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A few years ago, Kevin Costello introduced a new approach to
integrable spin systems in two dimensions starting from
four-dimensional gauge theory. I’ve lectured about it last summer
and you can find the writeup on the arXiv. Today – after a short
introduction to be understandable – I will explain more detailed
developments in this area that will appear in a forthcoming paper
by Costello, Masahito Yamasaki, and me.



Let us start by remembering Chern-Simons gauge theory in three
dimensions:

I (A) =
k

4π

∫
M
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(
AdA +

2

3
A ∧ A ∧ A

)
.

There is no metric tensor in sight, so a theory with this action is
going to be a topological field theory. In particular, the expectation
value of a Wilson line observable

Wρ(K ) = TrρP exp

(∮
K
A

)
,

– where ρ is a representation of the gauge group G and K is a
knot in spacetime – is a topological invariant.



Knot invariants in particular satisfy the Reidemeister moves, of
which the following is the most important one:



Importantly, this is a fully three-dimensional relation. A given
strand passes over or under another.



In the theory of integrable systems, a central role is played by the
Yang-Baxter equation. The object that obeys it is called the
R-matrix. Before I write the Yang-Baxter equation, I want to
introduce the R-matrix that will obey it. It describes the crossing
of two lines that you can think of as particle trajectories.

A particle has a “rapidity” or “spectral parameter” but (usually)
the R-matrix depends only on the rapidity difference θ = θ1 − θ2.
The physical meaning of this parameter is different for different
kinds of integrable systems. (I should point out that when the
spectral parameter is treated as a complex number, I will call it z
rather than θ.)



A particle also has an internal label that you can think of as
representing a basis vector in a group representation ρ, so the
picture looks more like this:

This is a purely two-dimensional picture. There is no notion of one
line going “over” or “under” the other.



In Chern-Simons theory, a line (which will be a Wilson line) is
labeled by a group representation, but not in any simple way by a
basis vector in that representation. As we will see, that is because
Chern-Simons theory is scale-invariant and infrared non-free while
the Yang-Baxter equation is associated to an infrared-free theory.
(In Chern-Simons theory, if one introduces a suitable symmetry
breaking mechanism – but it is a long story to do this without
spoiling topological invariance – one can get a picture in which a
line is labeled by a basis vector and not just a representation.)



The Yang-Baxter equation is the obvious analog of the
Reidemeister move that I wrote before except that everything is
flattened down to two dimensions and the lines have extra labels,
and the picture is completely flat



In drawing the picture, to keep things simple, I wrote only the
spectral parameters and not the internal labels carried by the
particles. A fuller version with all the labels is this:

or schematically
R23R13R12 = R12R13R23.



The R-matrix that obeys this equation is the two-particle S-matrix
of an integrable many-body system in 1 + 1 dimensions, or the
four-spin coupling tensor in an integrable spin system:

(The spins live on links, and at every vertex the R-matrix describes
the coupling between four spins that meet at that vertex. The
partition function is obtained by multiplying all the R-matrix
elements and summing over all spins.)



To account for Yang-Baxter theory and the existence of integrable
systems, we would like to modify Chern-Simons theory to get a
theory (a) with only two-dimensional symmetry and no
three-dimensional symmetry, and thus no “over” or “under”; (b) in
which a line is labeled by a spectral parameter and an internal
label i , j , k , · · · and not just a group representation.

How can we do this?



A naive idea to get the spectral parameter is to replace the
finite-dimensional gauge group G with its loop group LG . We
parametrize the loop by an angle θ. The loop group has
“evaluation” representations that “live” at a particular value
θ = θ0 along the loop. (In an evaluation representation, a loop
g(θ) acts via g(θ0), for some θ0. Such simple representations exist
because LG is the loop group and not its central extension. The
central extension does not have finite-dimensional representations.)
We hope that θ will be the spectral parameter carried by a particle
in the solution of the Yang-Baxter equation.



