Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Advances in Non-relativistic Quantum Gravity

Eric Bergshoeff

Groningen University

work done in collaboration with

J. Lahnsteiner, L. Romano, J. Rosseel and C. Şimşek

International Conference on Strings, Fields and Holograms

Ascona, October 11 2021

▲日▼▲□▼▲□▼▲□▼ □ ののの

Three Roads to Quantum Gravity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

NR Quantum Gravity

Does combining gravity with quantum mechanics require relativity?

Does NR string theory define NR quantum gravity?

Does NR gravity has its own holographic principle?

▲日▼▲□▼▲□▼▲□▼ □ ののの

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Some References

NR gravity/string theory involving null-reduction

T. Harmark, J. Hartong and N. A. Obers (2017); Kluson (2018);

T. Harmark, J. Hartong, L. Menculini, N. A. Obers and Z. Yan (2018);

Kluson (2019); Roychowdhury (2019); T. Harmark, J. Hartong, L. Menculini,

N. A. Obers and G. Oling (2019); A.D. Gallegos, U. Gürsoy and N. Zinnato (2019);

L. Bidussi, T. Harmark, J. Hartong, N.A, Obers, G. Oling (2021)

NR strings with NR worldsheet

C. Batlle, J. Gomis and D. Not (2017); C. Batlle, J. Gomis, L. Mezincescu and P. K. Townsend (2017); T. Harmark, J. Hartong and N. A. Obers (2017); T. Harmark, J. Hartong, L. Menculini, N. A. Obers and Z. Yan (2018)

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
	(Outline		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三□ ◇Q@

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
	(Dutline		

Non-relativistic String theory

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Outline

Non-relativistic Limits

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Non-relativistic Limits

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Outline

Non-relativistic Limits

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
	(Dutline		

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
•0000	00	0000	000	00

Defining a NR Limit

STEP 1: decomposing $E_{\mu}{}^{\hat{A}} = (E_{\mu}{}^{0}, E_{\mu}{}^{A'}) = (\text{clock, ruler})$ and introducing M_{μ} , perform an invertable field redefinition involving a parameter c:

$$E_{\mu}{}^{0} = c au_{\mu} + c^{-1} m_{\mu} \,, \quad E_{\mu}{}^{A'} = e_{\mu}{}^{A'} \,, \quad M_{\mu} = c au_{\mu} - c^{-1} m_{\mu}$$

STEP 2: take the limit $c \rightarrow \infty$ and take care of possible divergences

Example: Particles and a 'critical' limit

cp. to Seiberg, Susskind, Toumbas (2000); Gopakumar, Maldacena, Minwalla, Strominger (2000);

Danielsson, Guijosa, Kruczenski (2000), Gomis, Ooguri (2001)

Starting from a particle coupled to gravity, the red terms in the above field redefinition lead to divergencies in the kinetic and Wess-Zumino term that cancel against each other.

Infinities

Using a second-order formulation of general relativity, the NR limit of the spin-connection fields $\Omega_{\mu}{}^{\hat{A}\hat{B}}(E)$ contains a leading divergence that usually is set to zero by imposing the zero torsion constraint

$\partial_{[\mu}\tau_{\nu]}=0$

Given this constraint the NR limit of the Einstein e.o.m. (no action!) yields the NC gravity e.o.m. where the Newton potential Φ can be identified as the time component of the central charge gauge field m_{μ} :

$$\Phi \sim au^{\mu} m_{\mu}$$

This NC gravity theory is a reformulation of Newtonian gravity valid in any frame and including strong gravity effects

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
0000	00	0000	000	00

The Zero Torsion Constraint

$$\partial_{[\mu} \tau_{\nu]} = 0 \quad \rightarrow \quad \tau_{\mu} = \partial_{\mu} \rho \quad \text{with} \quad \tau_{\mu} \quad \text{clock function}$$

$$\Delta T = \int_{\mathcal{C}} \mathrm{d}x^{\mu} \tau_{\mu} = \int_{\mathcal{C}} \mathrm{d}
ho \, \text{ is path-independent } \,
ightarrow \, ext{absolute time}$$

