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Many	uses	of	gravity	and	supergravity	perturba3on	theory	

Quantum	aspects:			-	construct	loop-level	sca;ering	amplitudes	of		
																																							gravitons,	superpartners	and	ma;er	fields	
																																				-	explore	various	limits	
	 	 	 	 	 	-	explore	hidden	and	on-shell	symmetries		

	 	 	 	 	-	understand	the	UV	behavior	



Many	uses	of	gravity	and	supergravity	perturba3on	theory	

Quantum	aspects			-	understand	the	UV	behavior	
Extensive	work	on	understanding	the	UV	behavior	of	(super)gravity	

-	Supersymmetry	constraints	

-	Duality	constraints	 Beisert,	Elvang,	Freedman,		
Kiermaier,	Morales,	S3eberger;	Kallosh,		etc	

Green,	Bjornsson,	Bossard,	Howe,	Stelle,	Nicolai	
Elvang,	Kiermaier,	Ramond,	Kallosh,	Vanhove,	Bern,	Davies,	Dennen,	etc					

Consesus:	poor	UV	behavior	unless	new	cancella3ons	between	diag’s	exist	that	are		
“not	consequences	of	supersymmetry	in	any	conven3onal	sense”			 Green,	Bjornsson	

Such	“enhanced	cancella3ons”	are	known	to	exist	
N=4	SG	does	not	diverge	at	3	loops	in	D=4	
N=5	SG	does	not	diverge	at	4	loops	in	D=4	
So…	Does	N=8	SG	diverge	at	7	loops	in	D=4	?	
								Does	N=8	SG	diverge	at	5	loops	in	D=24/5	?	

Suggested	that	they	are	related	to	SL(L)	reparam.	symmetry	of	L-loop	integrals	
Bern,	Enciso,	Para-Mar3nez,	Zeng	

The	UV	behavior	of	supergravity	is	not	a	philosophical	ques3on	but	a	technical	one,		
whose	answer	gives	nontrivial	perspec3ves	on	the	symmetries	of	the	theory	

Bern	et	al.	



Many	uses	of	gravity	and	supergravity	perturba3on	theory	

Quantum	aspects:			-	construct	loop-level	sca;ering	amplitudes	of		
																																							gravitons,	superpartners	and	other	ma;er	fields	
																																				-	explore	various	limits	
	 	 	 	 	 	-	explore	hidden	and	on-shell	symmetries		

	 	 	 	 	-	understand	the	UV	behavior	
“Textbook”	approach:	-	Feynman	diagramma3cs		

		
-	Lots	of	graphs/terms,	e.g.	

O(1020) O(1026) O(1031)

with	standard	origin:	-	non-manifest	gauge	invariance	
																																							-	presence	of	unphysical	degrees	of	freedom	

Method(s)	of	choice:			Generalized	unitarity,	color/kinema3cs	duality,		
																																												double	copy	rela3on	between	gravity	and	gauge	th’s.	
																																												fancy	loop-level	integra3on	technology	



Many	uses	of	gravity	and	supergravity	perturba3on	theory	

Classical	aspects:			-	construct	(deforma3ons	of)	solu3ons	of	classical		
	 	 	 	 	eqs.	of	mo3on	(global	features	require	resumma3on)	
	 	 	 	 						e.g.	gravita3onal	waves,	black	holes,	deforma3ons	

																																																	of	AdS	corresponding	to	g.t.	deforma3ons,	etc	
	 	 	 					-	through	AdS/CFT:	leading	strong	coupling	term	of		
	 	 	 								correla3on	func3ons	of	CFTs		

Standard	approach:		-	iden3fy	the	small	parameter	
																																 		-	expand	Einstein’s	equa3ons		
																																					-	solve	itera3vely	

Difficul3es	related	to	the	complexity	of	Einstein’s	equa3ons,	lack	of	symmetries,		
complexity	of	solu3on	at	each	order,	etc	

The	novel	methods	developed	for	quantum	calcula3ons	may	also	have	direct		
applica3ons	to	this	type	of	problems	



A	plan	

•  An	outline	of	color/kinema3cs	duality	and	the	double-copy,		
				their	successes	and	limita3ons	

