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Motivation



Spin 0:        Higgs boson   

Spin 1/2:     leptons, quarks 

Spin 1:        gluons, photon, W- & Z-boson      
       
Spin 2:        graviton  

Consistent Field Theories Standard Model of Particle Physics         
     & General Relativity

Going beyond known physics

Standard Model of Particle Physics & General Relativity

spin 0: Higgs boson �

spin 1/2 : quarks, leptons  

a

spin 1: gluons, photons, W- & Z-bosons Aµ

spin 2: graviton gµ⌫

9
>>=

>>;

well-known
consistent
theories

“Beyond known physics" can mean . . .

. . . more copies of the known field theories.

. . . new field theories (i.e. higher spin).
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MASSLESS !

massless 

& massive 

1/22



How do we make a  
spin-2 field massive ?



Massless + Massive 
Spin-2 Fields



Massless Gravity

General Relativity with Einstein-Hilbert action for metric gµ⌫

SEH[g] = M

2
P

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

Einstein equations: Rµ⌫ � 1
2gµ⌫R+ ⇤gµ⌫ = 0

maximally symmetric solutions: R̄µ⌫ = ⇤ḡµ⌫

linear perturbation theory: gµ⌫ = ḡµ⌫ + �gµ⌫ :

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
= 0

! equation for a massless spin-field with 2 degrees of freedom
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General Relativity
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linear perturbation theory: gµ⌫ = ḡµ⌫ + �gµ⌫ :
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Maximally symmetric solutions: 
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Einstein’s equations:
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equation for a massless spin-2 field with 2 degrees of freedom,
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(Massive) Bimetric Gravity

The ghost-free theory

Relation to Conformal Gravity

Summary

⇤� = 0 (1)

ȧ

a

⇠ ⇢+ ⇤e↵ +O(↵2) (2)
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tensor analogue of

Hamiltonian analysis           2 d.o.f. also at the nonlinear level
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Einstein-Hilbert action:



General Relativity 
= 

unique description of  
self-interacting massless spin-2 field 



Linear Massive Gravity 

propagates 5 degrees of freedom for

Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability
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for              there is an additional scalar mode which gives rise to a  
ghost instability (negative kinetic energy)
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Equation for a massive spin-2 field:

tensor analogue of 
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need extra constraint to remove the
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Can we write down  
a nonlinear mass term ?



… should not contain derivatives nor loose indices.Nonlinear Massive Gravity

Mass term should have non-derivative interactions of gµ⌫ , but
if we try to contract the indices we get:

g

µ⌫
gµ⌫ = 4

This is not a mass term.

Only way out: introduce second metric to contract indices

g

µ⌫
fµ⌫ = Tr (g�1

f) f

µ⌫
gµ⌫ = Tr (f�1

g)

Massive Gravity action is of the form

SMG[g] = SEH[g] �
Z

d4x V (g, f)

What determines fµ⌫?
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For the spin-2 tensor contracting indices of the metric gives:

This is not a mass term.

�@µ�@
µ��m2�2 (1)

� Fµ⌫F
µ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�F
µ⌫ �m2gµ⌫AµA⌫ (4)

1

�@µ�@
µ��m2�2 (1)

� Fµ⌫Fµ⌫ �m2AµAµ (2)

�gµ⌫@µ�@⌫��m2�2 (3)

� gµ⇢g⌫�F⇢�Fµ⌫ �m2gµ⌫AµA⌫ (4)

1

Examples:           scalar (spin 0)                         vector (spin 1)
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kinetic term mass term 
4/22

Nonlinear Mass Term
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kinetic term mass term 

What determines        ? 
Shouldn’t it be dynamical ? 

Nonlinear Massive Gravity
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Nonlinear Mass Term



Bimetric Theory 

Massive Gravity
nondynamical background metric fµ⌫ , fixed by hand

! 5 d.o.f.

dynamical fµ⌫ , determined by its equation of motion
! 5 + 2 = 7 d.o.f. [Rosen, 1940; Isham, Salam & Strathdee,1971/77]

Bimetric action:

Sb[g, f ] = m

2
g

Z
d4x

p
g

⇣
R(g)� 2⇤

⌘

+ m

2
f

Z
d4x

p
f

⇣
R(f)� 2⇤̃

⌘
�

Z
d4x V (g, f)

But there’s still a problem . . .

both metrics are dynamical and treated on equal footing

should describe massive & massless spin-2 field (5+2 d.o.f.)

This looks good, but what about         ?          

Nonlinear action for two interacting tensors:
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Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability
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The Nonlinear Ghost Can we extend the Fierz-Pauli mass term  
                                by nonlinear interactions ?

Can we choose coefficients      such that the          remains absent ?

The nonlinear ghost

Can we extend the linear mass term by higher-order interactions?

m2
FP
2

�
�gµ⌫ � ḡµ⌫�g

�
+ c1�g

⇢
µ �g⇢⌫ + c2�g�gµ⌫ + . . .

! Can we fix coefficients ci such that ghost is absent?

Boulware & Deser (1972): Beyond linear order this is impossible!

No consistent nonlinear Massive Gravity?

8 / 26

The nonlinear ghost

Can we extend the linear mass term by higher-order interactions?

m2
FP
2

�
�gµ⌫ � ḡµ⌫�g
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Beyond linear order this is impossible!

No consistent nonlinear massive gravity / bimetric theory ?

Boulware & Deser (1972):



The Ghost-Free Theory 



- free Bimetric Theory
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Sb[g, f ] = m

2
g

Z
d4x

p
g R(g)

+ m

2
f

Z
d4x

p
f R(f) �

Z
d4x V (g, f)

◆
✓

⇣
⌘V (g, f) = m

4p
g

4X

n=0

�n en

⇣p
g

�1
f

⌘

e1(S) = Tr[S] e2(S) =
1
2

⇣
(Tr[S])2 � Tr[S2]

⌘

e3(S) =
1
6

⇣
(Tr[S])3 � 3Tr[S2]Tr[S] + 2Tr[S3]

⌘

) Consistent theory for massless & massive spin-2

arbitrary spin-2 mass scale

Ghost-free interaction potential

◆
✓

⇣
⌘V (g, f) = m

4p
g

3X

n=1

�n en

⇣p
g

�1
f

⌘

[de Rham, Gabadadze & Tolley, 2010; Hassan & Rosen, 2011; Hassan, ASM & Rosen, 2011]

The potential involves . . .

. . . an arbitrary mass scale m, 3 free parameters �n

. . . the elementary symmetric polynomials

en(S) =
2

n!(4� n)!
✏µ1...µn�n+1...�4✏

⌫1...⌫n�n+1...�4
S

µ1
⌫1 . . . S

µn
⌫n

. . . a square-root matrix S defined through S

2 = g

�1
f
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de Rham, Gabadadze, Tolley (2010); 
Hassan, Rosen, ASM, von Strauss (2011)

Based on

ASM, M. von Strauss
1412.3812

S.F. Hassan, ASM, M. von Strauss
1208.1515
1203.5283

S.F. Hassan, R. Rosen, ASM
1109.3230

↵
⌦

�
 V (g, f) = m4pg

4X

n=0

�n en

✓q
g�1f

◆
= m4pf

4X

n=0

�4�n en

✓q
f�1g

◆
(1)
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elementary  
symmetric polynomials: 
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de Rham, Gabadadze, Tolley (2010); 
Hassan, Rosen, ASM, von Strauss (2011)



Ghost-free bimetric theory 
= 

unique description of  
massless + massive spin-2 



Perturbative Expansion 
  



Proportional solutions

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤g(↵,�n, c)ḡµ⌫ = 0

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤f (↵,�n, c)ḡµ⌫ = 0

– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫
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Mass spectrum 

Bimetric mass spectrum [Hassan, ASM & von Strauss, 2012]

perturb bimetric equations around proportional backgrounds:

gµ⌫ = ḡµ⌫ + �gµ⌫ fµ⌫ = c

2
ḡµ⌫ + �fµ⌫

fluctuations diagonalizable into mass eigenstates:

massless �Gµ⌫ / �gµ⌫ + ↵

2
�fµ⌫

massive �Mµ⌫ / �fµ⌫ � c

2
�gµ⌫

) linear equations:

Ē ⇢�
µ⌫ �G⇢� � ⇤g

�
�Gµ⌫ � 1

2 ḡµ⌫�G
�
= 0

Ē ⇢�
µ⌫ �M⇢� � ⇤g

�
�Mµ⌫ � 1

2 ḡµ⌫�M
�
+

m2
FP
2 (�Mµ⌫ � ḡµ⌫�M) = 0

with mass mFP = mFP(↵,�n, c)
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Structure of Vertices
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Quadratic (Fierz-Pauli)

     what about higher orders?

(bimetric action expanded in mass eigenstates)

Hassan, ASM, von Strauss (2012)
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This is a slide title

self-interactions of massless spin-2 sum up to Einstein-Hilbert action

no terms linear in massive fluctuation

Quadratic (Fierz-Pauli) Cubic (suppressed by        )

Higher-Order Vertices
Babichev, Marzola, Raidal, ASM, 

Urban, Veermäe, von Strauss (2016)
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Ghost-free bimetric theory 
= 

Massive spin-2 in background 
set by massless spin-2  



What is the physical metric ? 

How much does the theory  
differ from GR ?



General Relativity Limit 



Matter Coupling

Which metric represents gravity?

Absence of ghost: only one of the metrics couples to matter

Sgf = m

2
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Z
d4x

p
g R(g) + m

2
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f R(f)
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4X

n=0
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⇣p
g

�1
f

⌘

+

Z
d4x

p
g Lmatter(g,�)

! only known coupling that does not re-introduce the ghost

! gµ⌫ is the gravitational metric

The gravitational metric is not massless!
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) Consistent theory for massless & massive spin-2
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Absence of ghosts: only one metric can couple to matter!

     is gravitational metric 
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Yamashita, de Felice, Tanaka;  
de Rham, Heisenberg, Ribeiro (2015)



Mass Eigenstates
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Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :
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Recall: �gµ⌫ / �Gµ⌫ � ↵

2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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⇣
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⌘

) Consistent theory for massless & massive spin-2

The gravitational metric is not massless but a superposition of mass eigenstates. 

Proportional backgrounds [Hassan, ASM & von Strauss, 2012]

Particularly important solution to equations of motion:

f̄µ⌫ = c

2
ḡµ⌫ with c = const.

– gives two copies of Einstein’s equations (↵ ⌘ mf/mg)

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤g(↵,�n, c)ḡµ⌫ = 0

Rµ⌫(ḡ)� 1
2 ḡµ⌫R(ḡ) + ⇤f (↵,�n, c)ḡµ⌫ = 0

– consistency condition: ⇤g(↵,�n, c) = ⇤f (↵,�n, c) determines c

) maximally symmetric backgrounds with Rµ⌫(ḡ) = ⇤g ḡµ⌫
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Baccetti, Martin-Moruno, Visser (2012);  
Hassan, ASM, von Strauss (2012/14); 
Akrami, Hassan, Koennig, ASM, Solomon (2015)
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) Consistent theory for massless & massive spin-2

for small                      gravity is dominated by the massless mode

the massive spin-2 field interacts only weakly with matter

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
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          is the General Relativity limit of bimetric theory 

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
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Babichev, Marzola,  
Raidal, ASM, 

Urban, Veermäe,  
von Strauss (2016)

Recovery of GR



Ghost-free bimetric theory 
= 

General Relativity + 
additional tensor field  



Cosmology 



This is your 

25%  
Dark Matter

70%  
Dark Energy

5% 
normal 
matter

?
Akrami, Hassan, Könnig, ASM, Solomon (2015); 

Könnig, Patil, Amendola (2014); 
Akrami, Koivisto, Mota, Sandstad (2013); 

Volkov; von Strauss, ASM, Enander, Mörtsell, Hassan; 
Comelli, Crisostomi, Nesti, Pilo (2011)

Viable 
cosmology with 
self-accelerating 

solutions

Apolo, Hassan (2016) 
Hassan, von Strauss, ASM (2012/13) 
Deser, Waldron (2001)

Symmetries? 

“partial masslessness”

Babichev, Marzola, Raidal, ASM,  
Urban, Veermäe, von Strauss (2016); 
Aoki, Mukohyama (2016)

massive spin-2 ?
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Dark Matter 

unidentified type of matter comprising ~27% of energy in the universe 

very weak interactions with ordinary matter, but gravitates normally 

observed in galaxy rotation curves, cosmic microwave background,  
gravitational lensing, structure formation, matter power spectra, … 

   Standard paradigm (tons of different models, e.g. MSSM):  
   cold relic density of weakly interacting massive particle (WIMP) 

   possibly directly detectable, but so far null results
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Spin-2 Dark Matter

18/22

and the General Relativity limit of bimetric theory:

Physical interpretation [Hassan, ASM & von Strauss, 2012]

Bimetric Theory = Gravity + massive spin-2

Can rewrite bimetric action in terms of gravitational metric gµ⌫ and
massive spin-2 field Mµ⌫ :
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2
�Mµ⌫

) for small ↵ = mf/mg (i.e. weak gravity!), the massive spin-2
field interacts only weakly with matter:

↵ ! 0 is the General Relativity limit of Bimetric Theory
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gravity is weak because the physical Planck mass is large 
                                                                 (                           ) 

massive spin-2 field decouples from matter, interacts only with gravity

Babichev, Marzola, Raidal, ASM, 
Urban, Veermäe, von Strauss (2016)
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massless      massive
Recall the (linearised) gravitational metric:
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Structure of Vertices
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Quadratic (Fierz-Pauli) Cubic

no vertices giving rise to decay of massive into massless spin-2 

massive field gravitates just like baryonic matter, even in GR limit 

self-interactions of massive spin-2 are enhanced in the GR limit
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DM mass

Decay rate:
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Features of Spin-2 DM

heavy spin-2 field automatically resembles dark matter when gravity  
resembles General Relativity

spin-2 mass and interaction scale are on the order of a few TeV 

interactions with baryonic matter are suppressed by the Planck mass

         no need for extra fields, artificial symmetries or fine tuning 

         bimetric theory could explain dark matter in the context of gravity 

         massive spin-2 field is a natural addition to the Standard Models



    Summary 



Ghost- free bimetric theory…

 review:  ASM, Mikael von Strauss; 1512.00021
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is one of the few known consistent modifications of General Relativity

describes nonlinear interactions of massless and massive spin-2 fields

can be interpreted as gravity in the presence of an extra spin-2 field

contains an interesting dark matter candidate whose coupling to  
baryonic matter is suppressed by the Planck scale 
(but can we detect it ?)



Linear Massive Gravity

Fierz & Pauli (1939): equation for massive spin-2 field

Ē ⇢�
µ⌫ �g⇢� � ⇤g

�
�gµ⌫ � 1

2 ḡµ⌫�g
�
+

m2
FP
2

�
�gµ⌫ � a ḡµ⌫�g

�
= 0

propagates 5 degrees of freedom for a = 1

for a 6= 1 there is an additional propagating scalar mode that
gives rise to a ghost instability
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  Thank you for your attention!