Torsional NC gravity : $\partial_{\mu}\tau_{\nu} - \Gamma_{\mu\nu}^{\ \rho}\tau_{\rho} = 0 \quad \rightarrow \quad \Gamma_{[\mu\nu]}^{\ \rho}\tau_{\rho} = \partial_{[\mu}\tau_{\nu]}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Geometry with Co-dimension 2 Foliation

The string should be coupled to a 2-form gauge field $B_{\mu\nu}$ with

$$B_{\mu\nu} = -c^2 \epsilon_{AB} \tau_{\mu}{}^A \tau_{\nu}{}^B + b_{\mu\nu}$$

defining a geometry with a co-dimension 2 foliation where $\tau_{\mu} \rightarrow \tau_{\mu}{}^{A}$ with $\hat{A} = (A, A') = (0, 1, A')$

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

The Basic Variables

The decomposition leading to NC gravity

$$\{E_{\mu}^{\hat{A}}, M_{\mu}\} \rightarrow \{\tau_{\mu}, e_{\mu}^{A'}, m_{\mu}\}$$

gets replaced by the following redefinition:

$$\{E_{\mu}{}^{\hat{A}}, B_{\mu\nu}, \Phi\} \rightarrow \{\tau_{\mu}{}^{A}, e_{\mu}{}^{A'}, b_{\mu\nu}, \phi\}$$

The Newton potential Φ can be identified with the time-space component $\epsilon^{AB} \tau^{\mu}{}_{A} \tau^{\nu}{}_{B} b_{\mu\nu}$ of the 2-form gauge field $b_{\mu\nu}$

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
	(Dutline		

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	•0	0000	000	00

The NR String Sigma Model

The bosonic closed string sigma model (without Yang-Mills) is given by

J. Gomis, Z. Yan + E.B. (2018); J. Gomis, J. Rosseel, C. Şimşek, Z. Yan + E.B. (2019)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

$$S_{\rm NR\sigma} = -\frac{T}{2} \int d^2 \sigma \left[\sqrt{-h} \, h^{\alpha\beta} \, \partial_\alpha x^\mu \partial_\beta x^\nu e_\mu^{\ A'} e_\nu^{\ B'} \delta_{A'B'} + \, \epsilon^{\alpha\beta} \partial_\alpha x^\mu \partial_\beta x^\nu b_{\mu\nu} \right] + S_{\rm dilaton}$$

with world-sheet metric
$$h_{\alpha\beta} \sim \tau_{\alpha\beta} \equiv \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} \tau_{\mu}^{\ A} \tau_{\nu}^{\ B} \eta_{AB}$$

This is the generalization of flat spacetime to a string NC background Gomis, Ooguri (2001); Danielsson, Guijosa, Kruczenski (2000)

Note: we have not imposed any geometric constraint sofar (they follow later from dynamics)

Special Features

• The KR 2-form field $b_{\mu\nu}$ transforms under string-Galilean boost transformations:

$$\delta b_{\mu\nu} = \partial_{[\mu} \lambda_{\nu]} + 2\epsilon_{AB} \lambda_{A'}{}^{A} \tau_{[\mu}{}^{B} e_{\nu]}{}^{A'}$$

A relativistic matter field $B_{\mu\nu}$ becomes a NR geometric field $b_{\mu\nu}$

• There is an emergent dilatation symmetry:

$$\delta \tau_{\mu}{}^{A} = \lambda_{D} \tau_{\mu}{}^{A}, \qquad \qquad \delta \phi = \lambda_{D}$$

This means that the # of NR background fields is one less than the # of relativistic background fields \rightarrow one 'missing e.o.m.'

