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<+ Basic philosophy: [1510.02494]*

<+ Dissipative hydrodynamic actions: [1511.07809]
“ Origins in Schwinger-Keldysh: [1610.01940]

<+ Thermal Equivariance: [1610.01941]

<+ * Classification of solutions to hydro axioms: [1412.1090] [1502.00636]



Prelude: On that which came Before....
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and that which is...
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‘Act 11

in which we meet
Scﬁwinger-ﬂ(a[&fysﬁ and ‘Kuﬁo-‘]\/lartin-Scﬁwinger

anc[finc{a usefu[way to 1’6}91’656111' tﬁem...



SCHWINGER-KELDYSH FORMALISM

+The Schwinger-Keldysh formalism computes singly out-of-time ordered
correlation functions in a generic (mixed) state.

¢R
turning point
density matrix o
L identity operator
Ssig = S|Pg| — S|P, ]
5SSK — /ddx vV —g (jR Or — JL OL)

Generating functional Time ordered correlations

Zsk|Jr, Ju] = TT{U[JR] Pinitial (U[JL])T} Tr ( Pinitial T <UTOLUTOL . ) T (UOrUOg ... .) )



THERMAL DENSITY MATRICES & KMS CONDITION

+Thermal density matrices p, = (H-#: Q) define stationary equilibrium
configurations.

+ Correlation functions have analyticity properties which allows for a
Euclidean (Matsubara) formulation, cf., Z.(8,u,) = Tr ()

to S 2, = T (U1, U1

to+ile —Bo) &

+KMS condition asserts that the correlation functions are analytic in the
time strip 0 < () < 5.

+ This can be rephrased as a thermal Ward identity for correlation functions
which involve operators shifted by a imaginary thermal period.



TWO SUM RULES

+ Unitarity ot Schwinger-Keldysh path integral implies vanishing difference
operator correlators:

T [T (0l —0l”)) = (Tsxe I T 015 =
k

Weldon 05
+ The KMS condition translates into a second sum rule for thermal
differences:
TSKH( ~0)) = (Tsx H Oyer) = 0
=1
1
+ Keldysh (light-cone) basis Ou; =0r — 0., O, = 5 (Or + Op)
+ Adv-Ret basis Oudv =0r = O, 1A Opey = O — e s O,

+ Furthermore, a largest time and thermal smallest time equations hold.



THE SCHWINGER-KELDYSH SUPER-QUARTET

+ Difference operator correlation functions vanish because they are trivial
elements of a BRST cohomology.

+ There exists a pair of Grassmann odd charges which act on the doubled
operator algebra.

+The SKtheory is covariantly expressed in terms of a quartet of fields,
which usual doubled formalism being a gauge fixed version (ghosts =0).

OR7 C)L

»Af{ R
OG B SK Oa
\QSI‘{ _y [QSK7Odz’f]:|: =0, [@SK7Odz‘f]i =0
_ OL

Or

CGL argue that this should only be interpreted

4 as a single supercharge 9, but the pair above

are CPT conjugates (cf., anti-BRST).



THE KMS SUPERCHARGES: |

+ The second sum rule suggests an analogous structure should pertain in
the thermal sector, with new supercharges aligned to the thermal
translations.

Oadv
/ \) QiMS :@iMS = [QKMS7@KMS]:I: =0
Crus Qs
Ag0q B —A,0_
@‘S _ny [QKM,S')O’I"G'[J]:E — [@KMsaoTet}i =0
ABAgoret

CGL posit that the KMS condition should be

# viewed as an involution leading to a second

supercharge 0.



THE SK-KMS ALGEBRA

+The SKand KMS operations (Grassmann odd) form a closed super
algebra with further two Grassmann even operations

+One the even operations is a thermal translation: Lie drag along the
Euclidean thermal circle.

