Soft and collinear limits of scattering amplitudes beyond the leading order

Jan Plefka Humboldt-Universität zu Berlin

based on work with Johannes Brödel, Marius de Leeuw, Dhritiman Nandan, Matteo Rosso, Oliver Schlotterer and Wadim Wormsbecher (1406.6574, 1411.2230, (1504.05558), 1607.05701, 1608.04730)

Ascona Meeting "Strings and Quantum Gravity", July 2017

Introduction:

- Soft and collinear limits of scattering amplitudes display universality.
- Renewed interest in soft limits & discovery of subleading soft theorems for gluon and graviton amplitudes. Relation to hidden BMS symmetry?
- New formalisms for expressing scattering amplitudes \Rightarrow BCFW, Grassmannian, CHY.

Outline:

- Soft theorems and how they are constrained
- **②** Einstein-Yang-Mills (EYM) amplitudes from YM via CHY formalism
- S Collinear limits of gluons, gravitons and scalars and subleading structure
- Summary

Soft Theorems

Theorems of Low (1958) and Weinberg (1964)

Scattering amplitudes display universal factorization when a single photon, gluon or graviton becomes soft: Parametrize soft momentum as $\delta \cdot q^{\mu}$ and take $\delta \to 0$

$$\mathcal{A}_{n+1}(\delta q, p_1, \dots, p_n) \underset{\delta \to 0}{=} S^{[0]}(\delta q, \{p_a\}) \cdot \mathcal{A}_n(p_1, \dots, p_n) + \mathcal{O}(\delta^0)$$

At tree-level with soft leg q polarization $E_{\mu(\nu)}$:

$$S^{[0]}(\delta q, \{p_a\}) = \begin{cases} \sum_{a=1}^{n} \frac{1}{\delta} \frac{E_{\mu} p_a^{\mu}}{p_a \cdot q} & : \text{ photon } \to \text{gluon (color ordered}) \\ \sum_{a=1}^{n} \frac{1}{\delta} \frac{E_{\mu\nu} p_a^{\mu} p_a^{\nu}}{p_a \cdot q} & : \text{ graviton} \end{cases}$$

Proof is elementary. Tree-level exact for gravity. IR divergent loop corrections in YM.

Subleading soft theorems

Universal factorization extends to subleading order [Cachazo, Strominger][Low,Burnett,Kroll;Casali]

$$\mathcal{A}_{n+1}(\delta q, p_1, \dots, p_n) \underset{\delta \to 0}{=} S^{[j]}(\delta q, \{p_a\}) \cdot \mathcal{A}_n(p_1, \dots, p_n) + \mathcal{O}(\delta^j)$$

with soft operators

$$S^{[j]}(\delta q, \{p_a\}) = \begin{cases} \frac{1}{\delta} S^{(0)}_{\mathsf{YM}} + S^{(1)}_{\mathsf{YM}} & : \text{ Yang-Mills } (j = 1) \\ \\ \frac{1}{\delta} S^{(0)}_{\mathsf{G}} + S^{(1)}_{\mathsf{G}} + \delta S^{(2)}_{\mathsf{G}} & : \text{ Gravity } (j = 2) \end{cases}$$

Explicit constructions (using BCFW, CHY) @ tree-level yield

$$S_{\rm YM}^{(1)\rm tree} = \frac{E_{\mu} q_{\nu} J_{1}^{\mu\nu}}{p_{1} \cdot q} - \frac{E_{\mu} q_{\nu} J_{n}^{\mu\nu}}{p_{n} \cdot q} \qquad \qquad J_{a}^{\mu\nu} := p_{a}^{\mu} \partial_{p_{a}^{\nu}} + E_{a}^{\mu} \partial_{E_{a}^{\nu}} - \mu \leftrightarrow \nu$$

$$S_{\rm G}^{(1)\rm tree} = \sum_{a=1}^{n} \frac{(E \cdot p_{a}) E_{\mu} q_{\nu} J_{a}^{\mu\nu}}{p_{a} \cdot q} \qquad \qquad \text{writing polarization} \quad E_{\mu\nu} = E_{\mu} E_{\nu}$$

$$S_{\rm G}^{(2)\rm tree} = \sum_{a=1}^{n} \frac{(E_{\mu} q_{\nu} J_{a}^{\mu\nu})^{2}}{p_{a} \cdot q} \qquad \qquad \rightarrow \text{hidden BMS symmetry? [Strominger et all point of the second symmetry]}$$

Constraining soft theorems

$$\delta^{(D)}(\delta q + \sum_{i=1}^{n} p_i)$$
 vs. $\delta^{(D)}(\sum_{i=1}^{n} p_i)$

A subtle momentum conservation issue

- Amplitudes are distributions: $\mathcal{A}_n(\{p_a\}) = \delta^{(D)}(\sum_{a=1}^n p_a) A_n(\{p_a\})$
- Soft theorem should be stated with $\delta\text{-functions:}$

$$\delta^{(D)}(\delta q + P) A_{n+1}(\delta q, \{p_a\}) = S^{[j]}(\delta q, \{p_a\}) \delta^{(D)}(P) A_n(\{p_a\}) + \mathcal{O}(\delta^j)$$

with
$$P = \sum_{a=1}^{n} p_a$$
 and $S^{[j]} = \frac{1}{\delta} S^{(0)} + S^{(1)} + \dots$

• Mismatch in arguments of delta-functions! If we want to state the theorem on the level of stripped amplitudes, i.e.

$$A_{n+1}(\delta q, \{p_a\}) = \tilde{S}^{[j]}(\delta q, \{p_a\}) A_n(\{p_a\})$$

must have a non-trivial commutator:

$$S^{[j]}(\delta q) \, \delta^{(D)}(P) = \delta^{(D)}(P + \delta q) \, \tilde{S}^{[j]}(\delta q)$$

Consistency condition [Broedel, de Leeuw, JP, Rosso]

Relation at leading orders: $P = \sum_{a=1}^{n} p_a$

$$\left(\frac{1}{\delta}S^{(0)} + S^{(1)}\right)\delta^{(D)}(P) = \left(\delta^{(D)}(P) + \delta q \cdot \partial_P \delta^{(D)}(P)\right)\left(\frac{1}{\delta}\tilde{S}^{(0)} + \tilde{S}^{(1)}\right) + \mathcal{O}(\delta)$$

• No issue at leading order in δ :

$$S^{(0)} = \tilde{S}^{(0)}$$
 & $[S^{(0)}, \delta^{(D)}(P)] = 0$

• But non-trivial commutator at NLO:

4

$$S^{(1)} = \tilde{S}^{(1)} + \chi \qquad \& \qquad [S^{(1)}, \delta^{(D)}(P)] = S^{(0)} q \cdot \partial_P \delta^{(D)}(P) + \delta^{(D)}(P) \chi$$

 \Rightarrow implies that $S^{(1)}(\delta q, \{p_a\})$ must contain differential operator ∂_{p_a} .