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
Outline				

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	•000	000	00

Canceling the Divergences

$$S_{\rm rel} = rac{1}{2\kappa^2} \int d^{10} x \, E\!\left(\mathcal{R} - rac{1}{12} \mathcal{H}_{\mu
u
ho} \mathcal{H}^{\mu
u
ho}
ight)$$

with $\mathcal{H}_{\mu\nu\rho} = 3\partial_{[\mu}B_{\nu\rho]}$. We redefine

$$E_{\mu}{}^{A} = c \tau_{\mu}{}^{A}, \qquad E_{\mu}{}^{A'} = e_{\mu}{}^{A'}, \qquad B_{\mu\nu} = -c^{2} \epsilon_{AB} \tau_{\mu}{}^{A} \tau_{\nu}{}^{B} + b_{\mu\nu}$$

and find

$$S = c^{2} \frac{\binom{2}{5}}{5} + \frac{\binom{0}{5}}{5} + c^{-2} \frac{\binom{-2}{5}}{5} + c^{-4} \frac{\binom{-4}{5}}{5}$$

where $\stackrel{(2)}{S}$ is proportional to the torsion tensor

$$\tau_{\mu\nu}{}^{A} \equiv \partial_{[\mu}\tau_{\nu]}{}^{A}$$

Two miracles: (i) the metric and 2-form contributions to $\stackrel{(2)}{S}$ precisely cancel and (ii) $\stackrel{(0)}{S}$ is invariant under local dilatations!

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Special Features of Non-relativistic Action

$$\begin{split} S_{\rm NR} &= \frac{1}{2 \,\kappa^2} \int {\rm d}^{10} x \, e \left({\rm R}(J) - \frac{1}{12} \, h_{A'B'C'} h^{A'B'C'} \right. \\ & - 4 \, \mathcal{D}_{A'} b^{A'} - 4 \, b_{A'} b^{A'} - 4 \, \tau_{A'\{AB\}} \tau^{A'\{AB\}} \right). \end{split}$$

- the action has an emergent dilatation symmetry and therefore has one 'missing field' and one 'missing e.o.m.'
 - the dilatation gauge field $b_{\mu}=b_{\mu}(au,\phi)$ is dependent
- The 'missing' e.o.m. follows from taking the NR limit of the e.o.m. and is precisely the Poisson equation of the Newton potential
 - The full set of e.o.m. form a reducible, but indecomposable representation: the Poisson equation needs the action!
- The e.o.m. of the Newton potential itself gives the following non-linear geometric constraint: $\tau_{B'C'A}\tau^{B'C'A} = 0$
 - This prevents an overdetermined set of equations

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Action, E.O.M. and β -Functions

The e.o.m. of non-relativistic string theory are determined by calculating the β -functions

Gomis, Oh, Yan (2019), Yan, Yu (2019), Gomis, Yan, Yu (2020); see also Gallegos, Gürsoy and Zinnatos (2019)

The emergent dilatation symmetry has the following effect:

NR NS-NS action	\rightarrow	common equations	+ Non-linear
NR $\beta\text{-functions}$	\rightarrow	common equations	+ Poisson
NR e.o.m.	\rightarrow	common equations	+ Poisson + Non-linear

The nonlinear equation is required in order that the NR string σ model does not flow towards a relativistic string σ model

Z. Yan (2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Torsional String Newton-Cartan (TSNC) geometry

basic variables:
$$\{\tau_{\mu}{}^{A}, e_{\mu}{}^{A'}, b_{\mu\nu}, \phi\}$$

 $\{\omega_{\mu}, \omega_{\mu}{}^{AA'}, \omega_{\mu}{}^{A'B'}, b_{\mu}\} \text{ are dependent, e.g., } b_{\mu} = e_{\mu}{}^{A'} \tau_{A'A}{}^{A} + \tau_{\mu}{}^{A} \partial_{A} \phi$

$$\nabla_{\mu}\tau_{\nu}{}^{A} \equiv \partial_{\mu}\tau_{\nu}{}^{A} - \omega_{\mu} \epsilon^{AB}\tau_{\nu B} - \mathbf{b}_{\mu}\tau_{\nu}{}^{A} - \Gamma^{\rho}_{\mu\nu}\tau_{\rho}{}^{A} = 0,$$

$$\nabla_{\mu}e_{\nu}{}^{A'} \equiv \partial_{\mu}e_{\nu}{}^{A'} - \omega_{\mu}{}^{A'B'}e_{\nu B'} + \omega_{\mu}{}^{AA'}\tau_{\nu A} - \Gamma^{\rho}_{\mu\nu}e_{\rho}{}^{A'} = 0$$

non-zero torsion: $T^{\rho}_{\mu\nu} = 2\Gamma^{\rho}_{[\mu\nu]} = 2D_{[\mu}(\omega, b)\tau_{\nu]}^{A}\tau_{A}^{\rho}$

cp. to Geracie, Prabhu, Roberts (2015)

