62 (Fano) 3 48

0 2 2
2 0 2
2 2 0

  1
0
−1

 −4 50

MM253, K68 (Fano) 3 44

0 2 1
2 0 3
1 3 −2

 −1
1
0

 −4 46

MM313, K105 (Fano) 3 52

0 2 1
2 0 3
1 3 −2

 −1
1
0

 −4 54

Table 1: Data of low rank toric terminal Fano threefolds.

R generated by a vector of length square −4.
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The formulas for the Betti numbers simplify for the

orthogonal gluing

b2(Y ) =rkR+dim kL+dim kR,

b3(Y ) =b3(ZL) + b3(ZR)+dim kL+dim kR−rkR+23

b3(Y ······ ) MM273 MM253 MM313 K124 MM124 MM104 K221 K232 K233 K247 K257

MM273 122 118 126 122 120 116 112 114 112 118 120
MM253 118 114 122 118 116 112 108 110 108 114 116
MM313 126 122 130 126 124 120 116 118 116 122 124
K124 122 118 126 122 120 116 112 114 112 118 120

MM124 120 116 124 120 118 114 110 112 110 116 118
MM104 116 112 120 116 114 110 106 108 106 112 114
K221 112 108 116 112 110 106 102 104 102 108 110
K232 114 110 118 114 112 108 104 106 104 110 112
K233 112 108 116 112 110 106 102 104 102 108 110
K247 118 114 122 118 116 112 108 110 108 114 116
K257 120 116 124 120 118 114 110 112 110 116 118
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P The effective action

¶ Homology and Spectrum:

Massless four-dimensional modes arise from the

coefficients in the decomposition of the

eleven-dimensional anti-symmetric three-form tensor Ĉ as

Ĉ(x, y) =
∑
I

AI(x) ∧ ω(2)
I (y) +

∑
i

P i(x) ∧ ρ(3)
i (y) ,

in terms of the harmonic two-forms ω
(2)
I and three-forms

ρ
(3)
i identified with non-trivial cohomology representatives

of H2(Y ) and H3(Y ) of dimension b2(Y ) and b3(Y ),
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respectively. In the paper further details about the
dimensional reduction of the fermions can be found. The
spectrum is summarized as follows

Multiplicity Massless 4d component fields Massless 4d

bosonic fields fermionic fields N = 1 multiplets

1 metric gµν gravitino ψµ, ψ
∗
µ gravity multiplet

i = 1, . . . , b3(Y ) scalars (Si, P i) spinors χi, χ∗ i chiral multiplets Φi

I = 1, . . . , b2(Y ) vectors AIµ gauginos λIα vector multiplets V I

Note that on a smooth G2 manifold there are neither

non-abelian Gauge groups nor charged matter.
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· Kähler potential, gauge kinetic function,

superpotential: The dimensional reduction of the

Einstein–Hilbert term and the three-form tensor Ĉ yields

the four-dimensional action Beasley Witten (2002db)

Sbos
4d =

1

2κ2
4

∫ [
∗4 RS +

κIJk
2VY0

(
SkF I ∧ ∗4F

J − P kF I ∧ F J
)

− 7

2VY0

∫
Y

ρ
(3)
i ∧ ∗gϕρ

(3)
j

(
dP i ∧ ∗4dP

j − dSi ∧ ∗4dS
j
) ]

.

in terms of the four-dimensional Hodge star ∗4, the Ricci

scalar RS with respect to the metric gµν, the reference

volume VY0, and the seven-dimensional Hodge star ∗7.
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From this we can derive the Kähler potential and the

gauge kinetic coupling matrix

K(φ, φ̄) = −3 log
(

1
7

∫
Y ϕ ∧ ∗gϕ ϕ

)
,

fIJ(φ) = 2VY0

∑
k φ

k
∫
Y ω

(2)
I ∧ ω

(2)
J ∧ ρ

(3)
k

= 2VY0

∑
k κIJkφ

k,

as well as the superpotential

W (φi) =
1

4VY0

∫
Y

G ∧ (C + iϕ) .

¹ N = 2 and N = 4 sectors: Note first that the Kovalev
construction implies that there is a scale 2T + 1, which
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seperates ZL from ZL. Taking this scale to ∞ one
roughly expects the spectrum to seperate into sectors

local geometry multiplicity of N = 1 multiplets U(1) vector multiplets

(Kovalev limit) U(1) vectors chirals multiplicity supersym.

YL = S1
L ×XL dim kL dim kL dim kL N = 2

SU(3) holonomy

YR = S1
R ×XR dim kR dim kR dim kR N = 2

SU(3) holonomy

T 2 × S × (0, 1) dimNL ∩NR 3 · dimNL ∩NR dimNL ∩NR N = 4

SU(2) holonomy

¸ The Kovalon: More precisely one has to define of

course complex N = 1 neutral chiral moduli. We identify



35

two universal moduli: ν related to the overall volume and

κ related to the gluing parameters so that

Re(ν) = v , Re(κ) = vb .