Qi’K — Qi o Q?(MS o QKMS — Y
[QSK7 QKMS]:I: — [QSK7§KMS] — [QSK7 QSK] [ KMS’QKMS]i =0,
[QSK7§KMS] [QSK7 QKMS] — LKMS ;

[QKMS7 Q?{Ms]i — [QKMsv Q?(MS]:I: 0,
[QSK’ Q?{MS} L QKMS ; [QSK’ Q?{MS} KMS



SUPERSPACE CHARGES

+ The structure is easily understood by passing onto a superspace
construction, where the SK charges act as superderivations.

o

O =0yt +600_+ 00, + 660 0uq,

QSK — 8@7 QSK — Op
I(%{MS
\ Z(I){MS — Q(;(MS _|_ Q_QKMS R HQKMS _|_ Q_HLKMS )
Jg 9 z"-KMs Sye) L 0L
—KMS — XKMS KMS )
IKMS _I 2 KMS —



‘Act 11

in which we meet Weil and Cartan and

learn of equivariance....



EQUIVARIANCE

+ Equivariance = cohomology with gauge symmetry

+To understand cohomology on an orbifold M/G we use the Borel
construction to work with the contractible universal G bundle &g.

+Classifying space Bg = £g/G is smooth as group action is free on the
universal bundle.

+eg., S'=R/Z
+cohomology of M /G = cohomology of (&g x M) /G

+ Physically think of &g as the space of the universal G gauge connections
and Bg as the space of gauge orbits. This picture is efficient to write
superspace Lagrangians.

+ Cohomology of interest will be the space of invariant horizontal forms.

Matthai, Quillen ’86
Kalkman ‘93



THE WEIL MODEL

+ Gauge structure can be captured by a Grassmann odd gauge potential
(fermions = differential forms) and its field strength

1 .. .
Ay G+ GG = ¢,

. Cartan equations for gauge structure
d. ¢ + fi,G'¢" = 0.

. =E =B . . . . . .
5;- +Z; G'=0, L, o' =0. interior contractions pick out gauge directions

Lie derivations follow from above

—=E =E| E FE| B
7 .I7), =0. o5 IF| =L,
. [ JE =E] — i E |
Weil superalgebra L ,I}E_i = —f5T dy. L] =0,
[ JE L E] o L ~E - 1
/C,L ,EJ N —_— ,LJ Ek ’ _df;\/"d]\?v_ :|: b 0 .

+ invariant horizontal forms are polynomial functions of field strengths.



CARTAN MODEL

+ One can similarly account for the group action on the manifold by
working with coordinate vectors and Grassmann fields (for 1-forms).

+Since cohomology is in gauge invariant data, helpful to pass to gauge
covariant language (Kalkman automorphism)

_ k _
do X" =d X'+ G = 9y, action of Cartan charges on
doh = d,vh + Gk(&,ﬁllj)w’/ — qbkf,’j target space and field strengths

C

do¢” =dy o + fEG'¢ =0 .

: : | 1 o _
The th) charqes ac.t isomorphically A, —d. + G L+ (_ kGiGH +¢k) 7
on horizontal, invariant forms. 2

The Cartan charge however squares , . o
to a gauge transformation de = ¢" Ly, — |G, 9" Iy



EXTENDED EQUIVARIANCE |

+One can extend the algebraic constructions to situations with more than
one differential. We will focus on the case with 2 generators of the
cohomology and swiftly pass to superspace: dy =395(...)],  dy =3ds(...)|.

+ The Weil model closes on 6 generators: 2 derivations, 3 interior

contraction, and one Lie derivation o
Vafa, Witten *94

_ _ Dijkgraaf, Moore ‘96
2 2 JRgraaj,
dw o dw o [dW’dW]i =0

Ay 2], = [dw. ], = L5, Ay, Tl = [dy,, 2], =0
dy. 7] =1, dy. 2], = -I;
[y £5], = [dy, £5], =0
7.5, = 15T
L Ty), = 15Tk, LTl =~f5T, [L0T),=—f5Tk.

+this should be reminiscent of structures in Act 1....



EXTENDED EQUIVARIANCE I

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

+ Package the universal data into a set of gauge superfield 1-form which we
assume lives on a worldvolume with coordinates o¢.

A=Ardz" = Agdo®+ Agdf + Ay db .

DI — 6[ + [‘Ala ) ] ) Soj_rj = (1 — %5]J) ({hflj — (—)IJ&]JE[] + [ﬁ[[,ﬁj])
ghost || Faddeev-Popov | Vafa-Witten ghost Vector
charge ghost triplet of ghost quintet quartet
2 ¢
1 G N Aa
0 B Y A Fa
-1 G n g
-9 b

+ Cartan charges are gauge-covariant super derivations and obey:

D2=L, , Di=L [Dg,pg}jfﬁér

00 Fop ’



‘Act 171

where we attempt a Sym‘ﬁesis of SK-KMS with a touch of equi\/am’ance...



SK-KMS THERMAL EQUIVARIANCE

+SK charges are akin to Weil differentials, while the KMS charges fill out the
Interior contractions.

+ The Lie derivation takes operators around the thermal circle.

N; =2 algebra | SK-KMS symmetries
{dy.dyw} & {Qux: Quxl}
{Zr: T} < {Qmsr Qs )
{Li, T} & {Lxws Qoust-

+ The algebraic structure for arbitrary temperature is complicated by non-
locality of thermal translations.

+Some form of deformation of the group of circle diffeomorphisms...



SK-KMS THERMAL EQUIVARIANCE

+ Life is simpler at high temperatures when thermal circle is small.

[T

= R O S O
Re(t>i1 .'
x’i

+ Literally implement thermal translations as diffeomorphisms along the

thermal circle and demand equivariance with this symmetry. £M50 = A O

Ny =2 algebra | SK-KMS symmetries

o o 1k o o o o 0 o 0 0
[31,32] = fis1S2 & B30 =818,% — 520, %

+ This leads to the U(1)r KMS symmetry discovered in during our attempt to
classify hydro transport.



THERMAL CARTAN AND WEIL MODELS

+ The gauge covariant Cartan charges (supercovariant derivations) can be
mapped to the basic building blocks as follows:

Q = QSK + ¢T @KMS + Qb_?_ @KMS + 77T Q?{MS ’
@ = @SK ‘|‘$T QKMS ’

+ The superalgebra structure can then be captured by the anti-commutation
relation among the Cartan charges as

o _2 o - o
Q2 — ( 06 ézezo)LKMS ) Q — (?99’9‘:9:0)[’KMS ’ [Qa Q]:I: — (Sjeélézezo)LKMS

» Assume: dynamically consistent in dissipative systems to set all but the
zero ghost number element of the Vafa-Witten quintet to zero: (Fggl) = —i

Q*=0, Q' =0, [Q0Q],=—ilyys—ifs

The final algebra is also the one CGL/GL work with in the high temperature
4 limit and appears to be well known in the stat mech literature (Mallick, Moshe,

Orland 2010). 52=52=0,  {5,5) =2 tanh (% Bat) ~ i 80,



‘Act TV

in which the Brownian Joarticfe is tﬁerma[fy ecluivariantizecf...



TOY MODEL: LANGEVIN DYNAMICS

+ Point particle in external potential subject to external forcing and noise

d?z  OU

+ One can write down a SK effective action for this dissipative dynamics

x:—zAﬁl (wR—6_255 xL) : I =2ITgr — TL
Martin, Siggia, Rose 1973
_ d? _ 2 _

+The dissipative part of the action is controlled by ghosts and is related to
the fluctuation terms difference fields - fluctuation/dissipation relation.

+ Convergence of the path integral fixes the sign of dissipative terms.

+Simplest realization of the extended equivariant cohomology algebra.



BROWNIAN BRANES

+Brownian particle immersed in a fluid undergoes dissipative motion.

+Langevin effective action: worldvolume BO-brane theory.

+ Data for the worldvolume theory: thermal equivariant multiplets for target
space coordinate map and thermal gauge field data.

