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Overview

Introduction:
@ Soft and collinear limits of scattering amplitudes display universality.

@ Renewed interest in soft limits & discovery of subleading soft theorems for
gluon and graviton amplitudes. Relation to hidden BMS symmetry?

@ New formalisms for expressing scattering amplitudes = BCFW, Grassmannian,
CHY.

Outline:

@ Soft theorems and how they are constrained
@ Einstein-Yang-Mills (EYM) amplitudes from YM via CHY formalism
© Collinear limits of gluons, gravitons and scalars and subleading structure

Q@ Summary
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Soft Theorems

Pn+1 Pn+1
50 ;
m% == SU(6p1, {pa}) x %
D2 D2



Theorems of Low (1958) and Weinberg (1964)

Scattering amplitudes display universal factorization when a single photon, gluon or
graviton becomes soft: Parametrize soft momentum as § - ¢* and take 6 — 0

Pn+1 Pnt1
50 i
p1 —  SU(Sp1, {pa}) x
P2 P2

An+1(5 q,P1y - - 7pn) 530 S[O} (J(L {pa}) . An(ph cee 7pn) + 0(50)

At tree-level with soft leg ¢ polarization £,(,):

n
1 E,ph
Z 5 “uba : photon  — gluon (color ordered)
Pa - 4q

Slo] (6, {pa}) = { %1 a
Z . Eprapa .
: graviton
d Pa -
Proof is elementary. Tree-level exact for gravity. IR divergent loop corrections in YM.
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Subleading soft theorems

Universal factorization extends to subleading order [cachazo, Strominger][Low, Burnett Kroll;Casal]

An+1(5Q7p17"'apn) - S (5517{]%})-'471(]91’7pn)+0(5])

with soft operators

1
SS\({O,\)A + S\((l,\),l : Yang-Mills (j = 1)
SO g, {pa}) =

1

gSéO) + Sg) + (55&2) . Gravity (7 =2)
Explicit constructions (using BCFW, CHY) @ tree-level yield

E.qJ1"  E.q JY
S@l[\)/ltree _ wqv Jq o uwqv Jn ‘]c/iw = pffapz + EgaE}{ — UV

p1-q Pn - q
n v
E- E Jb
Sél)t'ee = Z (E - Pa) By gy Ju writing polarization E,, = E,E,
o= Pa - 4q
n v
Jﬂ
SéZ)tree — Z lu‘ dv ) e h|dden BMS Symmetry? [Strominger et al]
a=1
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Constraining soft theorems

5(D)(6q+2pi) vs. 5(D)(Zpi)
i=1

i=1



A subtle momentum conservation issue

@ Amplitudes are distributions: An({pa}) = 5(D Zp n({Pa})

@ Soft theorem should be stated with d-functions:

073+ P) Ans1(5 ¢, {pa}) o SU(3 g, {pa}) 07 (P) An({pa}) + O(&7)

with P =" p, and SUI = 1500 4 5(1) 4

@ Mismatch in arguments of delta-functions! If we want to state the theorem on
the level of stripped amplitudes, i.e.

An+1(5 q, {pa}) = 5'[]] (5 q, {pa}) An({pa})

must have a non-trivial commutator:

S5 ) 8P (P) = PP + 5 ) §¥(5 )
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COﬂSIStency COnd ItIOn [Broedel, de Leeuw, JP, Rosso]

Relation at leading orders: P =3""_, p,

GS(O) n 5<1>) 50)(p) = (5<D> (P)+dq- aP(;(D)(p)) (%gm n gu)) +OW)

@ No issue at leading order in d:
50 — g(0) & (5@ 5Py =0
@ But non-trivial commutator at NLO:
S =g 4 & [SW 5P (P)] = 8O ¢.9psP)(P) + 6P)(P) x

= implies that S™ (5 ¢, {p,}) must contain differential operator 9, .
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COﬂSIStency COnd ItIOn [Broedel, de Leeuw, JP, Rosso]

Relation at leading orders: P =3""_, p,

(%S(m n 5<1>) 50)(p) = (5<D> (P)+dq- aP(;(D)(p)) (%g(@ n gu)) +OW)

@ No issue at leading order in d:
50 — g(0) & (5@ 5Py =0
@ But non-trivial commutator at NLO:
S =g 4 & [SW 5P (P)] = 8O ¢.9psP)(P) + 6P)(P) x

= implies that S™ (5 ¢, {p,}) must contain differential operator 9, .