- Similar story at NNLO (relevant for gravity)
- Message: ∂_{p_a} terms in $S^{(j)}$ are constrained by lower order $S^{(j' < j)}$ ops
- Moreover, it turns out that $\chi = \chi' = 0$

Consistency condition [Broedel, de Leeuw, JP, Rosso]

Relation at leading orders: $P = \sum_{a=1}^{n} p_a$

$$\left(\frac{1}{\delta}S^{(0)} + S^{(1)}\right)\delta^{(D)}(P) = \left(\delta^{(D)}(P) + \delta q \cdot \partial_P \delta^{(D)}(P)\right)\left(\frac{1}{\delta}\tilde{S}^{(0)} + \tilde{S}^{(1)}\right) + \mathcal{O}(\delta)$$

• No issue at leading order in δ :

$$S^{(0)} = \tilde{S}^{(0)}$$
 & $[S^{(0)}, \delta^{(D)}(P)] = 0$

But non-trivial commutator at NLO:

$$S^{(1)} = \tilde{S}^{(1)} + \chi \qquad \& \qquad [S^{(1)}, \delta^{(D)}(P)] = S^{(0)} q \cdot \partial_P \delta^{(D)}(P) + \delta^{(D)}(P) \chi$$

 \Rightarrow implies that $S^{(1)}(\delta q, \{p_a\})$ must contain differential operator ∂_{p_a} .

- Similar story at NNLO (relevant for gravity)
- Message: ∂_{p_a} terms in $S^{(j)}$ are constrained by lower order $S^{(j' < j)}$ ops.
- Moreover, it turns out that $\chi=\chi'=0$

Constraining subleading soft theorems [Broedel, de Leeuw, JP, Rosso]

Collect all known constraints on soft operators:

 $\mathcal{A}_{n+1}(\delta q, E, \{E_a, p_a\}) \underset{\delta \to 0}{=} S^{[j]}(\delta q, E, \{E_a, p_a, \partial_{E_a}, \partial_{p_a}\}) \cdot \mathcal{A}_n(\{E_a, p_a\}) + \mathcal{O}(\delta^j)$

- Gauge invariances on soft and hard legs
- Distributional constraint: (as discussed)

$$S^{[j]}(\boldsymbol{\delta q}) \, \delta^{(D)}(\sum_{a} p_{a}) = \delta^{(D)}(\boldsymbol{\delta q} + \sum_{a} p_{a}) \, \tilde{S}^{[j]}(\boldsymbol{\delta q})$$

• "Locality": $S^{(l)} = \sum_{a=1}^{n} S^{(l)}(q, E; E_a, p_a; \partial_{E_a}, \partial_{p_a})$ as it would arise from a Ward identity. Is an assumption beyond tree-level

• Dimensional analysis:
$$[g_{YM}] = 0$$
 $[\kappa] = -1$ $[S_{YM}^{[j]}] = -1$ $[S_{G}^{[j]}] = 0$

Enforcing all constraints entirely fixes the subleading soft functions in 4d!

Constraining subleading soft theorems [Broedel, de Leeuw, JP, Rosso]

Collect all known constraints on soft operators:

 $\mathcal{A}_{n+1}(\delta q, E, \{E_a, p_a\}) \underset{\delta \to 0}{=} S^{[j]}(\delta q, E, \{E_a, p_a, \partial_{E_a}, \partial_{p_a}\}) \cdot \mathcal{A}_n(\{E_a, p_a\}) + \mathcal{O}(\delta^j)$

- Gauge invariances on soft and hard legs
- Distributional constraint: (as discussed)

$$S^{[j]}(\boldsymbol{\delta q}) \, \delta^{(D)}(\sum_{a} p_{a}) = \delta^{(D)}(\boldsymbol{\delta q} + \sum_{a} p_{a}) \, \tilde{S}^{[j]}(\boldsymbol{\delta q})$$

• "Locality": $S^{(l)} = \sum_{a=1}^{n} S^{(l)}(q, E; E_a, p_a; \partial_{E_a}, \partial_{p_a})$ as it would arise from a Ward identity. Is an assumption beyond tree-level

• Dimensional analysis:
$$[g_{YM}] = 0$$
 $[\kappa] = -1$ $[S_{YM}^{[j]}] = -1$ $[S_{G}^{[j]}] = 0$

Enforcing all constraints entirely fixes the subleading soft functions in 4d!

4D: Gauge theory

- Use spinor helicity: $q^{\mu} \rightarrow q^{\alpha} \tilde{q}^{\dot{\alpha}}$ & consider (+) helicity soft gluon: $E_{\mu} \rightarrow E_{\alpha\dot{\alpha}}^{(+)} = \frac{\mu_{\alpha} \tilde{q}_{\dot{\alpha}}}{\langle \mu q \rangle}$
- <u>Ansatz</u>: Local, linear in $E^{(+)}$, first order in ∂_a and $\partial_{\dot{\alpha}}$

$$S_{\mathsf{YM}}^{(1)} = \sum_{a=1,n} E_{\alpha\dot{\alpha}}^{(+)} \bigg[\Omega_a^{\alpha\dot{\alpha}\beta} \frac{\partial}{\partial\lambda_a^{\beta}} + \bar{\Omega}_a^{\alpha\dot{\alpha}\dot{\beta}} \frac{\partial}{\partial\tilde{\lambda}_a^{\dot{\beta}}} \bigg]$$

