Entanglement in Matrix Quantum Mechanics

Sean Hartnoll (University of Cambridge)

Strings, fields & holograms (Ascona, virtually)
October 2021

Some major themes in 20th century theoretical physics:

- Entropy counts microscopic degrees of freedom! [Boltzmann]
- Black holes have entropy!
 [Bekenstein and Hawking]
- In certain cases can be matched microscopically!
 [Strominger and Vafa: SUSY + CFT]

Quantum entanglement promises to be an organizing principle for 21st century physics:

[Bombelli et al., Srednicki, ...]

[Kitaev-Preskill,

Levin-Wen, ...]

- Spacetime requires a lot of entanglement [Ryu-Takayangi, Lewkowyck-Maldacena, ...]
- What is the microscopic (bulk) origin of this entanglement? How is spacetime actually made? Needed: Strominger-Vafa for the 21st century.

- Tensor networks give a 'skeleton' of spacetime that is built using boundary locality, which is already manifest [Swingle, ...]
- The 'flesh' of spacetime, however, is due to microscopic models that support a fully emergent locality. Want to understand entanglement.
- Best understood framework: large N matrices.

Baby model: single matrix

- Singlet sector of $\mathcal{L} \sim \mathrm{tr}\left[\dot{M}^2 V(M)\right]$ described by eigenvalues $\{\lambda\}$ of M.
- Eigenvalues are noninteracting fermions. Fermi sea builds 1d space.

 Entanglement of interval [λ₁,λ₂] using conventional many-body methods. Matches emergent 1+1 'tachyon' field [Das 95, Hartnoll-Mazenc 15]:

$$S_{[\lambda_1,\lambda_2]} = \frac{1}{3} \log \frac{\tau(\lambda_2) - \tau(\lambda_1)}{\sqrt{g_s(\lambda_1)g_s(\lambda_2)}/\mu}$$

Beyond one matrix

- Eigenvalues are not enough. 'Off-diagonal' modes stretching between coincident branes essential for 'grown up' holography.
- Noted by [Das-Kaushal-Mandal-Trivedi 20] that a class of proto-geometric partitions are obtained by diagonalizing one of the matrices (e.g. X₁).
- Eigenvalues of X₁ dealt with as in the single matrix case.
 Induces a block decomposition of the remaining matrices. Various proposals made for dealing with the off-diagonal blocks.

Plan

- Consider a solvable matrix quantum mechanics with two matrices.
- Compute the entanglement of a geometric partition.
 New treatment of off-diagonal modes inspired by entanglement in gauge theories.
- Obtain emergent 2d 'area law' and topological-like subleading correction.

Work to appear shortly with Alex Frenkel, also many discussions with Xizhi Han and Onkar Parrikar.

- Quantum Hall phases: incompressible droplet supporting emergent Chern-Simons dynamics.
- Minimal microscopic realization: discretize the area-preserving diffeos of the droplet into U(N). [Susskind 01]
- IR-regulated version by [Polychronakos 01]:

$$H = \operatorname{tr}(X^2 + Y^2) \qquad [X_{ab}, Y_{cd}] = i\delta_{ad}\delta_{bc}$$

(Gauss law)
$$-i[X,Y] + \Psi \Psi^{\dagger} = k$$

• Ground state [Hellerman-Van Raamsdonk 01]:

$$|\psi\rangle = \left[\epsilon^{a_1...a_N}\Psi_{a_1}^{\dagger}(\Psi^{\dagger}Z^{\dagger})_{a_2}\cdots(\Psi^{\dagger}Z^{\dagger N-1})_{a_N}\right]^k|0\rangle$$

Here Z = X + iY.

State simple in terms of variables {x,U,Ψ} where

$$X = UxU^{\dagger}, \qquad \Psi = U\widetilde{\Psi}$$

$$\psi = (\det U)^k \prod_{a < b} (x_a - x_b)^k e^{-\frac{1}{2} \sum_d x_d^2} \prod_c \widetilde{\Psi}_c^k e^{-\frac{1}{2} \sum_d |\widetilde{\Psi}_d|^2}$$

[Karabali-Sakita 01]

- Wavefunction factorizes allows computation of two contributions to the entanglement due to a vertical (fixed X) partition of the droplet:
 - (1) A 'collective field' contribution from fluctuations of the x eigenvalues. Physically: correlations due to chiral boundary mode.
 - (2) A 'gauge theoretic' contribution from an associated block partition of the U. Physically: nonlocal correlations due to the Gauss law.

