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SUSY WILSON LOOPS



Why BPS Wilson Loops?

BPS Wilson Loops in supersymmetric gauge theories: gauge invariant
non–local operators that preserve some supercharges

The prototype example in N=4 SYM

1/2 BPS WL

WL = TrPe−i
∫
Γ dτ(ẋµAµ+i|ẋ|θIΦI )

It includes couplings to the six scalars (Maldacena, PRL80 (1998) 4859)
(Drukker, Gross, Ooguri, PRD60 (1999) 125006; Zarembo, NPB 643 )

They are in general non–protected operators and their expectation value can be
computed exactly by using localization techniques.

Dual description in terms of fundamental strings or M2–branes. The expectation
value at strong coupling is given by the exponential of a minimal area surface
ending on the WL contour. Matching with localization results provides a crucial
test of the AdS/CFT correspondence.



Why BPS WL in 3D SCSM theories?

We will focus on

N = 6 ABJ(M) Aharony, Bergman, Jafferis, Maldacena, 0806.1218
Aharony, Bergman, Jafferis, 0807.4924

N = 4 orbifold ABJM and more general SCSM with Πrl=1U(N2l−1)× U(N2l) and
alternating levels Gaiotto, Witten, 0804.2907

Hosomichi, Lee, Lee, Lee, Park, 0805.3662

BPS WL in 3D SCSM theories exhibit a richer spectrum of interesting properties
compared to the 4D case. Among them:

Due to dimensional reasons also fermions together with scalars can enter the
definition of BPS WL. In general they increase the number of susy charges
preserved by WL. Therefore, we have a richer spectrum of BPS WL.

Framing factors appear as overall complex phases in localization results for
〈WL〉.



Plan of the talk

Systematic construction of classical WL via Higgsing

How to compute 〈WL〉 at ?weak coupling, ?strong coupling or ?exactly

Solved and unsolved puzzles

Framing factor in ABJ(M) X

Fermionic WLs in ABJ(M) X

Degeneracy of WLs in N = 4 orbifold ABJM X

Comparison with localization result for orbifold ABJM X

Comparison with localization result for N = 4 SCSM theories Alert!

Conclusions and Perspectives

M.S. Bianchi, L. Griguolo, J-j. Zhang, M. Leoni, A. Mauri, D. Seminara
PLB753, JHEP 1606, JHEP 1609, arXiv:1705.02322 + in progress



Construction via Higgsing – Field theory

Time–like WL → phase of a very heavy quark moving in the gauge background.

In SCFTs there are no massive particles ⇒ Higgsing procedure

SU(N + 1) N = 4 SYM

〈ΦI〉 = v →∞ SU(N + 1)→ SU(N)× U(1)

N = 4→ N = 2 with an infinitely massive multipet m = v.

Particle modes Anti–particle modes

Wµ = 1√
2v
wµ e

−imt W̄µ = 1√
2v
w̄µ e

imt

Ri = 1√
2v
ri e
−imt R̄i = 1√

2v
r̄i e

imt

Non–relativistic lagrangian

L = iw̄aD0wa + ir̄iD0ri D0 = ∂0 + i(A0 ± ΦI)︸ ︷︷ ︸
(AI)0

1/2 BPS WLI = P exp
(
− i
∫
dτAI(τ)

)
I = 5, . . . , 9

They preserve complementary sets of supercharges



Construction via Higgsing – String dual

×

(N + 1)→ (N) + 1 D3 branes AdS5 × S5 limit

In the AdS5 × S5 limit the fundamental string is localized in the internal space. The
position of the point is related to 〈ΦI〉.

We can excite fundamental strings or anti–strings

Procedure generalizable to 3D SCSM theories with string or M–theory duals



Prototype examples of WLs in ABJ(M)

(K-M. Lee, S. Lee, JHEP09 (2009) 030 )

N = 6 susy ABJ(M) model for U(N1)k × U(N2)−k CS-gauge vectors Aµ, Âµ
minimally coupled to

SU(4) complex scalars CI , C̄I and fermions ψI , ψ̄I

in the (anti)bifundamental representation of the gauge group with non-trivial potential.

