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Line Defects
Supported on one-dimensional submanifold of spacetime.

Defined by UV boundary condition around
small tubular neighborhood [Kapustin].

This talk: Focus on half-BPS d=4 N=2 defects on
straight lines along time, sitting at points in space.

Our defects preserve osp(4*|2), c su(2,2]|2) fixed t

subalgebra under P(arity) and U(1)5 rotation by ¢

f 3?=0;
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Example: ‘t Hooft-Wilson Lines
In Lagrangian Theories

( is a compact semisimple Lie group

Denote ‘t Hooft-Wilson line defects L[ P, Q]

P: A representation of GV
or, P€ Hom(U(1),T) = A,ychar C 1
Q: A representation of Z(P)

—

L[0,Q] = pQ(Pexpj RA —Re({Ttp)ds )
(04

P
L[P,0] F~Pvol(S*)+- Im({tp)~ — oot



Class S

g = simple A,D, or E Lie algebra
= 6d (2,0) superconformal theory S[g]

Cyn Riemann surface with (possibly empty)

set of punctures p4, v5, ..., Py,
D = collection of %4-BPS cod=2 defects D (p,), ..., D (p,,)

Compactify S[g] on M, X C;,, with partial
topological twist: Independent of Kahler
moduli of C; ,,. Take limit: A — 0

Denote these d=4 N=2 theories by S|g,C, D]




Line defects in S|g,C, D]
Wrap surface defects of S[g] onoc =R X g

Here o < C, ,, is a one-dimensional submanifold of C; ,,
(not necessarily connected!)

c=R x {0} x p

C
agn N

Line defect in 4d labeled by ¢
and rep R of g and denoted L(, R)



Lagrangian Class S Theories

Weak coupling limits are defined by trinion decompositions of C; ,,

(""Gaiotto gluing”’)

r:=3g — 3 + n cutting curves c¢;

Example: S[su(Z), Cygns D] is a d=4 N=2 theory with
gauge algebra su(2)” with lots of hypermultiplet matter.

For general class S theories with a Lagrangian description:

What is the relation of L(g, R) with [P, Q] ?




Classifying Line Defects

For g = su(2) and R =fundamental, the Dehn-Thurston
classification of isotopy classes of closed curves matches
nicely with the classification of simple line operators as

=N r3he




But even DMO is incomplete!!
(Noted together with Anindya Dey)

Forsu(2)": P=@®'"_,p;=H, Q=@®'_,qi=q;
= r ‘t Hooft-Wilson parameters: L(p,§)

Isotopy classes of g also classified by r-tuples g (p, q) :
“Dehn-Thurston parameters”

p; = #(P Nc;) q; counts twists” around ¢;

1

Main claim of DMO: L[p,q] = L(¢(®,q),R = (E




Main claim of DMO: L[p,q] = L(o(p,q),R = (—))
Actually, it cannot be true in this generality! g

su(2) N =2" (0,q)

1
L[0,q] # L (50(0, q), (§>>

For C11  $(p,q) has g=GCD{p;q)

connected components.

Open Problem: For ALL OTHER C ,, itis NOT KNOWN when

#(p,q) has asingle connected component!
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VEV’s On R3 x §1

Consider path integral with L inserted at {6} x St

(L) is a function on the SW moduli space M
:= vacua of compactification on M'? x S1

M : Total space of an integrable system: A fibration over the Coulomb
branch by torus of electric and magnetic Wilson lines.
In class S this integrable system is a Hitchin system.

M is a hk manifold. (L) is a holomorphic function on M
in the complex structure selected by the phase (.
(The projection of the integrable system is not holomorphic.)

Part 2 of the talk focuses on exact results for
these holomorphic functions.



Types Of Exact Computations

1. Localization [Pestun (2007); Gaumis-Okuda-Pestun (2011) ;
lto-Okuda-Taki (2011) ]

Applies to IL[P, 0] in Lagrangian theories.

2. AGT-type [Alday,Gaiotto,Gukov,Tachikawa,Verlinde (2009);
Drukker,Gaumis,Okuda,Teschner (2009)]

Should apply to L(g, R) in general class S.

3. Darboux expansion




(L) As ATrace

<L>y — TTg.[L(—l)F (_y)]3+13 e—ZnR H+i6-Q

H; is the Hilbert space on R3 in the presence
of Lat x = 0 with vacuumu at X = o

(At y=-1 we get the vev. With y # —1 we are studying a
guantization of the algebra of functions on M.)

Class S: For ¢ # 0,00 the moduli space M, as a
complex manifold , is the space of flat g connections, A,
on C, , with prescribed monodromy at p;.

(u,0) & A
(L(o,R)) = TreaHol(p) = Trp ( Pexp f a‘l)
§



Darboux Expansion

(L) = Q(L,y) Yy

Q(L, y)  Framed BPS state degeneracies.

y)/ Locally defined holomorphic functions on M

At weak coupling, or at large R we can write them explicitly
in terms of (u, 8) and parameters in the Lagrangian:

R _ (R
loglY, = ?Zy +iy-0+RJ{Z,+0(e <92))



A Set Of Darboux Coordinates”

yh y)’z =X yh +V2

Choose basis y; for I' gives a set of coordinates

Conjecture: Same as:

Shear/Thurston/Penner/Fock-Goncharov coordinates

Checked in many cases.

(L) is a Laurent polynomial in these coordinates



Example: SU(2) N = 27

04 <L0,1> =TrAd=«

(= (Lig)=TrB=p

el _ —
O\ G; (Li1) =Tr AB =y

Can reduce Tr(W) W = any word in A*1, B*! to polynomial in a, B,y
x €SL(2,C) = x+x"1=1-Tr()

e?mm 4 e=2mlMm = Tr(ABA 1B ™) = a? + f%2 +y2 — afly — 2



Shear Coordinates On M

ldeal triangulation = Coordinate chart

AN

B

X,¥,Z~ Yy,

1 z
(Ly=yz+—+ -
yz 'y

1 x
(L) =xz+—+ -
Xz Z

1y
(L) =xy+—+=
Xy X

xyz =1ie t"tMm



Relation Of Shear Coordinates To
Physical Quantities

l R
log x =2—((m—a) —598 +7((T)_’L—C_l) + NP
R i R
logy = _Z_(aD —EHm — = b + NP

R l R
108222—{(510 +a)+§(96+9m)+7((@+d)+NP



Complexified Fenchel-Nielsen
Coordinates

Localization and AGT formulae are \
expressed in terms of CFN coords: * \

[Nekrasov, Rosly, Shatashvili; Dimofte & Gukov] \

Half the coordinates: Pexpjg A e?Tai g e
Ci

M is holomorphic symplectic: @ = fTr(&/l ASA)
C

Darboux-conjugate coordinates: w = Z(dai A dbt)

b—-b+ f(a)

L




General Form Of Localization Answers

(L[P,0]), = 2 e?™ v 7Zp ,(a,y)
VEAcochar(G)

GOP [For S*] 10T [For R3 x S1]

—loop monopole
Zpo(0,Y) = Zp, P (0,9)Zp (a,y)
monopole
A P (a, V) Sums over tuples of Young diagrams

Localization of path integral to some subset M (P, v) of a
monopole bubbling locus in the sense of Kapustin & Witten.



Comparing Computations

Work in progress with Anindya Dey & Daniel Brennan

()= LY, (WPODy= ) eTZ,()

yery VEAcochar(G)

Q(LJ V) — KerLZ D]V[ ZP,v(a)y) NJ char.class

M (P,v)

(Manton,Schroers; Sethi, Stern, Zaslow; Gauntlett, Harvey ; Tong; Gauntlett, Kim, Park, Yi;
Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi ; Moore-Royston-van den Bleeken; Moore-Brennan)

Need to compare coordinates

Need to clarify what characteristic class on M (P, v)



Some New Results

Work in progress with Anindya Dey & Daniel Brennan

M (P,v) isjust a quiver variety

Example: G = SU(2) P = (g _Op) V= (u ’ )

@_@_...‘T’_._@_@



General Prescription

Kronheimer correspondence: ldentify singular monopoles
with U(1)-invariant instantons on TN

Bubbling locus: U(1) invariant instantons at NUT point
Identify with U(1)-invariant instantons on C*

Make ADHM complex U(1) equivariant: As U(1) modules:
WP)=Ww)+(p—-2+ p)V Kapustin & Witten

FW) ® pg) =B, W @ R;
l*(V ® Pq) — @?;01 Vi ® R;
Stabilizes forn > Ny (v, q).

:Z, < U(1)



monopole
Expressions For Z P

Moreover, we observe that for SU(N) V' = 27,
the answer found by 10T also agrees with the Witten
index of the SQM for this quiver:

monopole — w+u-a
Zpy = Zquiver SQM — f e Xy (a)
M(P,v)

— f [d¢]vath [Moore, Nekrasov, Shatashvili 1997]
t

Remark: The same functions are claimed by
Bullimore-Dimofte-Gaiotto to appear in an "abelianization
map’’ for monopole operators in d=3 N=4 gauge theories.



Relation Between Coordinates?

Both shear and CFN coordinates are holomorphic Darboux coordinates

(L) has a finite Laurent expansion in both. &

But the relation between them is very complicated !

Comparison with Darboux expansion in shear coordinates
in a weak-coupling regime shows:

R
2T a = ?a + i 60, + R(a + NonPerturbative

R
2l b = ? ap + 16, + R(ap + NonPerturbative

N.B. Literature misses the nonperturbative corrections.



Localization Results For SU(2) N = 27

(Loq) =A+ 271 A =e?me

(Lig)=(B+ B 1F (L11) = (BA+B'A7HF

— ,2mlb 1
lg_e _(/12+A_2—f2—f_2)§

p = elmm F 11— -1

(Lyg) = (B2 AT+ B2 A DFA+ A+ A H(F* - 1)
Valid for g odd.

Heroic computation by Anindya Dey using AGT approach.

Can also be done in shear coordinates
but with more complicated answer.



Comparison Of Coordinates In SU(2)

N =27
x:%(ﬁ—ﬁ_l) _iﬁg_ﬁ—u—l Z:_iﬂ,—/l‘l
i) YT T ama F-p1
1
_ M — 17112 |
— /1{‘1 — /1—1£ Dimofte & Gukov, 2011

Inverting these equations and using the weak coupling
expansion of x,y,z gives weak coupling expansion of
complexified FN coordinates.

It’s the only way | know to express CFN coordinates
in a weak-coupling expansion.
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New Superconformal Theories From Old

Given a superconformal theory Tanda f = 0
subgroup H € Glob(T) we can gauge it to form
a new superconformal theory T/H.

In particular, given two theories with a
common subgroup H < Glob(T;) and H < Glob(T,)
and a f = 0 embedding:

H < Glob(Ty) X Glob(T,)

Gauge the embedded H with gauge-coupling
g to produce T} Xp, T
Argyres-Seiberg, 2007



Class S
g = simple A,D, or E Lie algebra

Cyn Riemann surface with (possibly empty)
set of punctures py, 5, ..., Pn

D = collection of %4-BPS cod=2 defects D (p,), ..., D (p,,)

For suitable D the theory S|g,C, D] is superconformal

Lie algebra of global symmetry contains:

“Full (maximal) puncture” :  f(D) = g



Gaiotto Gluing —1/2
Given S|g,C;,D1] & S][g,C,,D,]

3 \d

=3 7

Suppose we have full punctures D(p;) & D(p,)
with D1 € Cl &pz = CZ

The diagonal g — symmetry gg4iqqy € gD g has f =0

Gauge it to produce a new superconformal theory:

S[g, C1, D1] X4 4 Sla, C2, D] g = e2miT



Gaiotto Gluing -2/2
Slg, C1, D1] Xq4 Sla, C2, D]

S[a,C1 X4 C3, D1 U D, — {D(p1), D(p2)}]




Theories Of Class H

Ongoing work with J. Distler, A. Neitzke, W. Peelaers & D. Shih.

S[Ql) Cl) Dl] & S[QZ) CZ) DZ]
g1 * 92

hci(D)) & bHci(D@)
Baiag © (D)) ®F(D(®2))  B(Baiag) =0

S[gll Cl) Dl] deiag»q S[QZ) CZ) DZ]



Partial No-Go Theorem

Important class of punctures: ~Regular Punctures”

D(g,w,p) p:su(2) — (g*)"

Theorem: Gluing two regular punctures is only superconformal
for the case of full punctures. In particular: g; = g,

Proof: Condition for ,B(bdmg) = 0:
—4hV(H) + k1 + Kk, =0

Use nontrivial formulae for k from
Chacaltana, Distler, and Tachikawa.



Other Punctures

But! There are f
other types of £
punctures!

“Superconformal irregular
puncture” (SIP)

@ou can now insert SIP’s just like other punctures
en there appear to be Hippogriff theories.

Geometrical interpretation?

Seiberg-Witten curve?
AdS duals?
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