Giant gravitons in Twisted Holography

In collaboration with Kasia Budzic

Determinant operators

$$\mathcal{D}_{m,\vec{n}}(x) = \det \left[m \, \mathbf{1}_{N \times N} + \vec{n} \cdot \vec{\Phi}(x) \right] \qquad m \in \mathbb{C} \qquad \vec{n} \in \mathbb{C}^6 \qquad \vec{n}^2 = 0$$

- Dual to the insertion of a "giant graviton" D3 brane at the boundary
 - Wraps asymptotically $\mathbb{R}^+ \times S^3 \subset AdS_5 \times S^5$
 - n determines orientation, m determines size
- Target: multi-determinant correlators at large N

D-brane saddles

 $e^{-NS_{M_4}^{cl}}$ (IIB open + closed)

D-brane saddles

 $e^{-NS_{M_4}^{cl}}$ (IIB open + closed)

Multiple saddles

Classical actions add up for disconnected branes

Chiral algebra subsector

C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, B. C. van Rees

$$X(z) = \Phi_{++}(\operatorname{Re} z, \operatorname{Im} z, 0, 0) + \bar{z}\Phi_{-+}(\operatorname{Re} z, \operatorname{Im} z, 0, 0)$$
$$Y(z) = \Phi_{+-}(\operatorname{Re} z, \operatorname{Im} z, 0, 0) + \bar{z}\Phi_{--}(\operatorname{Re} z, \operatorname{Im} z, 0, 0)$$

Free 2d chiral algebra correlation functions

$$\det\left[m\,1_{N\times N} + X(z) + vY(z)\right]$$

- Twisted holography: dual reduces to B-model on SL(2,C)
- D3 branes => B-branes on holomorphic curve
 - Detailed dictionary not worked out!

Chiral algebra saddles

- Borrow free saddle analysis from Jiang, Komatsu, Vescovi
 - Fermionize $\det \left[m \mathbf{1}_{N \times N} + X(z) + v Y(z) \right] = \int d\bar{\psi} d\psi \, e^{m\bar{\psi}\psi + \bar{\psi}(X(z) + v Y(z))\psi}$
 - integrate away 4d scalars, Hubbard Stratonovich
- Saddle equations for auxiliary matrix ρ of size k, admit factorized saddles

•
$$[\zeta, \rho] + [\mu, \rho^{-1}] = 0$$
 $\rho_{aa} = m_a$ $\zeta = \operatorname{diag}(z_a)$ $\mu = \operatorname{diag}(v_a)$ $(\rho^{-1})_{aa} = \frac{\partial S}{\partial m_a}$

A spectral curve

Build commuting matrices

$$B(a) = a\mu - \rho$$

$$C(a) = a\zeta + \rho^{-1}$$

$$D(a) = a\zeta\mu + \rho^{-1}\mu - \zeta\rho$$

$$aD(a) - B(a)C(a) = 1$$

- Simultaneous eigenvalues (a,b,c,d) with ad-bc=1
 - Spectral curve in SL(2,C)

Spectral curve as a dual brane

- Passes multiple tests
 - Correct asymptotic shape at large a
 - Single trace insertion = B-model bulk-boundary propagator
 - Action of global symmetry algebra
 - One-loop check

To be done

- Is every curve a spectral curve? Checked only genus 0
- Subleading 1/N corrections
- Spectral curve => four-dimensional D3 brane shape
- Near-chiral algebra expansion?