Bosonic 1/6 BPS WLs W1/6 = TrP exp
[
−i
∫
Γ
dτ(Aµẋ

µ − 2πi
k |ẋ|M

I
J CI C̄

J )
]

Fermionic 1/2 BPS WL W1/2 = TrP exp
[
−i
∫
Γ
dτL(τ)

]

L(τ) =

 Aµẋ
µ − 2πi

k |ẋ|M
I
J CI C̄

J −i
√

2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I Âµẋ
µ − 2πi

k |ẋ|M̂
I
J C̄

JCI



Cohomological equivalence

W1/2 =
N1W1/6 +N2Ŵ1/6

N1 +N2

+QV



How to compute 〈WL〉 in SCSM theories

〈WL〉 ∼
∫
D[A, Â, C, C̄, ψ, ψ̄] e−S TrP exp

[
−i
∫

Γ
dτL(τ)

]

Weak coupling N1/k,N2/k � 1 Perturbative evaluation

Strong coupling N1/k,N2/k � 1 Holographic evaluation

N1/k,N2/k ∼ 1 Localization techniques reduce 〈WL〉 to a Matrix Model

For ABJ(M) → non–gaussian MM (Kapustin, Willett, Yaakov, JHEP 1003 (2010) 089)

〈W1/6〉 =

∫ N1∏
a=1

dλa e
iπkλ2

a

N2∏
b=1

dλ̂b e
−iπkλ̂2

b ×

 1

N1

N1∑
a=1

e
2πλa


∏N1
a<b sinh2(π(λa − λb))

∏N2
a<b sinh2(π(λ̂a − λ̂b))∏N1

a=1

∏N2
b=1 cosh2(π(λa − λ̂b))

(Drukker, Marino, Putrov, CMP306 (2011) 511)



Puzzles

Puzzles typically arise in 3D SCSM theories when we try to match perturbative results
with localization predictions

Perturbative results are at framing 0 while localization predictions are at framing
1. We need identify the correct framing factor

Localization predictions are based on cohomological equivalence of WLs that is
valid at classical level.

Wferm = Wbos +QV =⇒ 〈Wferm〉 = 〈Wbos〉



Puzzle 1: Framing factor in ABJ(M)

For the U(N)k pure Chern–Simons theory (topological theory)

SCS = −i
k

4π

∫
d3x εµνρ Tr

(
Aµ∂νAρ +

2

3
iAµAνAρ

)
On a closed path Γ and in fundamental representation

〈WCS〉 = 〈TrP e−i
∫
Γ dx

µAµ(x)〉

=

+∞∑
n=0

TrP
∫
dxµ1

1 · · · dx
µn
n 〈Aµ1 (x1) · · ·Aµn (xn)〉

1) either by using semiclassical methods in the large k limit
(Witten, CMP121 (1989) 351)

2) or perturbatively (n-pt correlation functions)
(Guadagnini, Martellini, Mintchev, NPB330 (1990) 575)



Regularize singularities in 〈Aµ1 (x1) · · ·Aµn (xn)〉 at coincident points.

Using point-splitting regularization

Γf : y
µ

(τ)→ y
µ

(τ) + ε n
µ

(τ)

lim
ε→0

∮
Γ

dx
µ
∮

Γf

dy
ν 〈Aµ(x)Aν(y)〉 = −iπλχ(Γ,Γf ) λ =

N

k

Gauss linking number

χ(Γ,Γf ) = 1
4π

∮
Γ
dxµ

∮
Γf
dyν εµνρ

(x−y)ρ

|x−y|3

Higher-order contributions exponentiate the one–loop result

〈WCS〉 = e
−iπλχ(Γ,Γf )︸ ︷︷ ︸ ρ(Γ)

framing factor



Exponentiation of one–loop framing term relies on the following distinguishing
properties

(Alvarez, Labastida, NPB395 (1993) 198)

1 The gauge propagator is one–loop exact. In Landau gauge

〈Aaµ(x)A
b
ν(y)〉 = δ

ab i

2k
εµνρ

(x− y)ρ

|x− y|3

2 Only diagrams with collapsible propagators contribute to framing

3 Factorization theorem



N = 2 susy CS theory

We are primarily interested in supersymmetric theories for which localization can be
used.