Similar story at NNLO (relevant for gravity)

Message: 0, terms in SU) are constrained by lower order SU'<7) ops.

Moreover, it turns out that x = x' =0
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Constraining subleading soft theorems (socde, de Lecuw, 17, Rosso]

Collect all known constraints on soft operators:

An1(0, B, {Ea,pa}) = S0 6. B {Ea. pa, 0, 0p,}) - An({Eas pa}) + O(57)

Gauge invariances on soft and hard legs

Distributional constraint: (as discussed)

U5 ) 5P (S pa) = 5P (5 q + 3 pa) §U(5 )

“Locality”: SO — ZS(Z)(C], E; Eq,pa; OB, 0p,)

a=1
as it would arise from a Ward identity. Is an assumption beyond tree-level

e Dimensional analysis:  [gym] =0 [k] = —1 [S\[;,]\,,] =-1 [S[Gj]] =0
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Constraining subleading soft theorems (socde, de Lecuw, 17, Rosso]

Collect all known constraints on soft operators:

An1(0, B, {Ea,pa}) = S0 6. B {Ea. pa, 0, 0p,}) - An({Eas pa}) + O(57)

o Gauge invariances on soft and hard legs

@ Distributional constraint: (as discussed)

U5 ) 5P (S pa) = 5P (5 q + 3 pa) §U(5 )

n
o "Locality:  SU =Y "5U(q, E; Eu, pa; 05, 0p,)
a=1
as it would arise from a Ward identity. Is an assumption beyond tree-level

e Dimensional analysis:  [gym] =0 [k] = —1 [S\[;r]w] =-1 [S[Gj]] =0

Enforcing all constraints entirely fixes the subleading soft functions in 4d!
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4D: Gauge theory

@ Use spinor helicity: ¢ — q®G* & consider (+) helicity soft gluon:
I ad <,uq)
@ Ansatz: Local, linear in E(), first order in 0, and 0

0 ~ .5 0
S\((lM E +) |:Qaaﬁ + anﬁﬁ
21: ON: Y

Coefficients ,(Aq, S\q, Aas S\G) constrained by little-group scaling

o Gauge invariance 1o, — fiq + 71 qo and distributional constraint yield the unique
result for subleading soft operator

<TL 1> locality &:c>onsistency (1) [(151] [(jén]

g _ _(nl) _ B
M (ng) (q1) M gl)  (qn)

o N.B: Does not prove the existence of subleading soft thm, but says that if a
sub-leading universal soft factorization holds, it must be of this form.
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4D: Gravity

SO _ i (za) (ya) [ga]

= (zq) (yq) (aq)

Positive helicity soft graviton: x & y reference spinors

@ Analogous arguments: Local, first order ansatz

1) _ +> acpBpy_ Y 9 ad BBy 9
S¢ Z B [Q v Qe am]
0, & Q, contain 4 local constants

@ Again constraints (gauge invariance & distributional constraint) nail down
subleading operator completely:

W) _ 1= lag ({az)  (ay)\,- 5
R _22 ((qw>+<qy>)[q d

= (aq)

@ Same reasoning also fixes sub-subleading soft operator Sg) in 4d.
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Collinear limit

@ Collinear factorization is central property for gluon amplitudes

pll D2 . Pn+2
1\\2 b
P ZSpht (c; 1M, 2m2) x
Ps3
P3
@ Parametrize the collinear limit € — 0: (c =cos¢, s =sing) [Stieberger, Taylor]
1) =clp) —es|r) 1] =clp] —es]r] D=2y, (1] =