Taking the gauge group to be a loop group means that the gauge
field A =

∑
i Ai (x)dx i now depends also on θ and so is

A =
∑

i Ai (x , θ)dx i . Note that there is no dθ term so this is not a
full four-dimensional gauge field. The Chern-Simons action has a
generalization to this situation:
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)
.

This is perfectly gauge-invariant.



What goes wrong is that because there is no ∂/∂θ in the action,
the “kinetic energy” of A is not elliptic and the perturbative
expansion is not well-behaved. The propagator is

〈Ai (~x , θ)Aj(~x
′, θ′) =

εijk(x − x ′)k

|~x − ~x ′|2
δ(θ − θ′)

with a delta function because the kinetic energy was not elliptic,
and because of the delta function, loops will be proportional to
δ(0):

This loop will come with a factor δ(θ − θ′)2 = δ(θ − θ′)δ(0).



What Kevin Costello did was to cure this problem via a very simple
deformation. Take our three-manifold to be R3, and write x , y , t
for the three coordinates of R3, so overall we have x , y , t, and θ.
Costello combined t and θ into a complex variable

z = εt + iθ.

Here ε is a real parameter. The theory will reduce to the bad case
that I just described if ε = 0. As soon as ε 6= 0, its value does not
matter and one can set ε = 1. I just included ε to explain in what
sense we are making an infinitesimal deformation away from the
ill-defined Chern-Simons theory of the loop group.



One replaces dθ (or (k/4π)dθ) in the naive theory with dz (or
dz/~) and one now regards A as a partial connection on R3 × S1

that is missing a dz term (rather than missing dθ, as before). The
action is now

I =
1

~

∫
R3×S1

dz Tr

(
AdA +

2

3
A ∧ A ∧ A

)
.

(In this form, suitable for perturbation theory only. However, it
turns out that perturbation theory converges.)



To keep things simple, we will take z to parametrize the whole
complex plane C. This turns out to lead to the rational solutions
of the Yang-Baxter equation. (By replacing C with C/Λ where Λ is
a lattice of rank 1 or rank 2, one gets the trigonometric and elliptic
solutions of Yang-Baxter.)



Now the first observation about this deformation is that we have
lost three-dimensional symmetry – as in knot theory – but we still
have two-dimensional symmetry – as in Yang-Baxter theory. Thus
we work on R4 = R2 × C, where R2 is parametrized by real
coordinates x , y and C by a complex coordinate z , and we have
diffeomorphism symmetry on R2 (but only translation symmetry
along C). So we call R2 the topological space.



What sort of Wilson lines do we have? We only have a partial
gauge field with components Ax , Ay , Az̄ and no Az . So we can do
parallel transport in the x and y direction, but we cannot do
parallel transport in the z direction. Thus classically a Wilson line
has to “live” at a constant value of z . But it can run over an
arbitrary curve K in the xy plane, at any fixed value of z :

P exp

(∫
K

(Axdx + Aydy)

)
.

Thus we have only two-dimensional Wilson lines and
two-dimensional symmetry, but a Wilson line is labeled by a
parameter z that turns out to be the (complexified) spectral
parameter. (Some of these statements need to be refined because
of a framing anomaly that we discuss later, but it will remain true
that a Wilson line depends on a choice of a spectral parameter and
a two-dimensional curve.) Later, we will see that there are actually
more general Wilson line operators.



We set up perturbation theory in a fairly standard way. We pick a
metric on R2 × C, which can be the flat metric

ds2 = dx2 + dy2 + |dz |2.

Then we fix the gauge ∂xAx + ∂yAy + ∂zAz̄ = 0, leading to a
propagator

〈Ai (x , y , z)Aj(x
′, y ′, z ′)〉 = εijkzg

kl ∂

∂x l
(

1

(x − x ′)2 + (z − z ′)2 + |z − z ′|2
),

where i , j , k take the values x , y , z̄ . In contrast to the naive guess
we considered first – Chern-Simons theory of the loop group – this
is a sensible propagator (no delta functions) and leads to a sensible
perturbation expansion.