〈WSCS〉 = 〈TrP e−i
∫
Γ dτ(ẋµAµ(x)−i|ẋ|σ)〉
(Kapustin, Willett, Yaakov, JHEP 1003 (2010) 089)

Localization always provides the result at framing χ(Γ,Γf ) = −1. This follows from
requiring consistency between point–splitting regularization and supersymmetry used
to localize: The only point-splitting compatible with susy is the one where the contour
and its frame wrap two different Hopf fibers of S3

Localization is sensible to framing!

Framing identified as imaginary contributions

〈WSCS〉 = e
iπλ

ρ(Γ)



Adding matter → ABJ(M) case

1/6-BPS Wilson loop (Drukker, Plefka, Young, JHEP 0811 (2008) 019

Chen, Wu, NPB 825 (2010) 38, Rey, Suyama, Yamaguchi, JHEP 0903 (2009))

〈W1/6〉 = 〈TrP exp

[
−i
∫

Γ

dτ(Aµẋ
µ −

2πi

k
|ẋ|M I

J CI C̄
J

)

]
〉

M J
I = diag(+1,+1,−1,−1)

Localization result. 〈WL〉 → non-gaussian MM computed exactly
(Drukker, Marino, Putrov, CMP 306 (2011); Klemm, Marino, Schiereck, Soroush, Naturforsch.

A68 (2013))

Weak coupling expansion and planar limit (λ1 = N1/k, λ2 = N2/k � 1)

〈W1/6〉 = e
iπλ1︸ ︷︷ ︸

(
1−

π2

6
(λ

2
1 − 6λ1λ2)−i

π3

2
λ1λ

2
2︸ ︷︷ ︸ +O(λ

4
)

)
⇓ ⇓

pure CS framing (-1) factor extra imaginary term ???



Perturbation theory (framing = 0) → no contributions at odd orders
(Rey, Suyama, Yamaguchi, JHEP 0903 (2009)

Conjecture: Matter contributes to framing

PROOF: perturbative 3-loop calculation at framing (-1)

Matter contributes to framing in two different ways:



1) Matter gives non-trivial corrections to the the gauge propagator (FINITE at two
loops). Collapsible propagators

〈Aµ(x)Aν(y)〉 →
i

2k

1−
π2

2

 λ
2
2︸︷︷︸+λ1λ2

(
1

4
+

2

π2

)
︸ ︷︷ ︸

 εµνρ (x− y)ρ

|x− y|3

2) Matter vertex-like diagrams cancel lower-transcendentality terms



Exponentiation still works, so we can write

〈W1/6〉1 = e
iπ

(
λ1−π

2

2
λ1λ

2
2+O(λ5)

)
︸ ︷︷ ︸(1−

π2

6
(λ2

1 − 6λ1λ2) +O(λ4)

)

⇓

perturbative framing function f(λ1, λ2) = λ1 − π2

2
λ1λ2

2 +O(λ5)

〈W1/6〉0 =
∣∣∣〈W1/6〉1

∣∣∣
Puzzle solved X



Puzzle 2: Fermionic WLs in ABJ(M)

Fermionic 1/2 BPS WLs

W1/2 =

(
N1W1/6+N2Ŵ1/6

N1+N2

)
+QV ≡ W̃1/6 +QV

Therefore, using Q to localize the path integral (framing one) we have

〈W1/2〉1 = 〈W̃1/6〉1

〈W̃1/6〉1 can be computed exactly. Weak coupling expansion

〈W1/2〉1 = 1 + iπ(λ1 − λ2) +
π2

6

(
−4λ2

1 − 4λ2
2 + 10λ1λ2 + 1

)
+O(

1

k3
)

Perturbative calculation (framing zero) up to two loops
(Bianchi, Giribet, Leoni, SP, JHEP 10 (2013); Griguolo, Martelloni, Poggi, Seminara, JHEP 09

(2013) )

Matching the two results (Drukker, Trancanelli, JHEP 02 (2010) 058)

Framing exponentiates

〈W1/2〉1 = eiπ(λ1−λ2) 〈W1/2〉0



Fermions contribute to framing

Comparing the perturbative calculation with the framing–one result we can make an
educated guess (M.S. Bianchi, JHEP 1609 (2016) 047)

+

∣∣∣∣∣
f=1

f=0

= −
3π2

2
λ1λ2

1-loop +

∣∣∣∣∣
f=1

f=0

= 2π2λ1λ2

Although we do not have a direct check yet, they should contribute to exponentiate the
framing factor.



Fermionic 1/6 BPS WLs (Ouyang, Wu, Zhang, NP B 910 (2016) 496)

W
(F )
1/6

(α, β) = 1
N1+N2

TrPe−i
∮

dτL1/6(α,β)

L1/6(α, β) =

 Aµẋ
µ + 2πi

k UIJCI C̄
J |ẋ|

√
4π
k ᾱIu+ψ

I |ẋ|√
4π
k ψ̄Iu−β

I |ẋ| Bµẋ
µ + 2πi

k UIJ C̄
JCI |ẋ|



ᾱI = (ᾱ1, ᾱ2, 0, 0), β
I

= (β
1
, β

2
, 0, 0)

U
I
J =


1− 2β2ᾱ2 2β1ᾱ2

2β2ᾱ1 1− 2β1ᾱ1

−1
−1



They interpolate between W̃1/6 = W
(F )

1/6
(0, 0) and W1/2 = W

(F )

1/6
(αI , αI/|α|2)

Cohomological equivalence

W
(F )
1/6

(α, β) = W̃1/6 +QV (α, β)



• Framing–one result from localization

〈W (F )

1/6
(α, β)〉1 = 〈W̃1/6〉1

= 1 + iπ(λ1 − λ2) +
π2

6

(
−4λ

2
1 − 4λ

2
2 + 10λ1λ2 + 1

)
+O(

1

k3
)

No parameter dependence

• Framing–zero result from perturbation theory

〈W (F )

1/6
(α, β)〉0 = 1 +

π2

6

{
− λ2

1 − λ
2
2 +

[
9(ᾱIβ

I
)
2 − 12ᾱIβ

I
+ 7
]
λ1λ2 + 1

}
+O

( 1

k3

)

Comparing the two results

〈W (F )
1/6

(α, β)〉0 = e−iπ(λ1−λ2) 〈W̃1/6〉1 +
π2

6

[
9(ᾱIβ

I)2 − 12ᾱIβ
I + 3

]
λ1λ2︸ ︷︷ ︸

Remnant

Educated guess gives fermionic contributions at framing one that depend on the
parameters. They should cancel against the framing–independent terms in order to
restore the localization result.

A perturbative calculation at framing one is required in order to confirm framing
dependence in vertex–like fermionic diagrams

How do we interpret the Remnant? Puzzle only partially solved X



Puzzle 3: WL degeneracy in N = 4 SCSM
theories

(Gaiotto, Witten, JHEP 06 (2010) 097; Hosomichi, Lee3, Park, JHEP 07 (2008) 091)

Πrl=1U(N2l−1)× U(N2l) quiver gauge theories with
alternating ±k levels

Matter in (anti)bifundamental representation of
adiacent gauge groups and in (2, 1) and (1, 2) of
SU(2)× ŜU(2) R–symmetry φI φÎ

N1
N2

N3

N0

N2r−1

Dual to M–theory on
AdS4 × S7/(Zr ⊗ Zr)/Zk

Orbifold ABJM: N0 = N1 = · · · = N2r−1

Dual to M–theory on AdS4 × S7/(Zr ⊗ Zrk)

BPS WL defined locally for quiver nodes (2l − 1, 2l)→W (l)

or globally W =
∑r
l=1W

(l)



Higgsing procedure allows to construct two classes of 1/2 BPS WLs

Exiting heavy particle dof → class C

Exiting heavy anti–particle dof → class Ĉ

For ABJ(M) models, representatives of different classes preserve different sets of
supercharges only partially overlapping.

In N = 4 SCSM theories, for each ψ1 representative in C we can find a representative
ψ2 in Ĉ that preserves the same set of supercharges.
(Crooke, Drukker, Trancanelli, JHEP 10 (2015) 140; Lietti, Mauri, Zhang, SP, 1705.03322) Puzzle??