12) = s|p)+eclr)  [2] =s|p] +ec|r] = (12) = eqpAT M) = € (pr)
with reference momentum 7#. This translates to 4-momenta
= pt —cesgt 2 stk
ph=sp'+ecsg + St = p)[r|+|r)p]

@ Momentum conservation up to order €?:  p; +pa =p+€Xr
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Splitting functions for gluons

@ Collinear factorization

Ansa(1,22 ) DB S split_ (¢5171,272) A (01,.) + O(0)
h=%+

@ One has to leading order in ¢:

1 1
lit, (c;17,2%) = lit_(c;17,2%7) ==
Split, (¢;17,27) =0 Split_(c;17,2™) < o5 or)
1 s 1 8
Split, (¢;17,27) = —— Split_(c;117,27) = =
plit., (c;17,27) e c(pr) plit_(c;17,27) e s[pr]

@ Question:

Is there universal factorization at subleading order in €? I

Natural question to ask in view of subleading soft theorems. However, no
potential hidden symmetry at the horizon.
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Intriguing relation to Einstein-Yang-Mills amplitudes steberger, Tayior 15]

o Consider linear combinations of collinear amplitudes s.t. 1/¢ pole cancels

o N=5:

ssp A(1F,27,3,4,5) — s4p A(1F,2%,3,5,4) 12 2 Ay (p™+,3,4,5) + O(e)

K c?
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Intriguing relation to Einstein-Yang-Mills amplitudes steberger, Tayior 15]

o Consider linear combinations of collinear amplitudes s.t. 1/¢ pole cancels

o N=5:

RL s Aevm(p™,3,4,5) + O(e)

nc2

ssp A(11,27,3,4,5) — 54, A(17,27,3,5,4) —

o N=06:

sep A(17,2%,3,4,5,6) — s5, [A(17,27,3,4,6,5) + A(11,27,3,6,4,5)]
1z

2 AEYM (p++7 31 47 57 6) + O(E)

/{c2

tsup A(LT,27,3,6,5,4) -5

@ In general: (N — 3)!/2 constraints for the independent (N — 3)! gluon
amplitudes in 1 || 2 limit.

@ = Suggests possible existence of subleading splitting into EYM-amplitudes

subleading
AYM(1+72+73a""N) 12 727 S[ ]( ;1+72+;37N) AEYM(p++73a--~7N)

Calls for unified description of gluon & graviton amplitudes
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The Cachazo-He-Yuan formalism




Best formalism for unified description of amplitudes: CHY

n

@ Scattering equations: fa = Z PaPy _ 0 Ogb :=0gq —0p €C
v—: Ca — Ob
b#a

For N-particle kinematics these have (N — 3)! solutions

d"o,
o An /VOI SL(2 C (H (5 fa ) {p,E O'}) [Cachazo,He,Yuan]

Integrand Z,, built from 2 building blocks: ‘Parke-Taylor factor’ and CHY-Matrix

1 A -CT

PaDb Ey-Ey f“—_"';"b fora#b
Agp = 727 Bap =4 7*77 Cap = ’ Eqpe —
0 — Z Ta—0a fora=1">
c#a

@ Integrand Z,, defines the theory in question.
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CHY: Unifying picture of gluon & graviton amplitdues

o CHY formula

d"o,
M= [ Sats ( (fa)) T.({p. B.0})
@ Integrands Z,, :

Gravitons: ZEinstein( 2 ... n)=Pf U2
Color ordered gluons: M(1,2,...,n) = C(1,2,...,n)Pf ¥,
Graviton-gluon: ZEMM(1,2,. ip) =C(1,2,...,n) Cpp Pf 0,44

IEI!Y'( 2, 0,1, pp) =C(1,2,. .. ,n) PEUL.({p, Ep,a})Pf’ Vg

n

: Ep - py

th C,, = — g L 2 — PfUy(p, E,

wi PP E—— 1(p, E,0)
b=1

@ Unified description of gluon-graviton trees = formalism we were seeking.
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Short proof of EYM-YM amplitude relation

Derived from string amplitudes: h g™-amplitude from pure YM

[Stieberger, Taylor]

K
AEYM(1727"'7n;pii) = ZEZ:)E'wlAYM(]-vQ?"'?lapivl-l_17"'7

n)

with region momentum x; = Zi’:l Pi.
@ Follows straightforwardly from CHY representation:

1
™M1,2,....n)= —— PF T,
012 ...0np1
1
EYM P == = N /
In-‘,—l ( sy TP ) = Cpp Pf \Iln—l—l
012...0n1
o USIng the Slmp|e |dent|ty [Nandan,JP,Schlotterer, Wen]
n - pi o
_ p i Y41
Cop =2 Z Ep
i=1 Tip O'Zap Op,i+1
.. . Ot . L _ 1 .
Trivially shown using T = o oty and telescoping sum.
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Higher level EYM to YM relations [Nandan,JP,Schlotterer, Wen]

@ May be generalized to more gravitons. One seeks identities of the type

Pf\Ijr({paEpva}): Z ({p7 p})
{i.ga}

Uzaaa]

@ Two gravitons with momenta p & ¢:

PFU_y = Oy Cyy — S22 ) (@) (D)

Spa =P q.
2 2 ) pq
g Op.q
@ Toolbox of identities:
Schouten’s Oi,i+1 Op,qg = —0ip Oqit+1 t Tig Op,itl
Kleiss-Kuijf  C(1, A, n,B) = (—)?! Z C(l,0,n)
occALLB?

with shuffles AlWB E{Oél (042 ey L B)} + {,31(62 c. B|B\ L A)}

Cross-ratio |dent|ty E Spl —— [Cardona,Feng,Gomez,Huang]
g g,
pzq z;éa,p q 7p p,q ¥ q,a
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New EYM to YM relations [Nandan,JP,Schlotterer, Wen]

@ Two gravitons

Aeym(1,2, ... n'P,Q) =

e o o
—2[ E (€p-x;) (€g-xj) AL, ... 0,p,i+1,. .., j,q,5+1,...,n)
=i<j

n—1 Jj+1
(eq p 6p Zj ZA '7i_laQaia"'7j7paj+1?'"7”)
7=1
(€p - €q) = : , . .
- 9 Zp kl Z A 7 "7Z_1)q717"'7]_1ap5.7""an)
=1 1=i<y
+@H®]

@ Similar yet more complicated expressions have been worked out for 3 and 4
gravitons as well as double-trace EYM amplitudes with zero or one graviton.

o All multIpICIty problem solved recently [Fu,Du,Huang,Feng] [Chiodaroli,Gunaydin,Johansson,Roiban]
[Teng,Feng]
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Soft constraints on kinematical numerators  [JP,Wormsbecher; ongoing]

@ EYM as YM amplitude relations are special cases of doubly copy relation
betWeen graViton and g|uon amp|itudes: [Bern,Carrasco,Johansson]

B B B Bn—2

ML) = S n(L{8hm) AnL {8 | | ]

Besn72

n(1, 5,n): Kinematical numerators in DDM form. [pel bucca Dixon Maltoni. Are
polynomials in €¢; and p;. Recent combinatorial construction established pu Teng]

@ Question: What constraints do soft theorems impose on n(1, 3,n)?

@ Preliminary result: Emerging recursive structure for n(1, 3,n) e.g.
n(1,{g,8},m) = (—e - m—es - Ji - ) (1, {8}, n)
+ (g p)l-- ]+ 0
@ Combine with gauge invariance = Completely determined? [arkaniHamed Rodina, Trnka]
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Back to (subleading) Collinear Limits

h1  Pnit2 Pn+2

) h
1)2 b
P — Z Split_,(c; 1", 2m) x
=t p3
b3



The collinear scattering equations
@ We take 1 || 2 with 1)\ _ (¢ —es\ (Ip)
12) s +tec )

o Change of variables:

Ulzp—g 02:P+§

@ In fact solutions with £ — 0 imply collinearity of 1 || 2: [polan Goddard]

@ But is the opposite also true?
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The collinear scattering equations
(DY (e —es) (Ip)
We take 1 || 2 with <’2> s wee) )

°
o Change of variables:
_ ¢ _ ¢
o1=r"5 o2 =p+ 5
@ In fact solutions with £ — 0 imply collinearity of 1 || 2: [polan Goddard]
@ But is the opposite also true?

@ Numerical studies (for N < 8) of the (/N — 3)! solutions reveal:

o Always found 2 - (N — 4)! degenerate ({ — 0) solutions
e Remaining (N — 5) (N — 4)! solutions are non-degenerate (£ = finite)

Degenerate solutions are numerically seen to be dominant in the CHY integral
at leading O(%) and sub-leading O(1) order in the collinear limit.

‘:> May focus on degenerate solutions! ‘
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Finding the degenerate solutions

5(f1) 0(f2) = 20(f1 + f2) 0(f1 — f2) = 20(f1 + f2) 6(f-)

e Degenerate solution ansatz & = e£1 + %€ + O(€?):

foi=(fi—fa) = (=5 (fi+ fo) = e[2c252 §1Pa — 2¢5Q1 — % +0(%)

. ~ P g ~ PP
with shorthands Q; = Z - Pi = Z ;12 2
= (p—0o0) — (ob—p)

@ Yields two solutions for £ = &4.

o i\/@%ﬂ(p-r)%

S1t = 2csPsy 4(c2s2)P2
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Finding the degenerate solutions

5(f1) 0(f2) = 20(f1 + f2) 0(f1 — f2) = 20(f1 + f2) 6(f-)

e Degenerate solution ansatz & = e£1 + %€ + O(€?):

foi=(fi—fa) = (=5 (fi+ fo) = e[2c252 §1Pa — 2¢5Q1 — % +0(%)

. ~ P g ~ PP
with shorthands Q; = Z = Pi = Z 12> 2
= (p—0o0) — (ob—p)

@ Yields two solutions for £ = &4.

L Qi +4(p-r)P>
bE T 20, 4(c2s2)P2

@ Solution counting:
e Remaining N — 1 scattering equations have (N — 4)! solutions
o Total number of degenerate solutions thus constructed 2 - (N — 4)!
= Matches the numerically found number!
[19/26]



Expanding out: 4 contributions to the near collinear expansion

n+2

A(172737"'7 122/]] O'a fa]dp5<fp+6(c —S)Elpz)
fi+f2
1 1
X Pf )
of— 012+ 0n42] St
k3 %/—,/ CHY matrix E=c&1+e2€a+...
cn+2
Jacobian
@ Jacobian:
1 & 2( & ) )
=5 + 22 _
7 2 (p-r)+ A2s?Py &} Jo |4 T)gl cs(c? = %) Q| + O(e?)
Jo
@ Parke-Taylor factor:
_1 Crt1 &2

Cn+2 =

€&

@ CHY-matrix: Needs more involved computation, but Pf W, 5 ~ ¢
[20/26]
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Same helicity 152*: Leading order

@ CHY matrix:
_ +o+
Pf,(\I/n+2) = (Cpp — i { [pT’] }) Pf/(\:[’n+1) for helicities {i;}

sc& | +(pr)

@ Putting everything together we recover the splitting functions:

A2 1222/dﬂn dpd(fp) 65«70 n+1 <Cpp 2 { EZ:%}) Pf' (U, 1)

3051

= Splltiee(c, 15,25 A (pF,3, ..., n+2)
using the sum identities:

Jo 1
Z Z§:2p'7’

{51} {61}

o Leadign order opposite helicity case 1*2F works similarly.
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Subleading order: Same helicity 152*

Final result (dropping a total derivative):

subleading d
= 1
12 Hn+

Cpp/1l 1 11 2 g2 C. Py
-~ | &5 _ 0(2) e A Cn Pfl \I]n
< PQ (C2 On+2,p + 82 0-973) + 62 52 732 pp 7)2 +1 ( +1)

A(1,2,3,...,n+2)

@ Reproduces the Stieberger-Taylor relations.

e Curious identity: Consider the differential operator | p - O, | (gauge transf. in

effective collinear leg)

subleading s2 — c?

p-0p, A™M(1,2,3,...,n+2)

1)|2 c?s?

recall: py =c?p—ecsq+ O(?), pr=s’p+ecsq+ O()
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Factorization at subleading collinear order?

@ Nicest result in democratic collinear limit ¢ = s

subleading

A(1%,2%.3,... n+2)

1/|2,c=s

1 Oni23
d s o O PE(T
/Hn+1732 Tnt2.pOps pp “n+l (Upg1)

n+2
: 0 . . .
where Py = Z (pb—p = — fp, derivative of scattering equation.

_ 2
—(op—p)* Op

o Still, have not (yet) been able to write this in factorized form!!

O(e%)

A(1i,2i,3,...,n+2)(
1/|2,c=s

# Split™ (pa, Eay Oy, s .. ) AT, 3, ... n +2)

@ = Absence of a subleading collinear theorem for gluons.
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Collinear gravitons

With the collinear expansion of CHY building blocks in place, can deduce collinear
limits of scalar and gravitons:

o Gravitons: A,

B /d:“n Pf'(¥,) Pf'(P,)

@ In the collinear expansion this yields the leading behavior

2
A}LH’?H L2 2 Z/d,un—l Jo <Cpp + M) Pt (W,,1) PE(¥)-1)

with the result

csé

[Bern, Dixon, Perelstein,Rozowsky]|

1)2

A, =

_lpr]

22 (rp)

]
p)

n 1+ _/d,un 1~ pp Pf/( )Pfl(\I’n—l)
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Collinear gravitons

With the collinear expansion of CHY building blocks in place, can deduce collinear
limits of scalar and gravitons:

e Gravitons: A, = /dun Pf'(¥,,) Pf(V,)

@ In the collinear expansion this yields the leading behavior

++ o++ 112 2 [pr] ’
Ay =2 ;/d“n—l Jo <CPP+ cs§1> Pf' (1) Pf'(W,-1)
1

Wlth the resu It [Bern,Dixon, Perelstein,Rozowsky]

2 [pr] / ’
An26292< > n 1+/d/un1 ppr( )Pf(\I’nfl)

@ This result is universal. Identical behaviour for scattering of m gravitons and k
gluons, A, = [ du, Cy, P£(¥,,) Pf'(V,,). Collinear graviton limit:

2 [pr] 1 Crp
A G [0S e P
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Collinear scalars

@ Pure scalar amplitudes
Anyo = / A2 Ch oy

@ Working out the leading and subleading collinear limit 1 || 2 one finds

1|2 1
An+2(1,2,3,...,n+2)|——|mAn+1(p,3,...,n+2)
2 fdma (- &+ )0
€ ~— ~~

Jacobian  Parke-Taylor 8" (f+)

Scalars have vanishing subleading collinear behaviour!
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Subleading soft limit
@ Form of subleading soft operators strongly constrained by symmetries and
commutator with J-fct
@ Open problem: Derive BMS symmetry algebra from scattering amplitudes =
Double soft limits

Soft constraints on color-kinematic numerators

Understanding the subleading collinear limit

@ Intriguing relations:
Linear combinations of subleading collinear gluon amplitudes = Einstein-Yang
MI”S amphtudes [Stieberger, Taylor]

@ Reproduced tree-level splitting function from collinear limit of CHY.

@ Gluons: We do not see factorization in the subleading collinear limit for pure
glue. Stieberger-Taylor relations proven. Curious identity between gauge
transformation of subleading collinear limit and gluon amplitude.
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Thank you!