X = {X, Xy, X7, X} A= Apdt + Agdd + Ay do

+ MSR action follows as the basic thermal U(1)r gauge invariant effective

action of the worldline theory
N NS . e e o -
Spo — / dtdf df§ = (DtX) _U(X) — iv Dy XDy X <

(A X)g=A£pX = AAX =AB—X Dy =0r + [Ar, -]



FLUCTUATION DISSIPATION AS CPT BREAKING

+ Stochasticity and dissipation arises because of spontaneous CPT
symmetry breaking.

+ BRST supersymmetry + spontaneous CPT breaking leads to Jarzynski

relation which is a generalized fluctuation dissipation relation Jarzynski 1997
Crooks 1999

Sgo — Sgo — i (Fpgl) B (AG+W) = (e FW) = ¢ FAC

Mallick, Moshe, Orland 2010

+The CPT symmetry in our construction is implemented as R-parity in
superspace and its breaking encoded in the vev for the ghost number
zero field strength: (Fya|) = —i Gaspard 2012

+ Useful moral: dissipation = ghost condensation.

4 The combined CPT + U(1)rtransformation ends up being

the transformation used by GL to prove entropy positivity.



Act V

in which thermal ecluivam’ance allows one to write down
e[isse’pative f[m’e[ efynamics in terms of an effective action,

a topofogica[ sigma model....



FLUID DYNAMICS AS A SIGMA MODEL

+Hydrodynamics: low energy dynamics of conserved currents in near
equilibrium situations.

+The hydrodynamic modes are Goldstone modes for spontaneously
broken difference diffeomorphisms and difference gauge transtormation.

Nickel, Son 2010

+The order parameter for broken difference diffeomorphisms is a vector
field, which we identify with the hydrodynamic velocity rescaled by the
local temperature (the pions of hydrodynamics):

ut
B'=—, Ap=1—p"4q

+ A Landau-Ginzburg theory of this vector field captures a part of
hydrodynamic transport (Class L), but getting all of hydrodynamic
transport requires more ingredients (cf., eightfold classification).

Haehl, Loganayagam, MR 2015



LANDAU-GINZBURG SIGMA MODELS

+ Class L: effective action is just a sigma model parameterized by a scalar
functional (free energy density) L[3%, g (X)] .

+ Adiabatic fluids: Invariance under diffeomorphisms and flavour
transformations forces non-dissipative dynamics.

+ Dynamics: conservation follows from variational of the pullback maps
with reference thermal vector being fixed.

XH(o?) worldvolume
< gab

physical
fluid

reference
a . .
B configuration



THE EIGHTFOLD LAGRANGIAN

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

+ More generally the full set of adiabatic transport derives from an

Lagrangian density

1 -
£WV — 5 Tab gab — N,a/i Aa

+ New variables &ap, Aa : former is the SK partner of the worldvolume metric.

+ The one-form is an abelian gauge field which couples to the entropy

current. Haehl, Loganayagam, MR 2015

+ The linear couplings to the partners is highly suggestive of structures
encountered in analysis of linear dissipative systems and topological

sigma models. Martin, Siggia, Rose 1973
Kovtun, Moore, Romatschke 2014

+ Take the symmetry seriously and attempt to work out a full theory
including dissipation.



TOPOLOGICAL SIGMA MODELS FOR HYDRODYNAMICS

+Hydrodynamic modes are equivariant maps from the worldvolume to the
target space (physical manifold).

+ The symmetry being gauged is thermal translations.

+ Variables: superfields with top and bottom components being SK
difference and average fields respectively

YL+ Ve
2

YV V=Y+0Y;+0Y,+00Y

+(9y@+éy¢+9_9(y3_yL)
+ Thermal translations act via Lie drag along reference thermal vector g/(z).

(A, V)g = A £g)

+KMS gauge superfield implements thermal equivariance.