Perturbation theory on R2 × C is constructed by expanding around
the trivial solution A = 0. There are no deformations or
automorphisms of this trivial solution and hence the perturbative
expansion is straightforward in concept. It gives a simple answer
because the theory is infrared-trivial, which is the flip side of the
fact that it is unrenormalizable by power-counting. That means
that effects at “long distances” in the topological space are
negligible.



I put the phrase “long distances” in quotes because
two-dimensional diffeomorphism invariance means that there is no
notion of distance on the topological space R2 (the first factor of
R2 × C). A metric on R2 × C entered only when we fixed the
gauge to pick a propagator. Recall that we used the metric
dx2 + dy2 + |dz |2. We could equally well scale up the metric along
Σ by any factor and use instead eB(dx2 + dy2) + |dz |2 for very
large B.



That means that when you look at this picture

you can consider the vertical lines and likewise the horizontal lines
to be very far apart (compared to z − zi or zi − zj).



In such a situation, in an infrared-free theory, effects that involve a
gauge boson exchange between two nonintersecting lines are
negligible:



One should worry about gauge boson exchange from one line to
itself

because then the distance |u − v | need not be large. Such effects
correspond roughly to “mass renormalization” in standard
quantum field theory. In the present problem, the symmetries do
not allow any interesting effect analogous to mass renormalization.



When two lines cross we get an integral

over u and v that converges, and receives significant contributions
only from the region |u|, |v | . |z − z ′|. I will say what it converges
to in a few minutes.



Now when we study a general configuration such as the one related
to the integrable lattice models

we can draw very complicated diagrams, but the complications are
all localized near one crossing point or another.



Except near a crossing, the gauge field A is effectively 0 (it was 0
classically, and perturbation theory does nothing except near
crossings) so a line can be labeled not just by a representation but
by a basis vector in that representation. Thus perturbation theory
builds up a concrete R-matrix:

.



The Yang-Baxter equation

follows from two facts: (1) Two-dimensional diffeomorphism
symmetry says that if we move the middle line from left to right,
nothing happens except when we try to make it cross through the
vertex where the other two lines meet. (2) As long as the spectral
parameters (the zi ) are different, two distinct lines are never
meeting in four dimensions and thus there can be no discontinuity
even when there is such a crossing in the two-dimensional
projection.



I should warn you, though, that the flip side of the theory being
infrared-free is that it is unrenormalizable by power counting. The
theory survives anyway because there are no possible counterterms,
but the power counting unrenormalizability makes possible what
turns out to be a rather elaborate structure of anomalies that leads
to a number of unexpected results. I will try to give an idea of this.



Now I will describe the computations by explicit perturbation
theory of three basic effects:

I The lowest order contribution to the R-matrix.

I The lowest order contribution to the fusion of Wilson lines.

I The lowest order contribution to the framing anomaly.



Diagrams that contribute to the R-matrix:

a) b)



Evaluation of the lowest order diagram is straightforward. Writing
R = 1 + r and z = z1 − z2, and using the formula for the
propagator that I wrote before, we get

r = ~
∑
a

ta ⊗ ta
z

,

which is the standard result for the leading contribution to the
r-matrix.



Before discussing the fusion of Wilson lines, I will explain a few
generalities about line operators in a topological field theory. In a
topological field theory, there is always an OPE of line operators,
and it is always associative:

In a diffeomorphism invariant theory, there is no notion of K and
K ′ being “near” or “far,” so the product KK ′ behaves as a single
line operator. Associativity is clear. Above 2 dimensions, this OPE
would be commutative, but in 2 dimensions in general it is not.
We are in that case since the theory under discussion is topological
only in 2 dimensions.



However, the statement that there is a closed OPE of line operators
will only hold if we include all the line operators of a theory. If we
use too small a set of line operators, we will not get a closed OPE:
products of line operators may be outside the set that we start
with. It turns out in the theory under discussion that the ordinary
Wilson line operators I’ve told you about so far are too small a set.



