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AdS/CFT relates gravity (often in AdS) to unitary field theory (often CFT)  
Familiar notions of quantum field theory are geometrized  

Want to explore CFT ➛ (quantum) gravity 
recent revival of interest in low-D toy models (AdS3/CFT2, SYK,…)  
 
 
➙ relevant developments in CFT, many-body physics:  
 
- time evolution and spread of entanglement  
- thermalization of closed quantum systems (e.g. via eigenstates)  
- non-perturbative methods (e.g. bootstrap)

Setting the stage

Thermalization ➛ BH formation (& evaporation)



⇢
mixed

⇢pure

• gravity as an EFT implies pure 
to mixed evolution

• fundamentally incompatible 
with a unitary S-matrix

Use simplified laboratory of 
AdS3/CFT2 

1. Signatures of information loss 
in CFT correlations @ large c 

2. New results on bulk-boundary 
relation in semiclassical limit

Unitarity at stake

| i

H

[Hawking, Maldacena]



Tension with unitarity is sharpest for collapsing black hole  

Approach

➙ how do we describe black-hole collapse in CFT?

Q1

Q2

      heavy pure state ➙ BH collapse  

measure correlations of light probe 
operators 

|Vi

Q

hV|Q1(t, 0)Q2(0)|Vi



Follow CFT from quench to thermalisation at large c 

Calculate Lorentzian physics via continuum monodromy method:  
entanglement, autocorrelation,…

Results

Q1

Q2

Results at large c: match gravity 
calculations in Vaidya 

Autocorrelation: signs of information 
loss and retrieval 

General correlation function: from 
conformal blocks to path integral

[also: Calabrese, Cardy; Hartman, Maldacena]



information loss in CFT



The Black Hole in the Tin Can

Throw in a shell of n dust particles 
 
 

smooth limit: 

 
bulk BH collapse: Vaidya metric 

 (z1)

 (z2)

 (zk)

remark: certain quantities such as entanglement entropy are sensitive 
to behind horizon physics (away from equilibrium)

Q1

Q2

global AdS3

n ! 1

S = SEH +
nX

I=1

Si[particle]



Translating to the CFT

 (z1)

 (z2)
 (zk)

z

|Vi = 1

N

nY

k=1

 (ek, ēk)|0i

start in excited state at t=0:  
 
prepare by Euclidean path integral  
➛ regulator σ

t

t = 0 prepare state

for t-evolution

is primary 



Vacuum dominance

in the semi-classical limit (large c), get sum of exponentials

correlator approximated by largest term, the identity block

“it from id”

subleading corrections exponentially suppressed in e-c ~ e-1/G

hV|Q1(x1)Q1(x2)|Vi =
X

blocks

a
k

e�
c
6 f

(n)
k (x1,x2)

the dominant contribution comes from the identity Virasoro 
block, that is the unit operator id and all its descendants 
 T, ∂T, T2 T∂T…, (multi-graviton exchange in bulk)



Autocorrelation

let us now return to the black hole and compute

G(t1, t2) =

✓
1

⇡T
cos

✓
t1
2

◆
sinh (⇡Tt2)� 2 sin

✓
t1
2

◆
cosh (⇡Tt2)

◆�2�Q

Dominated by a single id channel

Determine semiclassical block  
from monodromy problem

F�(0)
0 = exp

h
� c

6

f1
0 (t1, t2)

i

G(t1, t2) = hV|Q1(t1, 0)Q2(t2, 0)|Vi

[Zamolochikov]



Late Lorentzian times

Let us return to the original question of information loss

The correlation function decays without bound at large time

G(t1, t2) ⇠ exp(�2⇡�Qt

�
)

Manifestly in conflict with unitarity:  CFT loses information!

But leading result comes with non-perturbative corrections

G(t1, t2) = a0e
� c

6 f
1
0 +

X

k 6=vac

ake
� c

6 f
1
k

Vaidya geometry Other states
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On information loss

This is the anti-information paradox: what happened to unitarity?

➙ (average) correlations cannot become arbitrarily small 

Neglected non-perturbative corrections. They contribute

6= 0

restore unitary at large time ➙ non-perturbative effects in 1/GN

|G(t)| =
���
X

n,k

ei(En�Ek)t ⇤
n(V)hn|Q|kihk|Q|Vi

���

⇠ e�S
X
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Comments

Boundary story is that of thermalization. 
Non-unitary truncation, corresponds to leading bulk answer  

Can investigate similar questions for heavy eigenstates

hOHOLOLOHi ⇠ hOLOLiTH

Closely related to study of ETH in CFT 

[Kaplan et al.] looked at contributions from higher blocks:  
non-exponential late time behaviour t-3/2 

Not good enough: need to sum over all heavy blocks  
Similar story for spectral form factor

[Dymarsky et al.; Datta et al.]

[Dyer & Gur-Ari]



from conformal blocks to path integrals



General correlation function

suppose we would like to compute

no longer dominated by a single id channel. Prescription:

G(t1, x1|t2, x2) =

Z
dx

c

���F�(xc)
0

���
2

Sum over id in all channels (looks odd from CFT perspective)

(remark: id in one channel = sum over heavies in another) 

G(t1, x1|t2, x2) = hV|Q1(t1, x1)Q2(t2, x2)|Vi



Complex saddle points

consider probe with 

evaluate correlator via saddle-point

(continuation to Lorentzian)

1 ⌧ hQ ⌧ c

G(t1, x1|t2, x2) =

Z
dxcF�

0 F�
0{

2 C

we find complex saddle points: xc 2 C

radical change of philosophy of Virasoro id block:

bulk physics is not well approximated by id in any single channel



Bulk perspective

➙   geodesic approximation 1 ⌧ hQ ⌧ c

O(t1, x1)

O(t2, x2)

(xc, zc(t))

Figure 1.1: Schematic representation of the setup and main result. In a collapsing black hole, the
boundary conformal block expansion becomes a sum over channels labelled by a boundary point xc.
This corresponds semiclassically to a bulk geodesic crossing the shall of infalling matter at a point
(xc, zc(t)) with zc the radial coordinate. Both in the CFT and in the bulk this crossing point takes on
complex values, signaling that a complex saddle point dominates the bulk path integral, and no single
channel dominates in CFT.