Coefficients $\Omega_a(\lambda_q,\tilde\lambda_q,\lambda_a,\tilde\lambda_a)$ constrained by little-group scaling

• Gauge invariance $\mu_{\alpha} \rightarrow \mu_{\alpha} + \eta q_{\alpha}$ and distributional constraint yield the unique result for subleading soft operator

$$S_{\mathsf{YM}}^{(0)} = \frac{\langle n \, 1 \rangle}{\langle n \, q \rangle \, \langle q \, 1 \rangle} \qquad \stackrel{\text{locality \& consistency}}{\Rightarrow} \qquad S_{\mathsf{YM}}^{(1)} = \frac{[\tilde{q}\tilde{\partial}_1]}{\langle q 1 \rangle} - \frac{[\tilde{q}\tilde{\partial}_n]}{\langle q n \rangle}$$

• N.B: Does not prove the existence of subleading soft thm, but says that if a sub-leading universal soft factorization holds, it must be of this form.

4D: Gravity

Positive helicity soft graviton:

$$S_{\mathsf{G}}^{(0)} = \sum_{a=1}^{n} \frac{\langle xa \rangle \langle ya \rangle [qa]}{\langle xq \rangle \langle yq \rangle \langle aq \rangle} \left[x \right]$$

 $x \And y$ reference spinors

• Analogous arguments: Local, first order ansatz

$$S_{\mathsf{G}}^{(1)} = \sum_{a=1}^{n} E_{\alpha\dot{\alpha}\beta\dot{\beta}}^{(+)} \Big[\Omega_{a}^{\alpha\dot{\alpha}\beta\dot{\beta}\gamma} \frac{\partial}{\partial\lambda_{a}^{\gamma}} + \bar{\Omega}_{a}^{\alpha\dot{\alpha}\beta\dot{\beta}\dot{\gamma}} \frac{\partial}{\partial\tilde{\lambda}_{a}^{\dot{\gamma}}} \Big]$$

 Ω_a & $\bar{\Omega}_a$ contain 4 local constants

• Again constraints (gauge invariance & distributional constraint) nail down subleading operator completely:

$$\Rightarrow \quad S_{\mathsf{G}}^{(1)} = \frac{1}{2} \sum_{a=1}^{n} \frac{[a\,q]}{\langle a\,q \rangle} \left(\frac{\langle a\,x \rangle}{\langle q\,x \rangle} + \frac{\langle a\,y \rangle}{\langle q\,y \rangle} \right) [\tilde{q}\,\tilde{\partial}_{a}]$$

• Same reasoning also fixes sub-subleading soft operator $S_{\rm G}^{(2)}$ in 4d.

Collinear Limits

Collinear limit

• Collinear factorization is central property for gluon amplitudes

• Parametrize the collinear limit $\epsilon \to 0$: $(c = \cos \phi, s = \sin \phi)$ [Stieberger, Taylor]

$$\begin{aligned} |1\rangle &= c |p\rangle - \epsilon s |r\rangle & |1] = c |p] - \epsilon s |r| & |1\rangle^{\alpha} &= \lambda_{1}^{\alpha}, \quad |1]^{\dot{\alpha}} &= \tilde{\lambda}_{1}^{\dot{\alpha}} \\ |2\rangle &= s |p\rangle + \epsilon c |r\rangle & |2] &= s |p] + \epsilon c |r| & \Rightarrow \quad \langle 12\rangle &= \epsilon_{\alpha\beta}\lambda_{1}^{\alpha}\lambda_{2}^{\beta} &= \epsilon \langle pr\rangle \end{aligned}$$

with reference momentum r^{μ} . This translates to 4-momenta

$$p_{1}^{\mu} = c^{2} p^{\mu} - \epsilon cs q^{\mu} + \epsilon^{2} s^{2} r^{\mu}$$
$$p_{2}^{\mu} = s^{2} p^{\mu} + \epsilon cs q^{\mu} + \epsilon^{2} c^{2} r^{\mu} \qquad q := |p\rangle[r| + |r\rangle[p]$$

• Momentum conservation up to order ϵ^2 : $p_1 + p_2 = p + \epsilon^2 r$

[9/26]

Splitting functions for gluons

• Collinear factorization

$$A_{n+2}(1^{h_1}, 2^{h_2}, \ldots) \xrightarrow{1 \parallel 2} \sum_{h=\pm} \text{Split}_{-h}(c; 1^{h_1}, 2^{h_2}) A_{n+1}(p^h, \ldots) + \mathcal{O}(\epsilon^0)$$

• One has to leading order in ϵ :

$$\begin{split} & \operatorname{Split}_{+}(c;1^{+},2^{+}) = 0 & \operatorname{Split}_{-}(c;1^{+},2^{+}) = \frac{1}{\epsilon} \frac{1}{cs \langle pr \rangle} \\ & \operatorname{Split}_{+}(c;1^{+},2^{-}) = -\frac{1}{\epsilon} \frac{s^{3}}{c \langle pr \rangle} & \operatorname{Split}_{-}(c;1^{+},2^{-}) = \frac{1}{\epsilon} \frac{c^{3}}{s [pr]} \end{split}$$

• Question:

Is there universal factorization at subleading order in ϵ ?

Natural question to ask in view of subleading soft theorems. However, no potential hidden symmetry at the horizon.

[10/26]

Intriguing relation to Einstein-Yang-Mills amplitudes [Stieberger, Taylor '15]

• Consider linear combinations of collinear amplitudes s.t. $1/\epsilon$ pole cancels

• N=5:

$$s_{5p} A(1^+, 2^+, 3, 4, 5) - s_{4p} A(1^+, 2^+, 3, 5, 4) \xrightarrow{1 \parallel 2} \frac{g^2}{\kappa c^2} A_{\mathsf{EYM}}(p^{++}, 3, 4, 5) + \mathcal{O}(\epsilon)$$

• N=6:

$$s_{6p} A(1^+, 2^+, 3, 4, 5, 6) - s_{5p} [A(1^+, 2^+, 3, 4, 6, 5) + A(1^+, 2^+, 3, 6, 4, 5)] + s_{4p} A(1^+, 2^+, 3, 6, 5, 4) \xrightarrow{1 \parallel 2} \frac{g^2}{\kappa c^2} A_{\text{EYM}}(p^{++}, 3, 4, 5, 6) + \mathcal{O}(\epsilon)$$

- In general: (N-3)!/2 constraints for the independent (N-3)! gluon amplitudes in $1 \parallel 2$ limit.
- $\bullet \Rightarrow$ Suggests possible existence of subleading splitting into EYM-amplitudes

$$\begin{aligned} A_{\mathsf{YM}}(1^+,2^+,3,\ldots,N) \Big|_{1\parallel 2}^{\mathsf{subleading}} \stackrel{????}{=} S^{[1]}_{-}(c;1^+,2^+;3,N) \, A_{\mathsf{EYM}}(p^{++},3,\ldots,N) \\ \end{aligned} \\ \text{Calls for unified description of gluon \& graviton amplitudes} \end{aligned}$$

[11/26]

Intriguing relation to Einstein-Yang-Mills amplitudes [Stieberger, Taylor '15]

• Consider linear combinations of collinear amplitudes s.t. $1/\epsilon$ pole cancels

• N=5:

$$s_{5p} A(1^+, 2^+, 3, 4, 5) - s_{4p} A(1^+, 2^+, 3, 5, 4) \xrightarrow{1 \parallel 2} \frac{g^2}{\kappa c^2} A_{\mathsf{EYM}}(p^{++}, 3, 4, 5) + \mathcal{O}(\epsilon)$$

• N=6:

$$\begin{split} s_{6p} \, A(1^+,2^+,3,4,5,6) &- s_{5p} \left[A(1^+,2^+,3,4,6,5) + A(1^+,2^+,3,6,4,5) \right] \\ &+ s_{4p} \, A(1^+,2^+,3,6,5,4) \stackrel{1 \parallel 2}{\longrightarrow} \frac{g^2}{\kappa \, c^2} \, A_{\mathsf{EYM}}(p^{++},3,4,5,6) + \mathcal{O}(\epsilon) \end{split}$$

- In general: (N-3)!/2 constraints for the independent (N-3)! gluon amplitudes in $1 \parallel 2$ limit.
- $\bullet \Rightarrow$ Suggests possible existence of subleading splitting into EYM-amplitudes

$$\begin{split} A_{\mathsf{YM}}(1^+,2^+,3,\ldots,N) \Big|_{1\parallel 2}^{\mathsf{subleading}} \stackrel{????}{=} S^{[1]}_{-}(c;1^+,2^+;3,N) \, A_{\mathsf{EYM}}(p^{++},3,\ldots,N) \\ \end{split}$$
Calls for unified description of gluon & graviton amplitudes

The Cachazo-He-Yuan formalism

Best formalism for unified description of amplitudes: CHY

• Scattering equations:

$$f_a = \sum_{\substack{b=1\\b \neq a}}^n \frac{p_a \cdot p_b}{\sigma_a - \sigma_b} = 0$$

$$\sigma_{ab} := \sigma_a - \sigma_b \in \mathbb{C}$$

For N-particle kinematics these have (N-3)! solutions

•
$$\mathcal{A}_n = \int \frac{d^n \sigma_a}{\text{vol SL}(2,\mathbb{C})} \left(\prod_{a=1}^n \delta(f_a) \right) \mathcal{I}_n(\{p, E, \sigma\})$$
 [Cachazo,He,Yuan]

Integrand I_n built from 2 building blocks: 'Parke-Taylor factor' and CHY-Matrix

$$C(1,\ldots,n) = rac{1}{\sigma_{12}\ldots\sigma_{n1}}$$
 $\Psi_n = \begin{pmatrix} A & -C^{\mathrm{T}} \\ C & B \end{pmatrix}$

$$A_{ab} = \begin{cases} \frac{p_a \cdot p_b}{\sigma_a - \sigma_b} & B_{ab} = \begin{cases} \frac{E_a \cdot E_b}{\sigma_a - \sigma_b} & C_{ab} = \begin{cases} \frac{E_a \cdot p_b}{\sigma_a - \sigma_b} & \text{for } a \neq b \\ -\sum_{c \neq a} \frac{E_a \cdot p_c}{\sigma_a - \sigma_c} & \text{for } a = b \end{cases}$$

• Integrand \mathcal{I}_n defines the theory in question.

[12/26]

CHY: Unifying picture of gluon & graviton amplitdues

• CHY formula

$$\mathcal{A}_n = \int \frac{d^n \sigma_a}{\operatorname{vol} \operatorname{SL}(2,\mathbb{C})} \left(\prod_{a=1}^n \delta(f_a) \right) \, \mathcal{I}_n(\{p, E, \sigma\})$$

• Integrands \mathcal{I}_n :

$$\begin{array}{ll} \mbox{Gravitons:} & \mathcal{I}_n^{\mbox{Einstein}}(1,2,\ldots,n) = \mbox{Pf}' \, \Psi_n^2 \\ \mbox{Color ordered gluons:} & \mathcal{I}_n^{\mbox{YM}}(1,2,\ldots,n) = C(1,2,\ldots,n) \, \mbox{Pf}' \, \Psi_n \\ \mbox{Graviton-gluon:} & \mathcal{I}_{n+1}^{\mbox{EYM}}(1,2,\ldots,n;p) = \mathcal{C}(1,2,\ldots,n) \, C_{pp} \, \mbox{Pf}' \, \Psi_{n+1} \\ & \mathcal{I}_{n+r}^{\mbox{EYM}}(1,2,\ldots,n;p_1,\ldots,p_r) = \mathcal{C}(1,2,\ldots,n) \, \mbox{Pf} \, \Psi_r(\{p,E_p,\sigma\}) \mbox{Pf}' \, \Psi_{n+r} \\ \mbox{with } C_{pp} = -\sum_{b=1}^n \frac{E_p \cdot p_b}{\sigma_p - \sigma_b} = \mbox{Pf} \, \Psi_1(p,E,\sigma) \\ \end{array}$$

• Unified description of gluon-graviton trees \Rightarrow formalism we were seeking.

Short proof of EYM-YM amplitude relation

Derived from string amplitudes: $h g^n$ -amplitude from pure YM

[Stieberger, Taylor]

$$A_{\text{EYM}}(1,2,\ldots,n;p^{\pm\pm}) = \frac{\kappa}{g} \sum_{l=1}^{n-1} E_p^{\pm} \cdot x_l A_{\text{YM}}(1,2,\ldots,l,p^{\pm},l+1,\ldots,n)$$

with region momentum $x_l = \sum_{i=1}^l p_i$.

• Follows straightforwardly from CHY representation:

$$\mathcal{I}_{n}^{\mathsf{YM}}(1,2,\ldots,n) = \frac{1}{\sigma_{12}\ldots\sigma_{n1}} \operatorname{Pf}' \Psi_{n}$$
$$\mathcal{I}_{n+1}^{\mathsf{EYM}}(1,2,\ldots,n;p^{\pm\pm}) = C_{pp} \frac{1}{\sigma_{12}\ldots\sigma_{n1}} \operatorname{Pf}' \Psi_{n+1}$$

• Using the simple identity: [Nandan, JP, Schlotterer, Wen]

$$C_{pp} = \sum_{i=1}^{n} \frac{E_{p} \cdot p_{i}}{\sigma_{i,\rho}} = \sum_{i=1}^{n-1} E_{p} \cdot x_{i} \frac{\sigma_{i,i+1}}{\sigma_{i,\rho} \sigma_{\rho,i+1}}$$

Trivially shown using $\frac{\sigma_{i,i+1}}{\sigma_{i,p}\sigma_{p,i+1}} = \frac{1}{\sigma_{i,p}} - \frac{1}{\sigma_{i+1,p}}$ and telescoping sum.

Higher level EYM to YM relations

• May be generalized to more gravitons. One seeks identities of the type

$$\mathsf{Pf}\,\Psi_r(\{p,E_p,\sigma\}) = \sum_{\{i,j,a\}} F_a(\{p,E_p\})\,\frac{\sigma_{i\,j}}{\sigma_{ia}\sigma_{aj}}$$

• Two gravitons with momenta p & q:

$$\mathsf{Pf}\Psi_{r=2} = C_{pp} C_{qq} - \frac{s_{pq} \left(\epsilon_p \cdot \epsilon_q\right)}{\sigma_{p,q}^2} + \frac{\left(\epsilon_p \cdot q\right) \left(\epsilon_q \cdot p\right)}{\sigma_{p,q}^2} \,, \qquad s_{pq} \equiv p \cdot q \,.$$

• Toolbox of identities:

Schouten's
$$\sigma_{i,i+1} \sigma_{p,q} = -\sigma_{i,p} \sigma_{q,i+1} + \sigma_{i,q} \sigma_{p,i+1}$$

 $\mathsf{Kleiss-Kuijf} \qquad \mathcal{C}(1,A,n,B) = (-)^{|B|} \sum_{\sigma \in A \sqcup B^t} \mathcal{C}(1,\sigma,n)$

with shuffles $A \sqcup B \equiv \{\alpha_1(\alpha_2 \dots \alpha_{|A|} \sqcup B)\} + \{\beta_1(\beta_2 \dots \beta_{|B|} \sqcup A)\}$

$$\text{Cross-ratio identity:} \qquad \frac{s_{pq}}{\sigma_{p,q}^2} = \sum_{i \neq a, p, q} s_{pi} \, \frac{\sigma_{i,a}}{\sigma_{i,p} \, \sigma_{p,q} \, \sigma_{q,a}} \, {}_{\text{[Cardona,Feng,Gomez,Huang]}}$$

[15/26]

• Two gravitons

$$\begin{split} \mathcal{A}_{\mathsf{EYM}}(1,2,\ldots,n;p,q) &= \\ & \frac{\kappa^2}{g^2} \Big[\sum_{1=i \leq j}^{n-1} \left(\epsilon_p \cdot x_i \right) \left(\epsilon_q \cdot x_j \right) \mathcal{A}(1,\ldots,i,p,i{+}1,\ldots,j,q,j{+}1,\ldots,n) \\ & - \left(\epsilon_q \cdot p \right) \sum_{j=1}^{n-1} \left(\epsilon_p \cdot x_j \right) \sum_{i=1}^{j+1} \mathcal{A}(1,2,\ldots,i{-}1,q,i,\ldots,j,p,j{+}1,\ldots,n) \\ & - \frac{\left(\epsilon_p \cdot \epsilon_q \right)}{2} \sum_{l=1}^{n-1} \left(p \cdot k_l \right) \sum_{1=i \leq j}^{l} \mathcal{A}(1,2,\ldots,i{-}1,q,i,\ldots,j{-}1,p,j,\ldots,n) \\ & + \left(p \leftrightarrow q \right) \Big] \end{split}$$

- Similar yet more complicated expressions have been worked out for 3 and 4 gravitons as well as double-trace EYM amplitudes with zero or one graviton.
- All multipicity problem solved recently [Fu,Du,Huang,Feng] [Chiodaroli,Gunaydin,Johansson,Roiban] [Teng,Feng]

Soft constraints on kinematical numerators [JP, Wormsbecher; ongoing]

• EYM as YM amplitude relations are special cases of doubly copy relation between graviton and gluon amplitudes: [Bern,Carrasco,Johansson]

 $n(1, \beta, n)$: Kinematical numerators in DDM form. [Del Ducca, Dixon, Maltoni]. Are polynomials in ϵ_i and p_i . Recent combinatorial construction established [Du, Teng]

- Question: What constraints do soft theorems impose on $n(1, \beta, n)$?
- Preliminary result: Emerging recursive structure for $n(1, \beta, n)$ e.g.

$$\begin{split} n(1,\{q,\beta\},n) &= \left(-\epsilon_q \cdot p_1 - \epsilon_q \cdot J_1 \cdot q\right) n(1,\{\beta\},n) \\ &+ (q \cdot p_1)[\ldots] + \mathcal{O}(q^2) \end{split}$$

• Combine with gauge invariance \implies Completely determined? [Arkani-Hamed,Rodina,Trnka]

Back to (subleading) Collinear Limits

The collinear scattering equations

• We take
$$1 \parallel 2$$
 with $\begin{pmatrix} |1\rangle \\ |2\rangle \end{pmatrix} = \begin{pmatrix} c & -\epsilon s \\ s & +\epsilon c \end{pmatrix} \begin{pmatrix} |p\rangle \\ |r\rangle \end{pmatrix}$

• Change of variables:

$$\sigma_1 = \rho - \frac{\xi}{2} \qquad \sigma_2 = \rho + \frac{\xi}{2}$$

- In fact solutions with $\xi \to 0$ imply collinearity of $1 \parallel 2:$ $_{\rm [Dolan,Goddard]}$
- But is the opposite also true?
- Numerical studies (for $N \leq 8$) of the (N-3)! solutions reveal:
 - Always found $2 \cdot (N-4)!$ degenerate $(\xi \to 0)$ solutions
 - Remaining (N-5)(N-4)! solutions are non-degenerate ($\xi = finite$)
- Degenerate solutions are numerically seen to be dominant in the CHY integral at leading $\mathcal{O}(\frac{1}{\epsilon})$ and sub-leading $\mathcal{O}(1)$ order in the collinear limit.

 \Rightarrow May focus on degenerate solutions!

• We take
$$1 \parallel 2$$
 with $\begin{pmatrix} |1\rangle \\ |2\rangle \end{pmatrix} = \begin{pmatrix} c & -\epsilon s \\ s & +\epsilon c \end{pmatrix} \begin{pmatrix} |p\rangle \\ |r\rangle \end{pmatrix}$

• Change of variables:

$$\sigma_1 = \rho - \frac{\xi}{2} \qquad \sigma_2 = \rho + \frac{\xi}{2}$$

- In fact solutions with $\xi \to 0$ imply collinearity of $1 \parallel 2$: $_{\rm [Dolan,Goddard]}$
- But is the opposite also true?
- Numerical studies (for $N \leq 8$) of the (N-3)! solutions reveal:
 - Always found $2 \cdot (N-4)!$ degenerate $(\xi \to 0)$ solutions
 - Remaining (N-5)(N-4)! solutions are non-degenerate ($\xi = finite$)
- Degenerate solutions are numerically seen to be dominant in the CHY integral at leading $\mathcal{O}(\frac{1}{\epsilon})$ and sub-leading $\mathcal{O}(1)$ order in the collinear limit.

 \Rightarrow May focus on degenerate solutions!

$$\delta(f_1)\,\delta(f_2) = 2\,\delta(f_1 + f_2)\,\delta(f_1 - f_2) = 2\delta(f_1 + f_2)\,\delta(f_-)$$

• Degenerate solution ansatz $\xi = \epsilon \xi_1 + \epsilon^2 \xi_2 + \mathcal{O}(\epsilon^3)$:

$$f_{-} := (f_{1} - f_{2}) - (c^{2} - s^{2})(f_{1} + f_{2}) = \epsilon \left[2c^{2}s^{2}\xi_{1}\mathcal{P}_{2} - 2cs\mathcal{Q}_{1} - \frac{2(p \cdot r)}{\xi_{1}}\right] + \mathcal{O}(\epsilon^{2})$$

with shorthands
$$Q_i = \sum_{b=3}^n \frac{p_b \cdot q}{(\rho - \sigma_b)^i}$$
 $\mathcal{P}_i = \sum_{b=3}^n \frac{p_b \cdot p}{(\sigma_b - \rho)^i}$ $i \ge 2$

• Yields two solutions for $\xi_1 = \xi_{\pm}$.

$$\xi_{1,\pm} = \frac{\mathcal{Q}_1}{2cs\mathcal{P}_2} \pm \sqrt{\frac{\mathcal{Q}_1^2 + 4(p \cdot r)\mathcal{P}_2}{4(c^2s^2)\mathcal{P}_2^2}}$$

• Solution counting:

- Remaining N-1 scattering equations have (N-4)! solutions
- Total number of degenerate solutions thus constructed $2 \cdot (N-4)!$
 - ⇒ Matches the numerically found number!

[19/26]

$$\delta(f_1)\,\delta(f_2) = 2\,\delta(f_1 + f_2)\,\delta(f_1 - f_2) = 2\delta(f_1 + f_2)\,\delta(f_-)$$

• Degenerate solution ansatz $\xi = \epsilon \xi_1 + \epsilon^2 \xi_2 + \mathcal{O}(\epsilon^3)$:

$$f_{-} := (f_{1} - f_{2}) - (c^{2} - s^{2})(f_{1} + f_{2}) = \epsilon \left[2c^{2}s^{2}\xi_{1}\mathcal{P}_{2} - 2cs\mathcal{Q}_{1} - \frac{2(p \cdot r)}{\xi_{1}}\right] + \mathcal{O}(\epsilon^{2})$$

with shorthands
$$Q_i = \sum_{b=3}^n \frac{p_b \cdot q}{(\rho - \sigma_b)^i}$$
 $\mathcal{P}_i = \sum_{b=3}^n \frac{p_b \cdot p}{(\sigma_b - \rho)^i}$ $i \ge 2$

• Yields two solutions for $\xi_1 = \xi_{\pm}$.

$$\xi_{1,\pm} = \frac{Q_1}{2cs\mathcal{P}_2} \pm \sqrt{\frac{Q_1^2 + 4(p \cdot r)\mathcal{P}_2}{4(c^2s^2)\mathcal{P}_2^2}}$$

• Solution counting:

- Remaining N-1 scattering equations have (N-4)! solutions
- Total number of degenerate solutions thus constructed $2 \cdot (N-4)!$
 - \Rightarrow Matches the numerically found number!