Assuming that we want line operators that live at z = 0, it turns
out that there are Wilson line operators associated not just to
representations of G but more generally to representations of g[[z ]].
An element of g[[z ]] is a power series

∑∞
n=0 bnz

n, with bn ∈ g. The
Lie algebra structure is the obvious one: [bzn, b′zm] = [b, b′]zn+m,
as in 1 + 1-dimensional current algebra except that we are
restricted to n,m ≥ 0 (there is therefore no central extension).
The representations we allow of g[[z ]] have the property that every
vector in the representation is annihilated by bzn for large enough
n (and any b). It is convenient to pick a basis ta of g and to write
ta,n for taz

n. Then the Lie algebra is the familiar

[ta,n, tb,m] = fabctc,n+m.



Since the idea of a finite-dimensional representation that is
annihilated by bzn whenever n is large enough may be unfamiliar, I
give an explicit example of such a representation of g[[z ]] that is
not just a representation of g. It will be a representation in which
ta,n = 0 for n ≥ 2. We start with any representation R of g, and
then on the direct sum R ⊕ R, we take

ta,0 =

(
ta 0
0 ta

)
, ta,1 =

(
0 ta
0 0

)
, ta,n = 0, n ≥ 2.



What I said before is that an ordinary Wilson line based on a
representation of G (or g) has to live at a point z ∈ C, which we
will take to be z = 0. Thus the Line operator

P exp

∮
K
Aidx

i

only depends on the components Ai (x , y , , z , z̄) of A. Now
informally we can set z̄ = 0, keeping z fixed, and get a
two-dimensional gauge field Ai (~x , z , 0) (here ~x = (x , y)). A precise
definition is

Ai (~x , z) =
∞∑
k=0

zk

k!
∂kz Ai (~x , z , z̄)|z=z̄=0.

Here Ai (~x , z , 0) can be regarded as a gauge field on R2 with the
gauge group being G [[z ]]. (An important detail is that we do not
need to worry about convergence of the series because we will only
let this gauge field act on representations of g[[z ]] in which bzn

acts by 0 for large n, so effectively the series is always truncated
after finitely many steps.)



We have the usual gauge invariance δAi = Diε, and here we can
do the same thing to the gauge parameter ε, setting z̄ = 0 with
fixed z . Thus we define

ε(~x , z) =
∞∑
k=0

zk

k!
∂kz ε(~x , z , z̄)|z=z̄=0.

Here ε(~x , z) acts as a g[[z ]]-valued gauge parameter for the g[[z ]]
gauge field Ai (~x , z).



The result of all this is that the theory has line operators

P exp

∫
K
Ai (~x , z)

for general representations of g[[z ]] that are not necessarily
representations of g. The reason that this is important is that it
turns out that if we consider only the (much) smaller set of
representations of g only, we do not get a closed OPE.

(I have described line operators supported at z = 0. To get line
operators supported at z = z0, we similarly consider
representations of g[[z − z0]].

Now we are ready to discuss the OPE of two ordinary Wilson lines
based on representations of g.



Here is the lowest order diagram that describes the irreducible
coupling of an external gluon to a pair of parallel Wilson lines that
I assume come from representations of g, not g[[z ]], and both are
supported at z = 0:

If one evaluates this diagram, in the limit that the spacing ε
between the two Wilson lines in the topological space R2 goes to
zero, one finds that it contributes a coupling to the composite
Wilson line of ∂zA rather than A. This means that the composite
Wilson line is not just associated to a representation of g. In this
order, the composite Wilson line is described by

ta,0 = t1
a ⊗ 1⊕ 1⊗ t2

a

ta,1 = ~fabct1
b ⊗ t2

c

ta,n = 0, n ≥ 2. (1)

Here t1
a and t2

a are the group generators for the original Wilson
lines 1 and 2.