1.1 Setup and summary

In more detail, we consider a state |Vi created by a product of a large number of a local operator

insertions at t = 0. Each operator insertion can be interpreted as creating a highly boosted dust

particle in the bulk, so this state is dual to the Vaidya geometry, which describes a collapsing shell

of null, pressureless perfect fluid [11]. In bulk language, the 2-point function of a probe operator is

computed by the worldline path integral of a point particle in this background:

ˆ
Dx(⌧) eim

´
d⌧ ⇠ hV|O(x

1

)O(x
2

)|Vi (1.5)

where m is the mass of the particle dual to the operator O, and the bulk paths x(⌧) are anchored to

x
1,2 at the boundary. This path integral is a simple case of (1.1), where the bulk geometry is fixed, but

1
At timelike separation, the bulk worldline is always complex, in the sense that the radial coordinate is complex at

the turning point. The important di↵erence in the Vaidya case is that the crossing point is also complex in the direction

parallel to the boundary, so that the CFT channel also becomes complex.

5

Gravity saddle point = CFT saddle point 

 
for same kinematics, get complex 
saddle point (analytically continued 
geodesic)

G(t1, x1|t2, x2) =

Z
[Dx(⌧)] eim

R
d⌧

G(t1, x1|t2, x2) =

Z
dx

c

e
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µ
2 )



Comments

             vs.                 prescription: 

All previous cases: real exponential, so          =   

Lorentzian dynamics allows to distinguish, and           comes out on top

Aren’t we overcounting? 

Usually sum over blocks, not channels 

Working assumption: no overlap between id in different channels, 
when dualized in to a single channel (at large c) 

Creates subtlety when looking at 1/c corrections

max�0

X

�0 X

�0

max�0

X

�0



wrapping up



Conclusions
time-dependent 3D quantum gravity with matter in 1/c expansion 
‘it from id’ ➙ ideal arena to think about quantum BHs  

CFT correlation functions seemingly violate unitarity (naïve).  
non-perturbative corrections  in c restore unitarity  

on gravity side these correspond to non-perturbative effects in GN. 
geometric interpretation? bulk interpretation?  

monodromy method identifies off-shell contributions on both sides: 

General map from conformal block expansion to bulk path int?



thank you!



more details



A word on limits

c ! 1
n ! 1
� ! 0

E ⇠ nh /� ! O(c)

G(1, 2, . . . p) = hV|Q1 , . . .Qp|Vi

We probe the physics via 2n + p correlations

we want to approach smooth, semi-classical gravity

Furthermore probe operators satisfy

1 ⌧ hQ ⌧ c



Continuum monodromy method



Choice of channel

h (1)Q(z, z̄)Q(1) (0)i =
X

primaries p

cp

 

 

Q

Q

recall: 4-pt function:

Op

  Q

Q

 †

 †

 †  

many, many channels

i
j

k

X

i,j,k,...

cijk...G(1, 2) =

similarly can expand our correlators in conformal blocks

s & t channel

focus on those that propagate id on each internal line (=vac)



Choice of contraction

for each OPE contraction, draw a cycle

Q1

Q2

i j

Q1

Q2

6=

each such choice defines a certain channel

 

 †  

 †

�

T =
2n+pX

k=1


6h/c

(z � zk)2
+

ck
z � zk

�

fix monodromies of y00(z) + Ty(z) = 0 f (n)
k (1, 2, . . . p)

ck



Taking the smooth limit
generally a hard problem, big simplification occurs for n ⟶ ∞

stress tensor  ⟼  distribution

continuum monodromy method 3D semi-classical gravity
L
geo

(1, 2, . . . p)f1
0 (1, 2, . . . , p)

6=
Q1

Q2

Q1

Q2xc
xc

channel is labeled by single continuous parameterxc



Entanglement entropy



entanglement entropy

30

Q-type operators ➙ twist insertions:

crossing points zc1 & zc2 ↔ refraction at bulk shell

it from id ➙ require trivial monodromy on smile contour

write z1 = ei✓1 , z2 = ei(✓1+L) & continue to Lorentzian time ✓1 = t

maximize S(A) over crossing points ➙ parametric equation for S(t)

Gq(t) = hV|�q(t, `1)�̃q(t, `2)|Vi

S(A) = lim
q!1

1

1� q
Gq(t)



entanglement entropy

31

matches exactly global AdS3 Vaidya: 

- thermal at late time 

- EE growth = change of channel 

- sees beyond horizon  

CFT calculation shows that purity of state is preserved: S(A) = S(Ac)
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Implicit formula for growth of entanglement entropy:
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Unitarity vs. thermalization



 Correlations in a closed quantum system, e.g.

Unitarity vs thermalization
(constraints on long-time correlations from unitarity)

G(t) = tr⇢O(t)O(0)

Time average over a large time T cannot vanish by unitarity

lim
T!1

|G(t)|2 6= 0

Need to assume spectrum is generic (no specific ordering principle) 
 
➛ connection with ETH



Unitarity vs thermalization
(constraints on long-time correlations from unitarity)

G(t)

e�S

⇢ = e��H

quantum noise

see also  [Barbon & Rabonivici]