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00
	(Dutline		

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

▲ロト ▲圖 → ▲国 → ▲国 → 「国 → のへで

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	•00	00

Taking the NR limit of fermions

Define world-sheet chirality projection operators Π_\pm by

$$\Pi_{\pm} = \frac{1}{2}(1 \pm \gamma_0 \gamma_1)$$

and consider projected target space spinors

$$\chi_{\pm} = \Pi_{\pm} \chi$$

Gomis, Kamimura, Townsend (2004)

We then redefine the spinor χ as

$$\chi = c^{1/2} \chi_+ + c^{-1/2} \chi_-$$

such that, after taking $c \to \infty$, the projected spinors transform under Galilean boosts as follows:

$$\delta\chi_{+} = 0$$
 and $\delta\chi_{-} = \frac{1}{2}\lambda^{AA'}\Gamma_{AA'}\chi_{+}$

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

New features compared to the bosonic case

- There is no direct connection between a two-dimensional sigma model description and the NR target space effective action
- Taking the naive NR limit leads to divergent terms in the supersymmetry rules

These divergences can be controlled by

- the occurrence of 2 'superconformal' Stueckelberg symmetries beyond dilatations yielding a shortened supergravity multiplet
- imposing by hand the following twistless torsional constraint:

$$T^{-}_{\mu\nu} = 0$$
 or $\tau_{[\mu}^{-}\partial_{\nu}\tau_{\rho]}^{-} = 0$

Christensen, Hartong, Obers, Rollier (2013)

defining a 'self-dual' TSNC geometry (invariant under SUSY!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	00

Minimal Supergravity Action versus E.O.M.

- the action has one emergent dilatation and two emergent superconformal symmetries. It therefore has one 'missing' bosonic and two 'missing' fermionic fields plus corresponding 'missing' e.o.m.
- The 'missing' e.o.m. follow from taking the NR limit of the e.o.m. and are precisely the Poisson equation of the Newton potential plus two fermionic partner equations

• The minimal supergravity action is a pseudo action in the sense that it is only invariant under supersymmetry if one uses the twistless torsional constraint <u>after</u> varying the action. Due to this the e.o.m. that follow from the action transform under supersymmetry to the 'missing' e.o.m.: they belong to the same supermultiplet

cp. to Vanhecke, Van Proeyen (2017)

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook	
00000	00	0000	000	00	
Outline					

Non-relativistic String theory

Non-relativistic NS-NS Gravity

Minimal Supergravity

Outlook

うくりく 川田 (山田) (山下) (山下) (山下)

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	•0

Outlook

- how general is our limit technique?
 - invertable field redefinition, cancellation of divergences, local dilatation symmetry
- including Yang-Mills to obtain heterotic gravity
 - sigma model anomaly, T-duality: taking a string NR limit followed by spatial reduction is dual to a null-reduction
- open strings

see lectures by Z. Yan at 1st School on NR QFT, Gravity and Geometry

connection to Double Field Theory

Ko, Melby-Thompson, Meyer and Park (2015); Gallegos, Gürsoy, Verma and Zinnato (2020)

extension to IIA/IIB supergravity and M-theory

for bosonic sector of M-theory, see Blair, Gallegos, Zinnato (2021)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Non-relativistic Limits	Non-relativistic String theory	Non-relativistic NS-NS Gravity	Minimal Supergravity	Outlook
00000	00	0000	000	0●

Take-Home Message

Our results pave the way for a target space approach to NR string theory:

(supersymmetric) brane solutions, compactifications, NR holography etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで