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Many uses of gravity and supergravity perturbation theory

Quantum aspects: - construct loop-level scattering amplitudes of
gravitons, superpartners and matter fields
- explore various limits
- explore hidden and on-shell symmetries
- understand the UV behavior



Many uses of gravity and supergravity perturbation theory

Quantum aspects - understand the UV behavior
Extensive work on understanding the UV behavior of (super)gravity

- Supersymmetry constraints  Green, Bjornsson, Bossard, Howe, Stelle, Nicolai
Elvang, Kiermaier, Ramond, Kallosh, Vanhove, Bern, Davies, Dennen, etc

Beisert, Elvang, Freedman,
Kiermaier, Morales, Stieberger; Kallosh, etc
Consesus: poor UV behavior unless new cancellations between diag’s exist that are
“not consequences of supersymmetry in any conventional sense” Green, Bjornsson

- Duality constraints

Such “enhanced cancellations” are known to exist

“N=4 SG does not diverge at 3 loops in D=4 Bern et al.
“N=5 SG does not diverge at 4 loops in D=4
So... Does N=8 SG diverge at 7 loops in D=4 ?

Does ‘N=8 SG diverge at 5 loops in D=24/5 ?

Suggested that they are related to SL(L) reparam. symmetry of L-loop integrals
Bern, Enciso, Para-Martinez, Zeng

The UV behavior of supergravity is not a philosophical question but a technical one,
whose answer gives nontrivial perspectives on the symmetries of the theory



Many uses of gravity and supergravity perturbation theory

Quantum aspects: - construct loop-level scattering amplitudes of

gravitons, superpartners and other matter fields
- explore various limits

- explore hidden and on-shell symmetries
- understand the UV behavior
“Textbook” approach: - Feynman diagrammatics

- Lots of graphs/terms, e.g.

Loops 3 4 5
ftofterms O(10%) O(10%9) O(10%1)
in 4pt amp.

with standard origin: - non-manifest gauge invariance
- presence of unphysical degrees of freedom
Method(s) of choice: Generalized unitarity, color/kinematics duality,

double copy relation between gravity and gauge th’s.
fancy loop-level integration technology



Many uses of gravity and supergravity perturbation theory

Classical aspects: - construct (deformations of) solutions of classical
egs. of motion (global features require resummation)
e.g. gravitational waves, black holes, deformations
of AdS corresponding to g.t. deformations, etc
- through AdS/CFT: leading strong coupling term of
correlation functions of CFTs

Standard approach: -identify the small parameter
- expand Einstein’s equations

- solve iteratively

Difficulties related to the complexity of Einstein’s equations, lack of symmetries,
complexity of solution at each order, etc

The novel methods developed for quantum calculations may also have direct
applications to this type of problems



A plan

An outline of color/kinematics duality and the double-copy,
their successes and limitations

Diff. invariance, double-copy and relaxation of color/kinematics duality

Higher-loop scattering amplitudes, contact terms and novel methods
for their determination

An application and a word on integration



Scattering amplitudes and color/kinematics duality

Textbook approach: scattering amplitudes from Feynman rules
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e General form of an L-loop amplitude
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 amplitudes = sums of traces of gauge group generators Bern, Kosower
AL=loop — Z Aoy ...op)Te[T% ... T%m]| + multi-traces
noncyclic T

Color-ordered amplitudes



Example: 4-particle amplitude Bern, Carrasco, Johansson

AL(1,2,3,4) = Te[T T**T*3T*|AT*(1,2,3,4) + Tr[T* T*T*T*]Ay*°(1, 3,4, 2)
+ Tr[T T4 T2 T AY(1, 4,2, 3) + 3 more
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Example: 4-particle amplitude Bern, Carrasco, Johansson

AL(1,2,3,4) = Te[T T**T*3T*|AT*(1,2,3,4) + Tr[T* T*T*T*]Ay*°(1, 3,4, 2)
+ Tr[T T4 T2 T AY(1, 4,2, 3) + 3 more

VS.
20— (000 400 )
U
¢, = [0102D fhasas ¢, = fazasb phaias ¢, = fasab phazas
Airee(1,2,3,4) = % — % : Airee(1,3,4, 2) = % _ % : Airee(1’4,273) _ % B %

nl+nl+n) =0+ tAT(1,2,3,4) = uAL(1,3,4,2), etc

General n-point tree amplitudes: BCJ amplitudes relations

> ko kg AL, dimyi4 1, n) =0
=1



The general picture/conjecture: a duality between color and kinematics
adjoint rep: Bern, Carrasco, Johansson
non-adjoint rep: Chiodaroli, Jin, RR; Johansson, Ochirov
Chiodaroli, Gunaydin, Johansson, RR

 For (s)YM theories in any dimension with certain additional matter

B dPp; 1 n,C;
ATI;L loop — L m 24+2L Z/H ! Z2 ni:ni(pa'p57€°pow"')

D
= 2m)P Si 11, Pa,
when C; + C; + C}, = 0 is required by gauge invariance n; + n; +ng =0
3 3 3

2 2 2

e Present in many theories: YM+matter, QCD, Coulomb branch, ¢?,
Z-theory, BLG, ABJM,... as well as certain form factors and correlation fcts.