Expanding out: 4 contributions to the near collinear expansion

$$A(1,2,3,\ldots,n+2) \stackrel{1\parallel 2}{=} \sum_{\xi_{\pm}} \int \prod_{a=3}^{n+2} \left[d'\sigma_a \,\delta(f_a) \right] d\rho \,\delta\left(\underbrace{f_p + \epsilon \, (c^2 - s^2) \frac{\xi_1}{2} \mathcal{P}_2}_{f_1 + f_2} \right) \\ \times \left[\underbrace{\frac{1}{\left| \frac{\partial f_-}{\partial \xi} \right|}}_{\text{Jacobian}} \underbrace{\frac{1}{\sigma_{1,2} \ldots \sigma_{n+2,1}}}_{\mathcal{C}_{n+2}} \underbrace{\frac{\mathsf{Pf}' \,\Psi_{n+2}}_{\mathsf{CHY matrix}}} \right] \bigg|_{\xi = \epsilon \xi_1 + \epsilon^2 \xi_2 + \ldots}$$

• Jacobian:

$$\mathcal{J} = \underbrace{\frac{1}{2} \frac{\xi_1^2}{(p \cdot r) + c^2 s^2 \mathcal{P}_2 \xi_1^2}}_{\mathcal{J}_0} + \epsilon \mathcal{J}_0^2 \left(4(p \cdot r) \frac{\xi_2}{\xi_1^3} - cs(c^2 - s^2) \mathcal{Q}_2 \right) + \mathcal{O}(\epsilon^2)$$

• Parke-Taylor factor:

$$\mathcal{C}_{n+2} = -\frac{1}{\epsilon} \frac{\mathcal{C}_{n+1}}{\xi_1} + \mathcal{C}_{n+1} \left(\frac{\xi_2}{\xi_1^2} + \frac{1}{2} S_{n+2,\rho,3} \right) + \mathcal{O}(\epsilon)$$

• CHY-matrix: Needs more involved computation, but Pf' $\Psi_{n+2}\sim\epsilon^0$

• CHY matrix:

$$\operatorname{Pf}'(\Psi_{n+2}) = \left(C_{pp} - \frac{2}{s \, c \, \xi_1} \left\{ \begin{array}{c} -[pr] \\ +\langle pr \rangle \end{array} \right\} \right) \, \operatorname{Pf}'(\Psi_{n+1}) \qquad \text{for helicities} \quad \begin{cases} 1^+ 2^+ \\ 1^- 2^- \end{cases}$$

• Putting everything together we recover the splitting functions:

$$\begin{aligned} \mathcal{A}_{n+2} \stackrel{1 \parallel 2}{=} \sum_{\xi_1} \int d\mu_n \, d\rho \, \delta(f_p) \, \frac{-\mathcal{J}_0}{\epsilon \, \xi_1} \, C_{n+1} \, \left(C_{pp} - \frac{2}{s \, c \, \xi_1} \left\{ \begin{array}{c} -[pr] \\ +\langle pr \rangle \end{array} \right\} \right) \, \mathrm{Pf}'(\Psi_{n+1}) \\ &= \mathsf{Split}_{\mp}^{\mathsf{tree}}(c; 1^{\pm}, 2^{\pm}) \, \mathcal{A}_{n+1}(p^{\pm}, 3, \dots, n+2) \end{aligned}$$

using the sum identities:

$$\sum_{\{\xi_1\}} \frac{\mathcal{J}_0}{\xi_1} = 0 \qquad \sum_{\{\xi_1\}} \frac{\mathcal{J}_0}{\xi_1^2} = \frac{1}{2\,p \cdot r}$$

• Leadign order opposite helicity case $1^{\pm}2^{\mp}$ works similarly.

[21/26]

Subleading order: Same helicity $1^{\pm}2^{\pm}$

Final result (dropping a total derivative):

$$\begin{aligned} \mathcal{A}(1,2,3,\dots,n+2) \Big|_{1\parallel 2}^{\text{subleading}} &= \int d\mu_{n+1} \\ \left(\frac{C_{pp}}{\mathcal{P}_2} \Big(\frac{1}{c^2} \frac{1}{\sigma_{n+2,\rho}} + \frac{1}{s^2} \frac{1}{\sigma_{\rho,3}} \Big) + \frac{c^2 - s^2}{c^2 s^2 \mathcal{P}_2} \left(C_{pp}^{(2)} - \frac{C_{pp} \mathcal{P}_3}{\mathcal{P}_2} \right) \right) C_{n+1} \operatorname{Pf}'(\Psi_{n+1}) \end{aligned}$$

- Reproduces the Stieberger-Taylor relations.
- Curious identity: Consider the differential operator $p \cdot \partial_{E_p}$ (gauge transf. in effective collinear leg)

$$p \cdot \partial_{E_p} \mathcal{A}^{\mathsf{YM}}(1, 2, 3, \dots, n+2) \Big|_{1\parallel 2}^{\mathsf{subleading}} = \frac{s^2 - c^2}{c^2 s^2} \mathcal{A}^{\mathsf{YM}}(p, 3, \dots, n+2)$$

recall:
$$p_1 = c^2 p - \epsilon cs q + \mathcal{O}(\epsilon^2), \qquad p_2 = s^2 p + \epsilon cs q + \mathcal{O}(\epsilon^2)$$

Factorization at subleading collinear order?

• Nicest result in democratic collinear limit c = s

$$\left| \mathcal{A}(1^{\pm}, 2^{\pm}, 3, \dots, n+2) \right|_{1\parallel 2, c=s}^{\text{subleading}} = \int d\mu_{n+1} \frac{1}{\mathcal{P}_2} \frac{\sigma_{n+2,3}}{\sigma_{n+2,\rho} \sigma_{\rho,3}} C_{pp} C_{n+1} \operatorname{Pf}'(\Psi_{n+1}) \right|_{1\parallel 2, c=s}$$

where
$$\mathcal{P}_2 = \sum_{b=3}^{n+2} \frac{p_b \cdot p}{(\sigma_b - \rho)^2} = \frac{\partial}{\partial \rho} f_p$$
, derivative of scattering equation.

• Still, have not (yet) been able to write this in factorized form!!

$$\mathcal{A}(1^{\pm}, 2^{\pm}, 3, \dots, n+2) \Big|_{1||2, c=s}^{\mathcal{O}(\epsilon^0)} \neq \mathsf{Split}^{(1)}(p_a, E_a, \partial_{p_a}, \dots) \,\mathcal{A}(p^{\pm\pm}, 3, \dots, n+2)$$

 $\bullet \Rightarrow$ Absence of a subleading collinear theorem for gluons.

Collinear gravitons

With the collinear expansion of CHY building blocks in place, can deduce collinear limits of scalar and gravitons:

- Gravitons: $\mathcal{A}_n = \int d\mu_n \operatorname{Pf}'(\Psi_n) \operatorname{Pf}'(\Psi_n)$
- In the collinear expansion this yields the leading behavior

$$\mathcal{A}_{n}^{1^{++},2^{++}} \stackrel{1}{=} 2 \sum_{\xi_{1}} \int d\mu_{n-1} \mathcal{J}_{0} \left(C_{pp} + \frac{2 \left[pr \right]}{c \, s \, \xi_{1}} \right)^{2} \operatorname{Pf}'(\Psi_{n-1}) \operatorname{Pf}'(\Psi_{n-1})$$

with the result

[Bern,Dixon,Perelstein,Rozowsky]

$$\mathcal{A}_n \stackrel{1\parallel 2}{=} \frac{[p\,r]}{c^2 \,s^2 \,\langle r\,p \rangle} \mathcal{A}_{n-1} + \frac{1}{c^2 \,s^2} \int d\mu_{n-1} \,\frac{C_{pp}^2}{\mathcal{P}_2} \operatorname{Pf}'(\Psi_{n-1}) \,\operatorname{Pf}'(\Psi_{n-1})$$

• This result is universal. Identical behaviour for scattering of m gravitons and k gluons, $A_n = \int d\mu_n C_k \operatorname{Pf}(\Psi_m) \operatorname{Pf}'(\Psi_n)$. Collinear graviton limit:

$$\mathcal{A}_{n} \stackrel{1}{=} \frac{[p\,r]}{c^{2}\,s^{2}\,\langle r\,p\rangle} \mathcal{A}_{n-1} + \frac{1}{c^{2}\,s^{2}} \int d\mu_{n-1}\,C_{k}\,\frac{C_{pp}^{2}}{\mathcal{P}_{2}}\,\operatorname{Pf}'(\Psi_{m-1})\,\operatorname{Pf}'(\Psi_{n-1})\;.$$

Collinear gravitons

With the collinear expansion of CHY building blocks in place, can deduce collinear limits of scalar and gravitons:

- Gravitons: $\mathcal{A}_n = \int d\mu_n \operatorname{Pf}'(\Psi_n) \operatorname{Pf}'(\Psi_n)$
- In the collinear expansion this yields the leading behavior

$$\mathcal{A}_{n}^{1^{++},2^{++}} \stackrel{1}{=} 2 \sum_{\xi_{1}} \int d\mu_{n-1} \mathcal{J}_{0} \left(C_{pp} + \frac{2 \left[pr \right]}{c \, s \, \xi_{1}} \right)^{2} \operatorname{Pf}'(\Psi_{n-1}) \operatorname{Pf}'(\Psi_{n-1})$$

with the result

[Bern,Dixon,Perelstein,Rozowsky]

$$\mathcal{A}_n \stackrel{1\parallel 2}{=} \frac{[p\,r]}{c^2 \,s^2 \,\langle r\,p \rangle} \mathcal{A}_{n-1} + \frac{1}{c^2 \,s^2} \int d\mu_{n-1} \,\frac{C_{pp}^2}{\mathcal{P}_2} \operatorname{Pf}'(\Psi_{n-1}) \,\operatorname{Pf}'(\Psi_{n-1})$$

• This result is universal. Identical behaviour for scattering of m gravitons and k gluons, $A_n = \int d\mu_n C_k \operatorname{Pf}(\Psi_m) \operatorname{Pf}'(\Psi_n)$. Collinear graviton limit:

$$\mathcal{A}_{n} \stackrel{1 \parallel 2}{=} \frac{[p r]}{c^{2} s^{2} \langle r p \rangle} \mathcal{A}_{n-1} + \frac{1}{c^{2} s^{2}} \int d\mu_{n-1} C_{k} \frac{C_{pp}^{2}}{\mathcal{P}_{2}} \operatorname{Pf}'(\Psi_{m-1}) \operatorname{Pf}'(\Psi_{n-1}) .$$

• Pure scalar amplitudes

$$\mathcal{A}_{n+2} = \int d\mu_{n+2} \, \mathcal{C}_{n+2}^2$$

 \bullet Working out the leading and subleading collinear limit $1 \parallel 2$ one finds

$$\mathcal{A}_{n+2}(1,2,3,\ldots,n+2) \stackrel{1\parallel 2}{=} \frac{1}{\epsilon^2 \, 2p \cdot r} \, \mathcal{A}_{n+1}(p,3,\ldots,n+2) \\ -\frac{1}{\epsilon} \int d\mu_{n+1} \left(\underbrace{\#}_{\mathsf{Jacobian}} - \underbrace{\#}_{\mathsf{Parke-Taylor}} + \underbrace{0}_{\delta'(f_+)} \right) \mathcal{C}_{n+1}^2 + \mathcal{O}(1)$$

Scalars have vanishing subleading collinear behaviour!

Subleading soft limit

- \bullet Form of subleading soft operators strongly constrained by symmetries and commutator with $\delta\text{-fct}$
- $\bullet\,$ Open problem: Derive BMS symmetry algebra from scattering amplitudes $\Rightarrow\,$ Double soft limits

Soft constraints on color-kinematic numerators

Understanding the subleading collinear limit

• Intriguing relations:

 $\label{eq:linear} \mbox{Linear combinations of subleading collinear gluon amplitudes} = \mbox{Einstein-Yang Mills amplitudes} \ \mbox{[Stieberger,Taylor]}$

- Reproduced tree-level splitting function from collinear limit of CHY.
- Gluons: We do not see factorization in the subleading collinear limit for pure glue. Stieberger-Taylor relations proven. Curious identity between gauge transformation of subleading collinear limit and gluon amplitude.

Thank you!