Here b ist the squashing parameter of the S3. We refer

to the chiral multiplet κ as the Kovalon, as it describes

in the limit Re(κ)→ +∞ — while keeping Re(ν)

constant — the Kovalev limit.

The remaining real moduli fields are not universal and

relate to the non-universal neutral chiral multiplets as

Re(φı̂) = vS̃ ı̂ , Re(φı̃) = vbS̃ ı̃ .
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They depend on the topological details of the building

blocks (ZL/R, SL/R) and the choice of gluing

diffeomorphism.

Analysing the gluing maps allows e.g. to determine the
leading order dependence on the universal moduli

K = − log

[(
V g̃S (S̃)

)3

(ν + ν̄)4(κ + κ̄)3 +A(S̃, ν + ν̄,κ + κ̄)e
−λ κ+κ̄

(ν+ν̄)1/3

]
,

where the coefficient of the exponentially suppressed

correction is expected to generically depends on both

universal and non-universal geometric moduli fields.
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P Transitions between G2 manifolds:

Generally one expects in M -theory on G2 manifolds

gauge symmetry from codimension four singularities,

charged matter from codimension six singularities and

chiral spectra at codimension seven. We can realize the

first two phenomena on the building blocks using

essentially N = 2 techniques. Our implications are that

there are Higgs transitions these sectors which are

compatible with the gluing diffemorphism and lead to

genuine G2 transitions.

¶ Abelian Gauge symmetry, charged matter spectrum:
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For the semi-Fano threefold P we pick two global

sections s0 and s1 of the anti-canonical divisor −KP .

However, instead of choosing a generic section s0, we

assume that the global section s0 factors into a product

s0 = s0,1 · · · s0,n ,

such that s0,i are global sections of line bundles Li with

−KP = L1 ⊗ . . .⊗ Ln. As a consequence the curve

Csing = {s0 = 0} ∩ {s1 = 0} becomes reducible and
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decomposes into

Csing =

n∑
i=1

Ci , Ci = {s0,i = 0} ∩ {s1 = 0} ,

where we assume that the individual curves Ci are

smooth and reduced. Following Kovalev and Lee 2008,

we construct the building block (Z], S) associated to P

by the sequence of blow-ups π{C1,...,Cn} : Z]→ P along

the individual curves Ci according to

Z] = Bl{C1,...,Cn}P = BlCnBlCn−1 · · ·BlC1P .

Since the curves Ci and the semi-Fano threefold P are
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smooth, the blow-up Z] is smooth as well. As before, the

K3 surface S arises as the proper transform of a smooth

anti-canonical divisor S] = {α0s0 + α1s1 = 0} ⊂ P for

some [α0 : α1] ∈ P1. By blowing up a semi-Fano

threefold P the resulting dimension of the kernel k of ρ

dim k = n− 1 .

The three-form Betti number b3(Z
]) of the blown-up

threefold Z] becomes

b3(Z
]) = b3(P ) + 2

n∑
i=1

g(Ci) ,
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in terms of the three-form Betti number b3(P ) of the

semi-Fano threefold P and the genera g(Ci) of the

smooth curve components Ci. As all these curves Ci lie in

the K3 fiber S, the genus g(Ci) is readily computed by

the adjunction formula

g(Ci) =
1

2
Ci.Ci + 1 ,

with the self-intersections Ci.Ci in S.

Locally the singularity looks near π−1([1, 0]) with
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t = α1/α0 like

s0,1 · · · s0,n + ts1 = 0 .

In particular near the intersection locii

Iij = {t = 0} ∩ {s1 = 0} ∩ {s0,i = 0} ∩ {s0,j = 0} it

looks like conifolds, which are away from the asymptotic

K3 fibres at α0, α1 6= 0 involved in the gluing. This

yields the following abelian gauge group

U(1)n−1 ∼ U(1)1 × . . .× U(1)n
U(1)diag

with the matter whose charges are determined by the
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intersections Xij = Cj · Cj and as displayed in the table:

Multiplicity N = 2 multiplets N = 1 multiplets

U(1)n−1 charges multiplet U(1)n−1 charges multiplet

n− 1 (0, 0, . . . , 0) vector (0, . . . , 0) vector

(0, . . . , 0) chiral

χij (0, . . . ,+1i, . . . ,+1j, . . . , 0) hyper (0, . . . ,+1i, . . . ,+1j, . . . , 0) chiral

1 ≤ i < j < n (0, . . . ,−1i, . . . ,−1j, . . . , 0) chiral

χin (0, . . . ,+1i, . . . , 0) hyper (0, . . . ,+1i, . . . , 0) chiral

1 ≤ i < n (0, . . . ,−1i, . . . , 0) chiral

Table 2: The table shows the spectrum of the Abelian N = 2 gauge theory sector arising from the conifold

singularities in the building block (Zsing, S).

Higgs Transitions:
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b2(Y
a) = b2(Y

b)− n− 1

b3(Y
a) = b3(Y

b) + 2
(∑

1≤i<j≤nXij
)
− 3(n− 1)

· Non-abelian Gauge symmetry, charged matter

spectrum

Let us now turn to the enhancement to non-Abelian

N = 2 gauge theory sectors in the context of twisted

connected G2-manifolds. Let us assume that the

anti-canonical line bundle −KP of the semi-Fano
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threefold P factors as

−KP = L̃⊗k1
1 ⊗ . . .⊗ L̃⊗kss with n = k1 + . . .+ ks ,

where L̃i are line bundles with global sections s̃0,i. Then

the global section s0 of −KP can further degenerate to

s0 = s̃k1
0,1 · · · s̃

ks
0,s and the singular building block is of the

form

Zsing =
{

(x, z) ∈ P × P1
∣∣∣α0s̃

k1
0,1 · · · s̃

ks
0,s + α1s1 = 0

}
,

(3)

with the singular equation in the affine coordinate t = z1
z0



46

given by

s̃k1
0,1 · · · s̃

ks
0,s + ts1 = 0 .

As before we assume that all curves

C̃i = {s̃0,i = 0} ∩ {s1 = 0} are smooth. In the vicinity of

the singular fiber π−1([1, 0]) ⊂ Zsing the singular building

block (Zsing, S) develops Aki−1-singularities along those

curves C̃i with ki > 1.



47

Multiplicity N = 2 multiplets N = 1 multiplets

G reps. multiplet G reps. multiplet

s− 1 1 U(1) vector 1 U(1) vector

1 chiral

i = 1, . . . , s adjSU(ki)
SU(ki) vector adjSU(ki)

SU(ki) vector

adjSU(ki)
chiral

g(C̃i) adjSU(ki)
hyper adjSU(ki)

chiral

1 ≤ i ≤ s adjSU(ki)
chiral

χ̃ij (ki, kj)(+1i,+1j)
hyper (ki, kj)(+1i,+1j)

chiral

1 ≤ i < j < s (k̄i, k̄j)(−1i,−1j)
chiral

χ̃in (ki, kn)(+1i)
hyper (ki, kn)(+1i)

chiral

1 ≤ i < n (k̄i, k̄n)(−1i)
chiral

Table 3: The table shows the spectrum of the N = 2 gauge theory sector with gauge group

G = SU(k1)× . . .× SU(ks)× U(1)s−1 as arising from the non-Abelian building blocks (Zsing, S). It lists both

the four-dimensional N = 2 and the four-dimensional N = 1 multiplet structure. The adjoint matter is determined

by the genus g(C̃i) of the curves C̃i, whereas the bi-fundamental matter from their intersection numbers χ̃ij within

the K3 surface S.
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No. ρ Gauge Group N = 2 Hypermultiplet spectrum h[ c] b[3 b]3 k
]

K24, 2 SU(3)× SU(2) 2× (adj,1); (1,adj); 3× (3,2)+1 50 14 79 43 4

MM342 ×U(1)

K32 2 SU(3)2 × U(1) (adj,1); (1,adj); 3× (3,3)+1 52 13 79 40 5

K35, 2 SU(5)× SU(2) 2× (adj,1); (5,2)+1 60 22 87 49 6

MM362 ×U(1)

K36, 2 SU(4)× SU(2) 2× (adj,1); 2× (4,2)+1 54 17 81 44 5

MM352 ×U(1)

K37, 2 SU(4)× SU(3) (adj,1); 3× (4,3)+1 54 12 79 37 6

MM332 ×U(1)

Table 4: The table exhibits the N = 2 gauge theory sectors for some smooth toric semi-Fano threefolds

PΣ of Picard rank two and higher. The columns display the number of the threefold PΣ in the Mori–Mukai and/or

Kasprzyk classification, its Picard rank ρ, the maximally enhanced gauge group of maximal rank by factorizing the

anti-canonical bundle, the N = 2 matter hypermultiplets, the complex dimensions h[ and c] of the Higgs and

Coulomb branches, the reduced three-form Betti numbers b[3 and b
]
3, and the kernel k] of the Coulomb branch.
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P Conclusions

• 108 new G2 manifolds

• universal moduli, splitting of spectrum in sectors

• abelian and non abelian gauge symmetries with non

chiral matter

• G2 transitions