The formula that I’ve just written, which comes from the lowest
order diagram for the OPE, is one that is frequently encountered in
the theory of integrable systems. For example, it describes the
action of the first “nonlocal charge” or of the level one generator
of the Yangian on two widely separated particles, or on two spins,
depending on what kind of integrable system one considers.



This formula, however, implies further deformations, because of
the following: the lowest order formula for ta,1, namely

ta,1 = ~fabct1
b ⊗ t2

c , (∗)

is not consistent with the commutation relations of g[[z ]]. In
g[[z ]], one has

[ta,1, tb,1] = fabctc,2.

Therefore, remembering the Jacobi identity, one has

fuva[ta,1, tb,1] + cyclic permutations of u, v , b = 0.

The formula (∗) is not consistent with this, but the mistake is of
order ~2, since ta,1 is of order ~.



So there will be a further anomaly in order ~2 that describes a
deformation of the commutation relations of g[[z ]]. To know where
to look, one has to remember that in general, to test gauge
invariance in Feynman diagrams, one has to look at the coupling of
two external gauge bosons to a given charge:

The three diagrams are proportional respectively to tatb, tbta, and
fabctc . Requiring the sum to be gauge-invariant gives
tatb − tbta − fabctc = 0, in other words the Wilson line transforms
in a representation of g.



So we need to look at diagrams of order ~2 that corrects the
coupling of a pair of external gauge particles to a given Wilson
operator, namely diagrams such as

One.png

These diagrams do have the expected anomaly. The anomaly
deforms g[[z ]] to the Yangian.



The Yangian is an algebra rather like g[[z ]] that has generators
ta,n, where a runs over a basis of g and n = 0, 1, 2, . . . , but the
commutation relations in the Yangian are more complicated than
the g[[z ]] commutation relations.

In the theory under discussion, at the classical level a Wilson line
operator corresponds to a representation of g[[z ]], but at the
quantum level it corresponds to a representation of the Yangian.
Not every representation of g or more generally of g[[z ]] can be
“deformed” to a representation of the Yangian, and the ones that
cannot be so deformed are “lost” in going to the quantum theory.



The Yangian is a deformation of the universal enveloping algebra of
g[[z ]], not of g[[z ]] itself. The reason this happens is that, because
the anomaly comes from a diagram with three gluons attached to
the given Wilson line, the anomaly is cubic in the group generators
of a given representation. Assuming we started with an ordinary
representation of g (all generators of level 1 and higher were zero
at the classical level), one way to cancel the anomaly – if it is not
identically 0 for a given representation – is to add level 1
generators acting on the given representation whose commutator is
a certain cubic polynomial in the level 0 generators. Because the
commutator is cubic, this is a deformation of the universal
envelopping algebra, not of g[[z ]] itself. (One can as well add level
2 generators, also participating in the cancellation of this anomaly.)



The last effect that I will mention today is the framing anomaly,
which is responsible for many formulas in the theory of integrable
systems that always looked strange to me. Here is the lowest order
diagram that gives a quantum correction to the coupling of a
single gauge boson to a single Wilson line:

If one evaluates this diagram, one finds the analog in this theory of
the usual “framing anomaly” of ordinary Chern-Simons theory.



Consider a Wilson line whose tangent vector is at an angle ϕ in the
xy plane. We are interested in a curved Wilson line, for which ϕ is
non-constant.

As I’ve explained before, at the classical level, a Wilson line has
z = constant. The diagram I’ve drawn has an anomaly, such that
quantum mechanically what is constant is not z but z + ~h∨ϕ,
where h∨ is the dual Coxeter number of g.



Some applications of the framing anomaly are illustrated here:



For afficionados, another application of the framing anomaly is to
the “quantum determinant relation” for SLN , and analogous
relations for other Lie algebras. To understand this relation, one
has to first consider “vertices” at which several Wilson lines meet.
Here is such a vertex for 5 Wilson lines in the fundamental
representation of SL5:



The framing anomaly comes in if we try to interpret this vertex as
determining an invariant vector in the tensor product of five copies
of the fundamental representation:


