Branes wrapped on spindles

Jerome Gauntlett

Ferrero, JPG, Ipina, Martelli, Sparks x2

Ferrero, JPG, Martelli, Sparks

Cassani, JPG, Martelli, Sparks

2011.10579 2012.08530 2105.13344 2106.05571

Wrapped branes and susy AdS/CFT

Basic examples of AdS/CFT:

D3-branes
$$\mathbb{R}^{1,3}$$
: $AdS_5 \times S^5 \leftrightarrow d = 4$, $\mathcal{N} = 4$ SYM

M5-branes
$$\mathbb{R}^{1,5}$$
: $AdS_7 \times S^4 \leftrightarrow d = 6, \ \mathcal{N} = (0,2)$

M2-branes
$$\mathbb{R}^{1,2}$$
: $AdS_4 \times S^7 \leftrightarrow d = 3$, ABJM

- Wrap the brane world volume: $\mathbb{R}^{1,k} \times \Sigma_p$
 - Preserve susy?
 - Follow RG to IR new examples of AdS/CFT?

• Susy can be preserved by a "topological twist" [Witten 88]

Couple the SCFT on $\mathbb{R}^{1,k} \times \Sigma_p$ to background R-symmetry currents

$$(\partial_{\mu} + \frac{1}{4}\omega_{\mu} + A_{\mu} \gamma)\epsilon = 0$$

constant spinors on Σ_p

Geometric viewpoint:

[Bershadksy,Sadov,Vafa 95]

Wrap branes about a calibrated cycle in a special holonomy manifold

• e.g. M5 wrapping holomorphic two-cycles: [Maldacena, Nunez 00]

[Bah,Beem,Bobev,Wecht II][...]

M5 wrapped on $\Sigma_2 \subset CY_2$:

$$AdS_7 \times S^4 \to AdS_5 \times "\Sigma_2 \times S^4"$$

IR dual to: d = 4, $\mathcal{N} = 2$ SCFT

M5 wrapped on $\Sigma_2 \subset CY_3$:

$$AdS_7 \times S^4 \to AdS_5 \times "\Sigma_2 \times S^4"$$

IR dual to: d = 4, $\mathcal{N} = 1$ SCFT

• Analogous story for D3-branes and M2-branes wrapped on Σ_2 [Maldacena, Nunez 00][JPG,Kim,Waldram 01][Benini,Bobev 13]....

- For M5-branes and D3-branes can also wrap on higher dimensional cycles [Gauntlett,Kim,Waldram 00][...]
- Many other developments eg involving SE spaces

and then wrap world-volume on a two-cycle with a topological twist [Benini, Bobev, Crichigno 15][...]

Here: D3, M2 and M5-branes wrapped on a spindle

Spindle has orbifold singularities!

Susy NOT via the usual topological twist!

Spindle
$$\Sigma(n_-, n_+)$$

$$n_+ \in \mathbb{N}$$

$$hcf(n_{+}, n_{-}) = 1$$

- Topologically a two-sphere
- Has conical deficits at poles

$$2\pi(1-\frac{1}{n_{\pm}})$$

•
$$\Sigma = \mathbb{WCP}^1(n_-, n_+)$$

• Constant curvature metrics don't exist on \sum_

• Euler character
$$\chi = \frac{1}{n_-} + \frac{1}{n_+}$$

Plan

• D3-branes wrapped on a spindle - dual SCFT $d=2, \mathcal{N}=(0,2)$

IR physics: new interpretation of type IIB AdS_3 solutions first found in 2006 and precision AdS/CFT test of conjectured dual!

• M2-branes wrapped on spindle - dual SCQM $\mathcal{N}=2$

IR: new AdS_2 solutions

UV: near horizon limit of accelerating AdS4 black holes!

• (M5-branes)

AdS/CFT and Sasaki-Einstein manifolds

Type IIB

$$ds^{2} = ds^{2}(AdS_{5}) + ds^{2}(SE_{5})$$

 $F_{5} = vol(AdS_{5}) + vol(SE_{5})$

$$F_5 = vol(AdS_5) + vol(SE_5)$$

Dual to N=ISCFT in d=4

$$ds^{2} = ds^{2}(AdS_{4}) + ds^{2}(SE_{7})$$
$$G_{4} = vol(AdS_{4})$$

$$G_4 = vol(AdS_4)$$

Dual to N=2 SCFT in d=3

Much is known about dual SCFTs...

Geometry:

SE have canonical Killing vector ξ dual to R-symmetry of SCFT

Let η be one-form dual to ξ (i.e. $\eta \cdot \xi = 1$)

$$ds^{2}(SE_{2n+1}) = \eta^{2} + ds^{2}(KE_{2n})$$

with $d\eta =
ho$, the Ricci form of $ds^2(KE_{2n})$

Regular class: U(I) fibration over KE manifold

Quasi-Regular class: U(I) fibration over KE orbifold

Irregular class: R-symmetry orbits don't close

Regular class:

D=5 - full list

$$\mathbb{CP}^2$$
 $o S^5$ and S^5/\mathbb{Z}_3 $\mathbb{CP}^1 imes \mathbb{CP}^1$ $o T^{1,1}$ and $T^{1,1}/\mathbb{Z}_2$ $dP_m, \quad m=3,\ldots,8$

D=7 examples

$$\mathbb{CP}^3 \qquad \qquad \to \qquad S^7 \quad \text{and} \quad S^7/\mathbb{Z}_2 \quad \text{and} \quad S^7/\mathbb{Z}_4$$

$$\mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1 \quad \to \quad Q^{1,1,1} \quad \text{and} \quad Q^{1,1,1}/\mathbb{Z}_2$$

$$\mathbb{CP}^2 \times \mathbb{CP}^1 \qquad \to \qquad M^{3,2}$$

Want to construct SUGRA solutions describing:

D=4 SCFTs dual to
$$AdS_5 imes SE_5$$
 placed on $\mathbb{R}^{1,1} imes \Sigma$

D=3 SCFTs dual to
$$AdS_4 imes SE_7$$
 placed on $\mathbb{R} imes \Sigma$

with
$$\Sigma = \mathbb{WCP}^1(n_-, n_+)$$
 a spindle

How? Use consistent KK truncations:

Type IIB: KK reduce on SE_5 to D=5 minimal gauged SUGRA [Buchel,Liu 06]

Any (susy) D=5 solution uplifts, locally, to a (susy) D=10 solution e.g. AdS_5 vacuum uplifts to $AdS_5 \times SE_5$

D=11: KK reduce on SE_7 to D=4 minimal gauged SUGRA

D3-branes wrapped on a spindle

[Ferrero, JPG, Ipina, Martelli, Sparks 20]

D=5 gauged SUGRA:

$$\mathcal{L} \sim \sqrt{-g}(R+12-F^2) + A \wedge F \wedge F$$

 $AdS_3 imes \Sigma(n_-,n_+)$ susy solution - dual to $d=2, \mathcal{N}=(0,2)$ SCFT

$$ds_5^2 = \frac{4y}{9} ds_{AdS_3}^2 + ds_{\Sigma}^2, \qquad A = \frac{1}{4} \left(1 - \frac{a}{y} \right) dz$$

$$ds_{\Sigma}^{2} = \frac{y}{q(y)}dy^{2} + \frac{q(y)}{36y^{2}}dz^{2}$$

$$q(y) = 4y^{3} - 9y^{2} + 6ay - a^{2}$$

$$a = \frac{(n_{-} - n_{+})^{2}(2n_{-} + n_{+})^{2}(n_{-} + 2n_{+})^{2}}{4(n_{-}^{2} + n_{-}n_{+} + n_{+}^{2})^{3}},$$

$$\Delta z = \frac{2(n_{-}^{2} + n_{-}n_{+} + n_{+}^{2})}{3n_{-}n_{+}(n_{-} + n_{+})}2\pi,$$

R-symmetry flux through spindle:

$$Q_m = \frac{1}{2\pi} \int_{\Sigma} F = \frac{n_- - n_+}{2n_- n_+}$$

- Not a topological twist! $Q_m \neq \chi = \frac{1}{n_+} + \frac{1}{n_-}$
 - Killing spinors are not constant on the spindle
- Uplift to type IIB using SE5 in regular class

With care: the uplifted solution is completely smooth!

Subtlety: which SE5 one uplifts on depends on n_{\pm}

e.g.
$$n_+=2$$
 $n_-=3,7,\ldots \rightarrow S^5/\mathbb{Z}_3$ \mathbb{CP}^2 $n_-=5,9,\ldots \rightarrow S^5$

Analogy: consider metric on S^3

$$ds^2 = d\theta^2 + \cos^2 \theta d\phi_1^2 + \sin^2 \theta d\phi_2^2$$

$$\vartheta \in [0, \pi/2]$$

$$\Delta \phi_i = 2\pi$$

Do a KK reduction using the Killing vector

$$V = n_+ \partial_{\phi_1} + n_- \partial_{\phi_2}$$

Find a U(I) fibration over the spindle:

New coordinates:

$$\phi_1 = n_+ \nu \phi_2 = n_- \nu + \frac{1}{n_+} \mu$$

$$\Delta\mu, \Delta\nu = 2\pi$$

$$V = \partial_{\nu}$$

$$ds^{2} = \Lambda(d\nu + Ad\mu)^{2} + d\vartheta^{2} + \frac{\cos^{2}\vartheta\sin^{2}\vartheta}{\Lambda}d\mu^{2}$$

$$\Lambda = n_+^2 \cos^2 \vartheta + n_-^2 \sin^2 \vartheta$$

In fact the regular $AdS_3 \times "\Sigma \times SE_5"$ solutions were already constructed from a very different point of view in 2006!

[Gauntlett, Kim, Waldram 06]

Central charge of $d = 2, \mathcal{N} = (0, 2)$ SCFT

$$c = \frac{4(n_{-} - n_{+})^{3}}{3n_{-}n_{+}(n_{-}^{2} + n_{-}n_{+} + n_{+}^{2})} a_{4d}$$

For d=4, $\mathcal{N}=1$ SCFT dual to $AdS_5 \times SE_5$

We now have a precise conjecture for d=2 SCFT: take d=4 SCFT dual to $AdS_5 \times SE_5$ wrap on a spindle and then flow to the IR

Precision check: central charge from a field theory computation

Use c-extremisation principle of [Benini, Bobev 12]

Idea: Extremise $c_{trial}(R)$ over possible 2-d R symmetries

- Allow for mixing with internal symmetry of spindle
- The 2d anomaly polynomial is obtained by integrating the 4d anomaly polynomial over the spindle, taking into account that there is flux through the spindle.

c.f. [Bah,Bonetti,Minasian,Nardoni 19] [Hristov, Tachikawa, Zaffaroni 20]

$$R_{\mathrm{trial}} = \tilde{R} + \varepsilon J$$

Find
$$\varepsilon_* = \frac{3n_- n_+ (n_- + n_+)}{n_-^2 + n_- n_+ + n_+^2}$$
 and $c(R_*) = c_{SUGRA}$

Many open questions eg

• Is there a black string solution of the form:

$$AdS_5 \rightarrow AdS_3 \times \Sigma$$

M2-branes wrapped on a spindle [Ferrero,JPG,Ipina,Martelli,Sparks 20]

D=4 gauged SUGRA:
$$\mathcal{L} \sim \sqrt{-g}(R+6-F^2)$$

$$AdS_2 \times \Sigma(n_-, n_+)$$
 Solutions:

- NOT a topological twist $Q_m \neq \chi(\Sigma)$
- Can uplift on SE7 in regular class completely regular solutions

[Gauntlett, Kim, Waldram 06]

New features:

Rotation, consistent with AdS2 symmetries

$$ds^{2} = f_{1}(y) \left(-\rho^{2} d\tau^{2} + \frac{d\rho^{2}}{\rho^{2}}\right) + f_{2}(y)dy^{2} + f_{3}(y)(dz + j\rho d\tau)^{2}$$

• UV completion $AdS_4 o AdS_2 imes \Sigma$

This is precisely a two parameter family of supersymmetric dyonic, rotating and accelerating back holes! [Plebanski, Demianski 76]

- Acceleration gives rise to conical singularities

 Long history of dealing with them. Here we find that are completely removed by uplifting SE_7 !
- Conformal boundary has a spindle for $J \neq 0$

Final Comments

Have wrapped D3,M2-branes on spindles
 Supersymmetry without usual topological twist

Caparalisations

 [Hosseini Hristov, Zaffaroni][Boido Ipina, Sparks]

Generalisations [Hosseini, Hristov, Zaffaroni] [Boido, Ipina, Sparks] [Fererro, Inglese, Martelli, Sparks] [Couzens, Stemerdink, van de Heisteeg]

- For wrapped D3,M2s uplifted with certain regular Sasaki-Einstein the upstairs metric is regular When does this happen?
- Connects with broader programme of understanding $AdS_3 imes GK_7$ and $AdS_2 imes GK_9$ solutions [Kim 05][Kim,Park 06][Gauntlett,Kim 07]

[Couzens, Gauntlett, Martelli, Sparks 18] [Gauntlett, Martelli, Sparks 19, 19] [...]

Field theory:

What rules for fields at orbifold points? eg N=4 SYM SUGRA suggest some SCFTs are obstructed- why?

• Can also wrap M5-branes on spindles [Ferrero,JPG,Martelli,Sparks 21]

No $AdS_5 \times \Sigma$ solutions in minimal D=7 gauged supergravity (why?) but can construct in non-minimal case

Dual to d = 4, $\mathcal{N} = 1$ SCFTs

Susy NOT via usual topological twist but now $Q_m = \chi(\Sigma)$: "topologically a topological twist"!?

Can carry out a precision test of AdS/CFT by comparing with d=6 (0,2) SCFT reduced on a spindle - exact agreement

D=11 solution has orbifold singularities...rules?

UV completions

M2: accelerating black holes - new interpretation

Recover entropy using new developments involving complex saddle points [Cabo-Bizet, Cassani, Martelli, Murthy 18] [Cassani, Papini 19]

[Cassani, Gauntlett, Martelli, Sparks 21]

D3,M5?

• Wrap branes on higher dimensional orbifolds?

• Rich new landscape to explore!