TOPOLOGICAL SIGMA MODELS FOR HYDRODYNAMICS

+ Symmetries we impose are:
» Superdiffeomorphisms in target space and world volume
» CPT symmetry of SK path integrals ( 25, [T1, Tr] = Zsk[Tr, Tp])
» worldvolume ghost number conservation

» KMS gauge invariance

+Dynamical fields are the pull-back maps which induce a worldvolume
super-metric grs(z) = g (X (2)) D1 X" Dy X"

+lts top component is the SK difference metric which couples to the
ohysical stress tensor.

+ Physical fluid dynamics obtained by deforming the topological theory.

é[](z) — é]J(Z) —I—Q_Q h[J((T)



DISSIPATIVE HYDRODYNAMIC ACTIONS

+ Working in superspace the symmetries suffice to constrain the terms that
can appear in the worldvolume sigma model

SWV = /dda EWV) £WV — / do dé _go (Z" — 3 ﬁ(ab)(6d> Zo)eéab 20)Qécd>
L+ BeAe 4

+In ordinary space we get back the adiabatic lagrangian + dissipation

vV — 8 1 ab v ab)(cd ~ a 1 .
Loy = 13 BeA. | 2 T, — 5"7( )(cd) (Fog:8cd) g | 8ab — N Aq Class LT Lagrangian
n % (n(ab)(cd) 1 77(cd)(ab)> b Bed + - - - } , Noise fluctuations

Kovtun, Moore, Romatschke 2014
Crossley, Glorioso, Liu 2015

+ Again dissipative dynamics spontaneously breaks CPT, KMS field strength
picks up a vev and ghost condenses.



HOLOGRAPHIC FLUIDS

+Known second order transport of holographic fluids follows from:

o d
_ _O 4 T .d o o o o
Lo = Coft / dodo — Y& { <—7T ) (1 _ 1% pefapb)d Do D9§6d>

d 87
T\ TR Y 1
— (%) [m 4 p Harmonic (E — 1) 52 4+ §w2] }

+How does the bulk gravity theory realize this effective action?

+ Recent attempts get the ideal fluid part correct, but no clear story
beyond...

Nickel, Son 2010 (ideal)

Crossley, Glorioso, Liu, Wang 2015 (incomplete at second order)
deBoer, Heller, Pinzani-Fokeeva 2015 (ideal)



FLUCTUATION-DISSIPATION & JARZYNSKI

+ Presence of a gauge symmetry which couples to entropy current appears
to be manifestly contradicting second law.

+ Claim: entropy flows into the physical sector from the ghost sector.
Appears to work in superspace cleanly...

+ The MMO argument goes through in the hydrodynamic effective action
leading to a derivation of the Jarzynski relation which them implies the
2nd law using convexity of the exponential function.

(e ) = ¢ 7(Gr=Gi) (W) >Gr— G

+ Note only stochastic fluctuations accounted for thus far. Requires
understanding of full KMS structure for quantum effects.



E}oifogue: Of that which is yet to be...




LOOKING AHEAD...

+ Near-equilibrium dynamics appears to be under control (should however
write down the eightfold topological sigma model). What about non-
equilibrium?

+Open quantum systems & renormalization Avinash, Jana, Loganayagam, Rudra 2017

+How does thermal equivariance extend to include non-stochastic
fluctuations? Deformation quantization?  Basart, Flato, Lichnerowicz, Sternheimer 1984

+ Microscopic unitary which enforces fluctuation-dissipation etc., is upheld
thanks to the ghost couplings. Lessons for gravity?

+What is the analogous story for higher out-of-time-order correlators?

+ Are the similar statements for modular evolutions (equivalent in some
contexts), and if so what does it imply for geometry = entanglement?



A ROADMAP FOR THE FUTURE....

Microscopic Schwinger-Keldysh construction

*x doubling of degrees of freedom
* entanglement structure in initial state

Macrophysics: cf.,

hydrodynamics *x emergence of horizons?

* no doubling! Fluid/Gravity * reality of the interior?
*x emergent IR collective fields

* entropy & second law of
thermodynamics



S’
S S
e —
S N
S S——
S’

Fisches Nachtgesang: Christian Morgenstern