We have proved that (embedding S7 in R8 ∼= C4 → z1,2,3,4 )

ψ1 → M2–brane wrapped on an internal circle |z1| = 1 and localized at z2,3,4 = 0

ψ2 → M2–antibrane wrapped on a different circle |z2| = 1 and at z1,3,4 = 0

The two brane configurations preserve the same set of supercharges.
Puzzle solved X



ψi =
1

N1 +N2

TrP exp

(
−i
∫

Γ

dτLψi (τ)

)
where

Lψ1
=

(
A(1) c̄αψ

α
(1)1̂

cαψ̄1̂
(1)α A(2)

)

A(1) = ẋ
µ
A(1)µ −

i

k

(
q
I
(1)δ

J
I q̄(1)J + q̄(0)Î(σ3)

Î
Ĵ
q
Ĵ
(0)

)
|ẋ|

A(2) = ẋ
µ
A(2)µ −

i

k

(
q̄(1)Iδ

I
J q

J
(1) + q

Î
(2)(σ3)

Ĵ
Î
q̄(2) Ĵ

)
|ẋ|

Lψ2
=

(
B(1) d̄αψ

α
(1)2̂

dαψ̄2̂
(1)α B(2)

)

B(1) = ẋ
µ
A(1)µ −

i

k

(
−qI(1)δ

J
I q̄(1)J + q̄(0)Î(σ3)

Î
Ĵ
q
Ĵ
(0)

)
|ẋ|

B(2) = ẋ
µ
A(2)µ −

i

k

(
−q̄(1)Iδ

I
J q

J
(1) + q

Î
(2)(σ3)

Ĵ
Î
q̄(2) Ĵ

)
|ẋ|

Cohomological equivalence

ψ1 = W1/4+QV1 ψ2 = W1/4+QV2



At quantum level?
Cohomological equivalence

ψ1 = W1/4+QV1 ψ2 = W1/4+QV2

Localization (framing–one) 〈ψ1〉1 = 〈ψ2〉1 = 〈W1/4〉1

We expect 〈ψ1〉0 = 〈ψ2〉0 = |〈W1/4〉1| (Proved at 3 loops)

Perturbation theory (framing–zero): For planar contour

〈ψ1〉(L)
0 = (−1)

L〈ψ2〉(L)
0

(Bianchi, Griguolo, Leoni, Mauri, SP, Seminara, JHEP 1609 (2016) 009)

Consistency requires

〈ψ1〉(2L+1)
0 = 〈ψ2〉(2L+1)

0 = 0



Is it true?

• From localization |〈W1/4〉1| vanishes at odd orders (checked up to three loops).

• From a perturbative calculation: One loop result vanishes. We need a 3–loop
calculation

Orbifold ABJM: Too many diagrams to compute. Still open question

N = 4 SCSM theories: The number of diagrams can be drastically reduced by
restricting to the range–3 color sectors Nl−1NlNl+1

For l = 1 we have found (Bianchi, Griguolo, Leoni, Mauri, SP, Seminara, JHEP 1609 (2016)
009)

〈ψ1〉(3L)
= −〈ψ2〉(3L)

=
5

8π

N0N
2
1N2 +N1N

2
2N3

(N1 +N2) k3

Alerting puzzle!



Possible explanation?

It is a matter of fact that 〈ψ1+ψ2
2 〉(odd) = 0 and matches the localization result.

However, neither 〈ψ1〉(3L) nor 〈ψ2〉(3L) match the localization result.

It is hard to believe that two non–BPS operators give rise to a BPS operator when
linearly combined.

If the dual description works as in the orbifold case, it points towards the fact that
both ψ1 and ψ2 should be BPS at quantum level. But we don’t know . . .

Only possibility: ψ1 and ψ2 are BPS, but the cohomological equivalence is broken by
quantum effects

〈ψ1〉 = 〈W1/4〉+A 〈ψ2〉 = 〈W1/4〉 − A

such that ψ1+ψ2
2 is BPS and Q–equivalent to W1/4.

A direct check requires computing 〈ψ1〉1 and 〈ψ2〉1 at framing one in perturbation
theory. This implies understanding framing contributions from fermions.

Puzzle unsolved X



Conclusions

We have understood the framing mechanism in CS theories with matter. But

Better understand contributions from vertex-like diagrams.
Framing from matter in fermionic WLs: understand framing from fermionic
diagrams
What happens at higher orders? Divergences?

Cohomological equivalence in N = 4 SCSM theories is still an open problem

Framing at strong coupling?

WLs in theories with vanishing CS levels (Imamura, Kimura, JHEP 0810 (2008) 040)