* Implies nontrivial relations btwn amplitudes (L=0) and integrands (L>0)



Color/kinematics Bern, Carrasco, Johansson

AL—loop _ L m 24+2L d” p 1 n;C; n; = m(pa "PBs € Pas - - - )
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N, are not
C;i+C;+Cr=0 < n;+nj+n,=0 gauge-invariants
- 5-point 2-loop all-plus amplitude Mogull, O’Connell
remarkably-complicated expression; remarkably bad powercounting
- 2-|00p 4-point amplitudes in g\/'=2 SQCD Johansson, Kaelin, Mogull
- Explicit color/kinematics-satisfying numerators for NLSM Du, Fu
- Color/kinematics-satisfying Feynman rules from a NLSM action Cheung, Shen

- Suggestion for a(nother) symmetry behind BCJ amplitudes relations  Brown, Naculich
momentum-dependent shift of color factors

- Can be defined for form factors of certain operators; Boels, Kniehl, Tarasov, Yang
first 5-loop computation — the form factor of the 20’ operator in ‘N=4 sYM Yang

Can be defined for correlation functions of certain operators cf. Engelund, RR

- Generalization of BCJ amp. rel’s at higher loops Vanhove, Tourkine; also He, Schlotterer;
Stieberger, Hohenegger; Chiodaroli, Gunaydin, Johansson, RR; earlier Boels, Isermann



Color/kinematics Bern, Carrasco, Johansson

- Generalization of BCJ amp. relations at higher loop Vanhove, Tourkine; also He, Schlotterer;
Stieberger, Hohenegger; Chiodaroli, Gunaydin, Johansson, RR; earlier Boels, Isermann

Tree amplitudes relations —» rel’s between cuts w/ extra linear numerator factors
—> expect rel’s between loop amp’s w/ extra linear numerator factors
From loop-level monodromy relations in string theory (issues w/ moduli space integration?)

B | oop momentum-dependent relations between amplitudes’ integrands
up to total derivatives

- Examples in field theory limit at 1 loop: Vanhove, Tourkine
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- To any loop order Chiodaroli, Gunaydin, Johansson, RR

SoooA P2 n)p @] =0

cyclic(2,...,n)

Using such relations one may be able to argue for existence of loop-level
color/kinematics duality w/o explicit construction of integrand



Color/kinematics and the double copy Bern, Carrasco, Johansson
Order by order in perturbation theory

ML—loop _ 7;L—i—l (_)m 2+2L Z/H d P 1 nz’ﬁz
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- Property of many pure & YM/Maxwell-Einstein SGs w/ further matter, open string
theory, self-dual gravity, R + R3 EYM+SSB, ...

- 5-loop double copy of N=4 sYM Sudakov form factor Gang Yang
- physical interpretation is under debate; not necessarily a form factor of local op.
- »-BPS —> expect worse UV behavior than amplitudes

- 2-loop 4-point amplitudes in ‘N=2 SG + matter Johansson, Kaelin, Mogull
- New perspective on “enhanced cancellations” Bern, Enciso, Para-Martinez, Zeng
- Progress in the identification of SG symmetries i.t.0o. YM operations Anastasiou,

Borsten, Duff, Hughes, Marrani, Nagy, Zoccali

- First example of 3-point scattering amplitude in curved space from double-copy
Adamo, Casali, Mason, Nekovar

O’Connell et al
Goldberger, Ridgeway
- New techniques for SG amplitudes when c/k is expected but not manifest

Bern, Carrasco, Chen, Johansson, RR

- YM classical solutions — (S)G classical solutions



A word on classical gravity solutions from YM classical solutions

- Kerr-Schild-type solutions Monteiro, O'Connell, White
Y — 1%
Juv = Guv + Ky = =5 Okpky guk"k” =0 (k- D)k =0
1 Mk 1
At = g——FkH W' = ————FKkFEY
Tazr 7 2 Amr

Schwarzschild «—— (Coulomb field of point charge)2
- Other solutions:

Kerr black hole, some higher dimensional black holes, supersymmetric black holes,
Taub-NUT spaces, spaces w/ cosmological constant, radiation from accelerating b.h.

Luna, Monteiro, Nicholson, O’Connell, White; Goldberger, Ridgway;
Cardoso, Nagy, Nampuri; Ridgway, Wise

- Algorithm for perturbative construction of gravity sol/s i.t.0. gauge th. sol’s

Luna, Monteiro, Nicholson, O'Connell, Ochirov, Westerberg, White

. ®
® + + ... €«—> ® + + ...

- Perturbative gravitational radiation for colliding masses/b.h. from gluon radiation
Goldberger, Ridgway

possible applications to LIGO (in the early stages of a merger)



Color/kinematics and the double-copy Bern, Carrasco, Johansson

- Many open questions; progress on some of them hinges on several technical issues

+ frustratingly difficult to find manifest c/k-satisfying representations
- large ansatze —> large linear systems -- O(10°) unknowns

+ the result can have unexpectedly high powers of loop mom. Mogull, O’Connell
- larger ansatze than one might expect

+ going straight for (super)gravity amplitudes only makes it worse

+ classical solution construction slightly different from scattering amp’s;
c/k duality needs some reanalysis at higher points

- What is needed:
+ keep the idea of the double copy

+ avoid large ansatze «——> construct amplitudes one piece at a time
- may address possible difficulties with construction of classical solutions

+ some kind of structure should be present



Diff inv. from gauge inv. and what to expect w/o manifest c/k duality:

If c/k is manifest, all double-copy theories are diffeomorphism-invariant:
BCJ; JO;BDHK; CGIR

1. Linearized YM gauge transformations: ¢*(p) — p"

np(el(pl),eg,...)(:p np(pl,EQ,...)CF
— — ()=

1. structure of nr 2. Jacobi identities for cr

2. Linearized diffeomorphisms: ¢*”(p) — p(”q”)
e (p) = e (p)e™) (p) — pe'”) (p) + p"“ e (p)
P follow from YM linearized gauge symmtry

M=% nr(ei(p1), e, ... )nr(e (p1), e, ...)

Dr

o np(pl,eg,...)ﬁp(e’l(pl),eé,...)
oM = EF: D

+ (n < n)

nr,nr&cr have the same properties = 0M = 0 for the same reasons
as in YM theory



What if c/k is expected but not manifest and yet one naively double copies?

Closest analog: gauge theory in which we formally relax the color Jacobi relations

S ~ frwk 61762,...,]?1,...)((3{*7;—1—er—|—Cpk)
Z D

17k

Fii

On to gravity: B B ~
'k 617627 '7p17°'°)(nri —I—TLFj +an) ~

oM ~ Z - Dr,.,

zk T
NZZ f{FA}(El €2 P1 ) {F’A}—F(nHﬁ)
Dr

' \el
Conclusions: 1. Breaking of diff. inv. in naive double-copy is itself a double copy

2. Correction terms restoring diff. inv. should also be double-copies

3. Relevant factors are J{F,A} and J{F,A} -- violations of the kinematic

Jacobi relations in the two gauge theory factors
0. Structure exists m= should be possible to correct a naive double-copy



Most straightforward test of these ideas is at tree level

l

Should be equally straightforward to use them to find generalized cuts

KLT: too many terms, too many spurious poles, not organized in terms of graphs

l

More efficient methods always come in handy



Generalized unitarity/method of maximal cuts:

3
1. Organize amplitude in terms of graphs of ¥ theory; each graph gets an
ansatz for numerator with some desired properties

YM nrcr Nr
=3 [ Moo=y [
| T |

2. Fix numerators by fitting them onto cuts

Max cuts N-Max cuts Nz—Max cuts N3-Max cuts
e | \fs [ f>b [
_ _ / _ / _
\ (_/ — \ — \ \_/ — \

= |eads to large linear systems

To avoid this...



Generalized unitarity/the contact term method:  Bern, Carrasco, Chen, Johansson, RR

-focus on (super)gravity

1. Start with some approximation of the supergravity amplitude, organized in
terms of the graphs of ¥ theory, which has the correct maximal cuts, e.g.

nrn
a naive double-copy: MG = Z/ Sl

2. Iteratively correct it w/ graphs w/ higher-pt. vert’s to satlsfy such that Nk-Max cuts

N X-contact = N¥-Max cut — (cut of approximation of amplitude)

@ @ - Freedom in choosing

E.g. l N-Max l N2-Max lN?’-l\/laX each of them

- Lots of cuts
- But a finite number!

- Effectively a tree-level calculation

- Each cut gives an
independent contrib.
to amplitude

- ldeal if cuts are organized in terms of cubic tree graphs



Unexpected and welcome features

N -contact = N¥-Max cut - (cut of approximation of amplitude)

0. A naive double-copy has the correct maximal and next-to-maximal cuts
M§"(1,2,3) = iAY(1,2,3)A5(1,2,3) & 4-pt amp’s obey c/k duality
Using KLT to construct SG cuts:

1. Contact terms are much simpler than one has the right to expect
- In ‘N=8 SG most of them vanish (at least through 5 loops)

2. Four-point double-contact terms factorize; each factor has features resembling
gauge theory quantities

3. Higher-contact terms no longer factorize but, in hindsight, can be written as sums
of products of factors with features resembling gauge theory quantities

4. These observations match the expected features of the conclusions we drew from
the diff. invariance constraints on corrections to a naive double copy.

Expect that it should be possible to express cuts and contacts in terms of
BCJ discrepancy functions, Jr x and Jr , using solely gauge theory information

Key for using this is the generalized gauge symmetry



All double-4-point cut and contact

Bern, Carrasco, Chen, Johansson, RR
terms from gauge theory data

Gauge theory cut: Transformation relating it to c/k-satisfying one:

4x4 TiyipCiyig 1 2
CAl =2 @ Sam = mias = nilG = di R (i) + 4K i)

11,12
5zzczi 5@@”?21]
Properties of gauge parameters: Z ES (12)2 =0 = Z 1(12) (12)2
i17i2 dzl d il,ig d’Ll d

BCJ discrepancy functions:
Josin = Zniﬂé - d(Q) Z K (i Jir0 = Z”mz - d(l) Z £ (iz
i1 o

Supergravity cut (there are several equivalent variants):
BCJ~BCJ ~ 1

n n n . n . -~ -~
C4><4 E 1112 Y1112 — E 112 7"2112 (J. 1J1 . _|_ Jl .J. 1)
1 2 1 2 1 2 ) ) ) ,

11,12 11,12



All double-4-point cut and contact

Bern, Carrasco, Chen, Johansson, RR
terms from gauge theory data

Gauge theory cut: Transformation relating it to c/k-satisfying one:

4x4 TiyipCiyig 1 2
CAl =2 @ Sam = mias = nilG = di R (i) + 4K i)

11,12
5@7,017, 57,@7113(5‘]
Properties of gauge parameters: Z ES (12)2 =0 = Z 1(12) (12)2
i17i2 dzl d il,ig d’Ll d

BCJ discrepancy functions:
Jo io — ZniliQ — d(2) Z k‘(l) 7,1 P— anle — d(l) Z k'(2)

Supergravity cut (there are several equivalent variants):

. = 1 . -
C4X4 Z n’Ll’LQn’LlZQ (J. 1J1 . | Jl .J. 1)
1 2 1 2 Y Y 9 9

d( )d( ) dg )dg )

11,12 11

Valid in any double-copy (super)gravity



Generalization: cuts have (fairly) closed-form structured expressions i.t.o. cubic graphs

oAxaxa _ Wiy igiaWiyizis T
SG 2. FOFFED

7:177:271'3 7:1

Bern, Carrasco, Chen, Johansson, RR

~
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clxh =

- Subtraction of the cuts of the approximate amplitude is straightforward

- Built-in verification: difference must be local



Many generalized cuts have (fairly) closed-form structured expressions

o _f’: nifi; _1%»’{@1#{@2#%@2} i
SG T 2. MM 6 - D 1)
1=1 di,ldi,2 1=1 di,ldi,2

ot = Z 0,0 @ +more complicated
i Gy 1020 1

C5><4><-~><4 _
SG o o o

Others, e.g. CSG have currently a... less pleasant appearance
- These formulae hold in any double-copy (super) gravity

- The 5-point formula is similar (though prettier) to a known 5-point tree formula,
written in a basis of discrepancy functions Bjerrum-Bohr, Damgaard, Sondergaad, Vanhove



Some features:

* Starting point can be any graph-based representation of amplitudes,
including Feynman diagrams

 Novel way to find gravity tree-level amplitudes adapted to cubic graphs

e Cuts are naturally in a cubic graph-based form; identification of the
new contact term is straightforward

* Highest contact terms depend on the power counting of the theory;
top levels are very simple — linear in momentum invariants. Numerical
approach — rather than analytic simplification — may be more efficient

* But the proofisin the pudding...



Allowed us to construct the 4-point 5-loop integrand of N=8 supergravity
To appear - Bern, Carrasco, Chen, Johansson, RR, Zeng
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together with

2-, 3-, 4-, 5-, and
6-collapsed
propagator graphs:

N2: 9159

N3: 17935
N4: 23996
N5: 24198
N6: 17110

about 20% of which
are nonzero

Explicit power ct is poor
because of poor rep.
of N=4 sYM amplitude



Chetyrkin, Kataev, Tkachov; Laporta; A.V. Smirnov; V. A. Smirnov;
On integration Vladimirov; Marcus, Sagnotti; Czakon; Laporta; Kosower;

Larsen, Zhang; Zeng, etc
- General structure of the amplitude

(5) 5D N6k:plpall)
MY ~ (stum /d zz (e

~ (stu/\/lflo ) 82/d5Dl [F—10(li . l]) + SF_ll(li . lj) + SQF_lg(lZ' . lj) + .. }
Critical dimension: 4 22/5 24/5

- 5-loop vacuum integrals are state of the art in QCD

- QCD beta function: need to expand to second order in external momenta;
Here second order (6 external momenta) checks convergence in D=22/5
- constrained by supersymmetry
- checks our construction of the integrand

Observations: 1. All linear relations among integrands are IBPs ( ~ SL(L) symmetry)
2. Lower loops suggest that integrals with maximal cuts have

highest transcendentality Kosower, Larsen; Abreu, Britto, Duhr, Gardi;
Bosma, Sogaard, Zhang; Schabinger

Two such integrals; through IBPs, they
receive contributions from many terms




Chetyrkin, Kataev, Tkachov; Laporta; A.V. Smirnov; V. A. Smirnov;
On integration Vladimirov; Marcus, Sagnotti; Czakon; Laporta; Kosower;

Larsen, Zhang; Zeng, etc
- General structure of the amplitude

(5) 5D N6k:plpall)
MY ~ (stum /d zz (e

~ (stu/\/lflo ) 82/d5Dl [F—lo(li . l]> + SF_ll(li . lj) + SQF_lg(lZ' . lj) + .. }
Critical dimension: 4 22/5 24/5

- 5-loop vacuum integrals are state of the art in QCD

- QCD beta function: need to expand to second order in external momenta;
Here second order (6 external momenta) checks convergence in D=22/5
- constrained by supersymmetry
- checks our construction of the integrand

Observations: 1. All linear relations among integrands are IBPs ( ~ SL(L) symmetry)
2. Lower loops suggest that integrals with maximal cuts have
highest transcendentality Kosower, Larsen; Abreu, Britto, Duhr, Gardi;

Bosma, Sogaard, Zhang; Schabinger
coefficients
vanish,
as expected

Two such integrals; through IBPs, they
receive contributions from many terms




Chetyrkin, Kataev, Tkachov; Laporta; A.V. Smirnov; V. A. Smirnov;
On integration Vladimirov; Marcus, Sagnotti; Czakon; Laporta; Kosower;

Larsen, Zhang; Zeng, etc
- General structure of the amplitude

(5) 5D N6k:plpall)
MY ~ (stum /d zz (e

~ (stu/\/lflo ) 82/d5Dl [F—lo(li . l]) + SF_ll(li . lj) + SQF_lg(lZ' . lj) + .. }
Critical dimension: 4 22/5 24/5

- 5-loop vacuum integrals are state of the art in QCD

- QCD beta function: need to expand to second order in external momenta;
Here second order (6 external momenta) checks convergence in D=22/5
- constrained by supersymmetry
- checks our construction of the integrand
- further strong indication (but no proof) that integrand is correct

- Enhanced cancellations probed at fourth order -- O(10%) terms in F_12(l; - I;)
Stay tuned! Bern, Carrasco, Chen, Johansson, RR, Zeng — in progress



An outlook

- Reviewed recent developments and illustrated some of them
- Focused on color/kinematics and double-copy

- Many open questions, some computational, some conceptual

- New method for constructing supergravity amplitudes:
can convert any representation of gauge theory amp’s into supergravity amp’s

- Takes over when c/k duality is for some reason impractical; algorithmic
construction of amplitudes’ contact terms in terms of the breaking
of kinematic Jacobi relations

- Terms in amplitudes are constructed one by one

- Allows the construction of the 5-loop 4-graviton integrand of N=8 SG
checked cuts through N8-Max; indications for susy cancellations

- May have applications to construction of classical solutions of SG eom

- Full potential to be explored, as is the physics of the 5-loop N=8 amplitude