•  Diff.	invariance,	double-copy	and	relaxa3on	of	color/kinema3cs	duality	

•  Higher-loop	sca;ering	amplitudes,	contact	terms	and	novel	methods	
					for	their	determina3on	

•  An	applica3on	and	a	word	on	integra3on	



Textbook	approach:	sca;ering	amplitudes	from	Feynman	rules	

Sca;ering	amplitudes	and	color/kinema3cs	duality	
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•  General	form	of	an	L-loop	amplitude	

•  amplitudes	=	sums	of	traces	of	gauge	group	generators	

Color-ordered	amplitudes	

Bern,	Kosower	
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Example:	4-par3cle	amplitude		
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Bern,	Carrasco,	Johansson	

Color	Jacobi	rela3ons:	

cs + ct + cu = 0
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Invariance	of	A	
 Generalized		
gauge	symmetry	
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Example:	4-par3cle	amplitude		
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Atree
4 (1, 2, 3, 4) = Tr[T a1T a2T a3T a4

]Atree
4 (1, 2, 3, 4) + Tr[T a1T a3T a4T a2

]Atree
4 (1, 3, 4, 2)

+ Tr[T a1T a4T a2T a3
]Atree

4 (1, 4, 2, 3) + 3 more

cs = fa1a2bf ba3a4 ct = fa2a3bf ba1a4 cu = fa3a1bf ba2a4

General	n-point	tree	amplitudes:	BCJ	amplitudes	rela3ons	
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The	general	picture/conjecture:	a	duality	between	color	and	kinema3cs	
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when																																					is	required	by	gauge	invariance		

•  For	(s)YM	theories	in	any	dimension	with	certain	addi3onal	ma;er	

Ci + Cj + Ck = 0

ni = ni(p↵ · p� , ✏ · p↵, . . . )

adjoint	rep:	Bern,	Carrasco,	Johansson	
non-adjoint	rep:	Chiodaroli,	Jin,	RR;	Johansson,	Ochirov	

Chiodaroli,	Gunaydin,	Johansson,	RR	

ni + nj + nk = 0

•  Present	in	many	theories:	YM+ma;er,	QCD,	Coulomb	branch,						,		
					Z-theory,	BLG,	ABJM,…	as	well	as	certain	form	factors	and	correla3on	fcts.	

�3

•  Implies	nontrivial	rela3ons	btwn	amplitudes	(L=0)	and	integrands	(L>0)	



Color/kinema3cs	
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Bern,	Carrasco,	Johansson	

							are	not	
gauge-invariants	
ni

-	5-point	2-loop	all-plus	amplitude		
						remarkably-complicated	expression;	remarkably	bad	powercoun3ng	

Mogull,	O’Connell	

-	Can	be	defined	for	form	factors	of	certain	operators;	
							first	5-loop	computa3on	–	the	form	factor	of	the	20’	operator	in	N=4	sYM	 Yang	

Boels,	Kniehl,	Tarasov,	Yang	

							Can	be	defined	for	correla3on	func3ons	of	certain	operators	 cf.	Engelund,	RR	

-	Sugges3on	for	a(nother)	symmetry	behind	BCJ	amplitudes	rela3ons	
						momentum-dependent	shiq	of	color	factors	

Brown,	Naculich	

-	Explicit	color/kinema3cs-sa3sfying	numerators	for	NLSM	 Du,	Fu	

-	2-loop	4-point	amplitudes	in	N=2	SQCD	 Johansson,	Kaelin,	Mogull	

-	Color/kinema3cs-sa3sfying	Feynman	rules	from	a	NLSM	ac3on	 Cheung,	Shen	

-	Generaliza3on	of	BCJ	amp.	rel’s	at	higher	loops	 Vanhove,	Tourkine;	also	He,	Schlo;erer;		
S3eberger,		Hohenegger;	Chiodaroli,	Gunaydin,	Johansson,	RR;	earlier	Boels,	Isermann		



Color/kinema3cs	 Bern,	Carrasco,	Johansson	

-	Generaliza3on	of	BCJ	amp.	rela3ons	at	higher	loop	

-  Tree	amplitudes	rela3ons											rel’s	between	cuts	w/	extra	linear	numerator	factors	
																																			expect	rel’s	between	loop	amp’s	w/	extra	linear	numerator	factors	
-  From	loop-level	monodromy	rela3ons	in	string	theory	(issues	w/	moduli	space	integra3on?)	
-  Loop	momentum-dependent	rela3ons	between	amplitudes’	integrands		
						up	to	total	deriva3ves	

-	Examples	in	field	theory	limit	at	1	loop:	

A(1, 2 . . . n)[l · k1] +A(2, 1 . . . n)[(l + k2) · k1] + · · ·+A(1 . . . n� 1, 1, n)[(l + k23...n�1) · k1] = 0

-	To	any	loop	order	

Using	such	rela3ons	one	may	be	able	to	argue	for	existence	of	loop-level		
color/kinema3cs	duality	w/o	explicit	construc3on	of	integrand	
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Vanhove,	Tourkine	

Chiodaroli,	Gunaydin,	Johansson,	RR	



Color/kinema3cs	and	the	double	copy	

ML�loop

m = iL+1

⇣
2

⌘m�2+2L X

i2G3

Z LY

l=1

dDpl
(2⇡)D

1

Si

niñiQ
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Bern,	Carrasco,	Johansson	
Order	by	order	in	perturba3on	theory	

-	5-loop	double	copy	of	N=4	sYM	Sudakov	form	factor	
								-	physical	interpreta3on	is	under	debate;	not	necessarily	a	form	factor	of	local	op.		
								-	½-BPS															expect	worse	UV	behavior	than	amplitudes	

Gang	Yang	

-	Progress	in	the	iden3fica3on	of	SG	symmetries	i.t.o.	YM	opera3ons	 Anastasiou,		
Borsten,		Duff,		Hughes,	Marrani,	Nagy,		Zoccali	

-	Property	of	many	pure	&	YM/Maxwell-Einstein	SGs	w/	further	ma;er,	open	string		
			theory,	self-dual	gravity,																,	EYM+SSB,…	R+R3

-	2-loop	4-point	amplitudes	in	N=2	SG	+	ma;er	 Johansson,	Kaelin,	Mogull	

-	New	perspec3ve	on	“enhanced	cancella3ons”	 Bern,	Enciso,	Para-Mar3nez,	Zeng	

-	New	techniques	for	SG	amplitudes	when	c/k	is	expected	but	not	manifest	
Bern,	Carrasco,	Chen,	Johansson,	RR	

-	First	example	of	3-point	sca;ering	amplitude	in	curved	space	from	double-copy	
Adamo,	Casali,	Mason,	Nekovar	

-	YM	classical	solu3ons											(S)G	classical	solu3ons		 O’Connell	et	al	
Goldberger,	Ridgeway	



-	Kerr-Schild-type	solu3ons	 Monteiro,	O'Connell,	White	
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A	word	on	classical	gravity	solu3ons	from	YM	classical	solu3ons		

Schwarzschild																					(Coulomb	field	of	point	charge)	2	

-	Other	solu3ons:		

Kerr	black	hole,	some	higher	dimensional	black	holes,	supersymmetric	black	holes,		
Taub-NUT	spaces,	spaces	w/	cosmological	constant,	radia3on	from	accelera3ng	b.h.	

Luna,	Monteiro,	Nicholson,	O’Connell,	White;	Goldberger,	Ridgway;		
Cardoso,	Nagy,	Nampuri;	Ridgway,	Wise	

-	Algorithm	for	perturba3ve	construc3on	of	gravity	sol/s	i.t.o.	gauge	th.	sol’s	
Luna,	Monteiro,	Nicholson,	O'Connell,	Ochirov,	Westerberg,	White	

+	 +	…	 +	 +	…	

-	Perturba3ve	gravita3onal	radia3on	for	colliding	masses/b.h.	from	gluon	radia3on				
Goldberger,	Ridgway	

possible	applica3ons	to	LIGO	(in	the	early	stages	of	a	merger)	



Color/kinema3cs	and	the	double-copy	 Bern,	Carrasco,	Johansson	

Mogull,	O’Connell	

-	Many	open	ques3ons;	progress	on	some	of	them	hinges	on	several	technical	issues		

	+	frustra3ngly	difficult	to	find	manifest	c/k-sa3sfying	representa3ons	
													-	large	ansatze												large	linear	systems	--																	unknowns	O(106)

	+	the	result	can	have	unexpectedly	high	powers	of	loop	mom.	
	-	larger	ansatze	than	one	might	expect	

	+	classical	solu3on	construc3on	slightly	different	from	sca;ering	amp’s;	
					c/k	duality	needs	some	reanalysis	at	higher	points	

-	What	is	needed:	

	+	going	straight	for	(super)gravity	amplitudes	only	makes	it	worse		

	+	keep	the	idea	of	the	double	copy	

	+	avoid	large	ansatze															construct	amplitudes	one	piece	at	a	3me	
-	may	address	possible	difficul3es	with	construc3on	of	classical	solu3ons	

	+	some	kind	of	structure	should	be	present	



Diff	inv.	from	gauge	inv.	and	what	to	expect	w/o	manifest	c/k	duality:	

	follow	from	YM	linearized	gauge	symmtry	

If	c/k	is	manifest,	all	double-copy	theories	are	diffeomorphism-invariant:	
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c�2.	Jacobi	iden33es	for		

n�, ñ�&c� have	the	same	proper3es	 																				for	the	same	reasons		
																				as	in	YM	theory	

BCJ;	JO;BDHK;	CGJR	
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What	if	c/k	is	expected	but	not	manifest	and	yet	one	naively	double	copies?	
Closest	analog:	gauge	theory	in	which	we	formally	relax	the	color	Jacobi	rela3ons	

On	to	gravity:	

�i : �j : �k :
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Conclusions:		1.	Breaking	of	diff.	inv.	in	naïve	double-copy	is	itself	a	double	copy	
2.	Correc3on	terms	restoring	diff.	inv.	should	also	be	double-copies	
3.	Relevant	factors	are															and															--	viola3ons	of	the	kinema3c	
					Jacobi	rela3ons	in	the	two	gauge	theory	factors				
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0.	Structure	exists								should	be	possible	to	correct	a	naïve	double-copy	



Most	straighxorward	test	of	these	ideas	is	at	tree	level	

Should	be	equally	straighxorward	to	use	them	to	find	generalized	cuts	

KLT:	too	many	terms,	too	many	spurious	poles,	not	organized	in	terms	of	graphs		

More	efficient	methods	always	come	in	handy	



To	avoid	this…	

Generalized	unitarity/method	of	maximal	cuts:	

1.	Organize	amplitude	in	terms	of	graphs	of									theory;	each	graph	gets	an		
					ansatz	for	numerator	with	some	desired	proper3es	

'3

2.	Fix	numerators	by	fiyng	them	onto	cuts		

Max	cuts	 N-Max	cuts	 N		-Max	cuts	2	 N		-Max	cuts	3	

E.g.	
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Leads	to	large	linear	systems	



Generalized	unitarity/the	contact	term	method:	

1.	Start	with	some	approxima3on	of	the	supergravity	amplitude,	organized	in		
			terms	of	the	graphs	of							theory,	which	has	the	correct	maximal	cuts,	e.g.	'3

N-Max	 N		-Max	2	E.g.	

Bern,	Carrasco,	Chen,	Johansson,	RR		

M(S)G =
X

�

Z
n�ñ�

D�

-focus	on	(super)gravity	

2.	Itera3vely	correct	it	w/	graphs	w/	higher-pt.	vert’s	to	sa3sfy	such	that	N		-Max	cuts	k	

N		-contact	=	N		-Max	cut	–	(cut	of	approxima3on	of	amplitude)	k	 k	

-		Each	cut	gives	an		
			independent	contrib.		
			to	amplitude		
-	Freedom	in	choosing	
			each	of	them	

-		Lots	of	cuts	

-		But	a	finite	number!	

a	naïve	double-copy:	

-		Effec3vely	a	tree-level	calcula3on	
-		Ideal	if	cuts	are	organized	in	terms	of	cubic	tree	graphs	

N		-Max	3	



Unexpected	and	welcome	features	

0.	A	naïve	double-copy	has	the	correct	maximal	and	next-to-maximal	cuts	

N		-contact	=	N		-Max	cut	–	(cut	of	approxima3on	of	amplitude)	k	 k	

1.	Contact	terms	are	much	simpler	than	one	has	the	right	to	expect	
-	In	N=8	SG	most	of	them	vanish	(at	least	through	5	loops)	

2.	Four-point	double-contact	terms	factorize;	each	factor	has	features	resembling		
					gauge	theory	quan33es		

3.	Higher-contact	terms	no	longer	factorize	but,	in	hindsight,	can	be	wri;en	as	sums	
					of	products	of	factors	with	features	resembling	gauge	theory	quan33es		

Using	KLT	to	construct	SG	cuts:	

4.	These	observa3ons	match	the	expected	features	of	the	conclusions	we	drew	from	
					the	diff.	invariance	constraints	on	correc3ons	to	a	naïve	double	copy.			

Expect	that	it	should	be	possible	to	express	cuts	and	contacts	in	terms	of		
BCJ	discrepancy	func3ons,										and										,	using	solely	gauge	theory	informa3on	J�,� J̃�,�

Key	for	using	this	is	the	generalized	gauge	symmetry	

&				4-pt	amp’s	obey	c/k	duality	M tr
4 (1, 2, 3) = iAtr

3 (1, 2, 3)A
tr
4 (1, 2, 3)



All	double-4-point	cut	and	contact	
terms	from	gauge	theory	data		
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Proper3es	of	gauge	parameters:	

Gauge	theory	cut:	 Transforma3on	rela3ng	it	to	c/k-sa3sfying	one:	

BCJ	discrepancy	func3ons:	

Supergravity	cut	(there	are	several	equivalent	variants):		

Bern,	Carrasco,	Chen,	Johansson,	RR	
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All	double-4-point	cut	and	contact	
terms	from	gauge	theory	data		
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Proper3es	of	gauge	parameters:	

Gauge	theory	cut:	 Transforma3on	rela3ng	it	to	c/k-sa3sfying	one:	

BCJ	discrepancy	func3ons:	

Supergravity	cut	(there	are	several	equivalent	variants):		

Valid	in	any	double-copy	(super)gravity	

Bern,	Carrasco,	Chen,	Johansson,	RR	
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C4⇥···⇥4
SG = . . .

Generaliza3on:	cuts	have	(fairly)	closed-form	structured	expressions	i.t.o.	cubic	graphs	

-	Subtrac3on	of	the	cuts	of	the	approximate	amplitude	is	straighxorward	
-	Built-in	verifica3on:	difference	must	be	local	
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Bern,	Carrasco,	Chen,	Johansson,	RR	



C5⇥4⇥···⇥4
SG = . . .

Many	generalized	cuts	have	(fairly)	closed-form	structured	expressions	

Others,	e.g.									have	currently	a…	less	pleasant	appearance	C6
SG
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-	These	formulae	hold	in	any	double-copy	(super)	gravity	

-	The	5-point	formula	is	similar	(though	preyer)	to	a	known	5-point	tree	formula,		
wri;en	in	a	basis	of	discrepancy	func3ons			Bjerrum-Bohr,	Damgaard,	Sondergaad,	Vanhove	



•  Star3ng	point	can	be	any	graph-based	representa3on	of	amplitudes,		
					including	Feynman	diagrams	

•  Novel	way	to	find	gravity	tree-level	amplitudes	adapted	to	cubic	graphs	

Some	features:	

•  Cuts	are	naturally	in	a	cubic	graph-based	form;	iden3fica3on	of	the		
						new	contact	term	is	straighxorward	

•  Highest	contact	terms	depend	on	the	power	coun3ng	of	the	theory;		
						top	levels	are	very	simple	–	linear	in	momentum	invariants.	Numerical		
						approach	–	rather	than	analy3c	simplifica3on	–	may	be	more	efficient	

•  But	the	proof	is	in	the	pudding…	



Allowed	us	to	construct	the	4-point	5-loop	integrand	of	N=8	supergravity		
To	appear	-	Bern,	Carrasco,	Chen,	Johansson,	RR,	Zeng	

together	with		
2-,	3-,	4-,	5-,	and		
6-collapsed		
propagator	graphs:	

N2:	9159	
N3:	17935	
N4:	23996	
N5:	24198	
N6:	17110	

about	20%	of	which		
are	nonzero	

Explicit	power	ct	is	poor	
because	of	poor	rep.	
of	N=4	sYM	amplitude		



On	integra3on	

-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func3on:	need	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D=22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc3on	of	the	integrand	

-	General	structure	of	the	amplitude:	

M(5)
4 ⇠ (stuM(0)

4 ) s2
Z

d5Dl
6X

k=0

N6�k(p2, l · p, li · lj)
((l + p)2)16�k

⇠ (stuM(0)
4 ) s2

Z
d5Dl

⇥
F�10(li · lj) + sF�11(li · lj) + s2F�12(li · lj) + . . .

⇤

4	 22/5	 24/5	Cri3cal	dimension:	

Observa3ons:	1.	All	linear	rela3ons	among	integrands	are	IBPs	(					SL(L)	symmetry)	
		2.	Lower	loops	suggest	that	integrals	with	maximal	cuts	have		
					highest	transcendentality		Kosower,	Larsen;	Abreu,	Bri;o,	Duhr,	Gardi;		

Bosma,	Sogaard,	Zhang;	Schabinger	

Two	such	integrals;	through	IBPs,	they			
receive	contribu3ons	from	many	terms	

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

Larsen,	Zhang;	Zeng,	etc		

⇠



On	integra3on	

-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func3on:	need	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D=22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc3on	of	the	integrand	

-	General	structure	of	the	amplitude:	
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4	 22/5	 24/5	Cri3cal	dimension:	

Observa3ons:	1.	All	linear	rela3ons	among	integrands	are	IBPs	(					SL(L)	symmetry)	
		2.	Lower	loops	suggest	that	integrals	with	maximal	cuts	have		
					highest	transcendentality		Kosower,	Larsen;	Abreu,	Bri;o,	Duhr,	Gardi;		

Bosma,	Sogaard,	Zhang;	Schabinger	

Two	such	integrals;	through	IBPs,	they			
receive	contribu3ons	from	many	terms	

coefficients		
vanish,	

as	expected	

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

Larsen,	Zhang;	Zeng,	etc		
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On	integra3on	

-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func3on:	need	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D=22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc3on	of	the	integrand	
														-	further	strong	indica3on	(but	no	proof)	that	integrand	is	correct	

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

Larsen,	Zhang;	Zeng,	etc		
-	General	structure	of	the	amplitude:	
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-	Enhanced	cancella3ons	probed	at	fourth	order	--																terms	in												F�12(li · lj)O(108)

4	 22/5	 24/5	Cri3cal	dimension:	

Stay	tuned!	 Bern,	Carrasco,	Chen,	Johansson,	RR,	Zeng	–	in	progress	



An	outlook	

-	Reviewed		recent	developments	and	illustrated	some	of	them		
-	Focused	on	color/kinema3cs	and	double-copy	

-	Many	open	ques3ons,	some	computa3onal,	some	conceptual		

-	New	method	for	construc3ng	supergravity	amplitudes:		
			can	convert	any	representa3on	of	gauge	theory	amp’s	into	supergravity	amp’s	

-	Takes	over	when	c/k	duality	is	for	some	reason	imprac3cal;		algorithmic		
			construc3on	of	amplitudes’	contact	terms	in	terms	of	the	breaking		
			of	kinema3c	Jacobi	rela3ons		

-	Allows	the	construc3on	of	the	5-loop	4-graviton	integrand		of	N=8	SG	
									checked	cuts	through	N		-Max;	indica3ons	for	susy	cancella3ons	
-	May	have	applica3ons	to	construc3on	of	classical	solu3ons	of	SG	eom	

-	Terms	in	amplitudes	are	constructed	one	by	one	

-	Full	poten3al	to	be	explored,	as	is	the	physics	of	the	5-loop	N=8	amplitude		
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