Collective field entropy

- Similar to computations of the entanglement in single-matrix models. But we used a new method.
- In terms of the collective field $n(x) \equiv \sum_{a} \delta(x x_a)$

the wavefunction $\psi[n] = e^{S[n]}$

$$S[n] = \frac{k+1}{2} \int dx_1 dx_2 n(x_1) n(x_2) \log|x_1 - x_2| - \frac{1}{2} \int dx n(x) x^2$$

is strongly peaked on the Wigner semi-circle:

$$n_o(x) = \frac{2N}{\pi R^2} \sqrt{R^2 - x^2}, \qquad R^2 = 2N(k+1)$$

Collective field entropy

• Fluctuations about the semi-circle $n(x) = n_o(x) + \delta n(x)$ are described by the Gaussian wavefunction:

$$\psi[\delta n] = e^{\frac{k+1}{2} \int dx_1 dx_2 \delta n(x_1) \delta n(x_2) \log |x_1 - x_2|}$$

 Using steps from [Jackiw-Strominger 81] one can express this wave function in terms of a chiral boson φ:

$$\psi[\delta n] = \int \mathcal{D}\phi e^{-\int d\tau d\theta [i\partial_{\tau}\phi\partial_{\theta}\phi + (\partial_{\theta}\phi)^{2}] - i\int d\theta \phi(\theta)\delta n(\theta)}$$

Collective field entropy

- Can show that the 'target space' entanglement of the eigenvalues is equal to the usual entanglement of the chiral boson.
- This is fixed by conformal invariance.
- Finite N cuts off the mode expansion of the boundary chiral field so that:

$$s_{\text{bdy}} = \frac{1}{6}\log(NL) + \cdots$$

Length of cut with radius normalized to one.

Lattice gauge theory

- The gauge-invariant variables (Wilson loops) of a gauge theory are not local. Defining a geometric partition therefore requires some work.
- [Donnelly 12]: links crossing the boundary are assigned to both regions. In simple situations the two copies of the holonomy on the link are required by gauge invariance to be maximally entangled.

Partitioning the matrices

- In the full theory, the U degrees of freedom are 'pure gauge' and do (almost) nothing.
- We will see however, that when the system is partitioned some of the U's acquire dynamics.
- We partition U in the spirit of [Donnelly-Freidel 16].
 I.e. write the kinetic term (which determines symplectic structure) in the Lagrangian as a sum:

$$L_{\rm kin} = i \operatorname{tr} \left(\Theta Z^{\dagger} \frac{d}{dt} Z + (1 - \Theta) Z^{\dagger} \frac{d}{dt} Z \right) = L_{L \operatorname{kin}} + L_{R \operatorname{kin}}$$

Partitioning the matrices

 Here Θ projects to the space of lowest M eigenvalues of X. One finds:

$$L_{L \, \text{kin}} = y_L \frac{d}{dt} x_L + \frac{i}{2} \operatorname{tr} \left(Y_{RL}^{\dagger} \frac{d}{dt} Y_{RL} \right)$$

$$L_{R \, \text{kin}} = y_R \frac{d}{dt} x_R + \frac{i}{2} \operatorname{tr} \left(Y_{LR}^{\dagger} \frac{d}{dt} Y_{LR} \right)$$

These are the off-diagonal modes that live in both regions

The Gauss law fixes

$$Y_{LR}^{\dagger} = Y_{RL} = U_R Y_{RL}^{\text{cl}} U_L^{\dagger}$$
 $Y_{ab}^{\text{cl}} = y_a \delta_{ab} - i \frac{\widetilde{\Psi}_a^{\dagger} \widetilde{\Psi}_b}{x_a - x_b}$.

(It is important only to consider $U = U_L U_R$ that respect the block partition)

Partitioning the matrices

To make a long-ish story short (details on arXiv shortly!):

- On each side of the cut U_L and U_R become families of harmonic oscillators, constrained to fixed energy.
- The energy is set by the singular values of Y_{RL}^{cl} .
- Gauge invariance forces these oscillators to be maximally entangled across the cut.
- The oscillators are 'identical'. This is inherited from the fact that U must not include permutations that re-order the eigenvalues.

Gauge theoretic entropy

 With the above in place, the gauge-theoretic entanglement entropy can be computed using the Hardy-Ramanujan formula to count the dimension of the entangled oscillator space. We find:

$$s = \frac{(Nk)^{1/2} \log(NL)}{\sqrt{6}} L + \cdots$$

- Area law, regulated by finite N emergent geometry!
- Logarithmic violation due to L-dependent cutoff on the values the emergent U(1) connection can take.

Radial partition

 We also looked at a radial partition, using a similar framework.
 Find:

$$s = \frac{(Nk)^{1/2}}{\sqrt{6}}C_o - 2\log[(Nk)^{1/2}C_o] + \cdots$$

- No logarithmic violation of area law here, because there is more symmetry in the cutoff.
- Trust subleading term in this case. Reminiscent of topological entanglement terms.

Conclusions

- What partition of matrix degrees of freedom captures the partition of an emergent geometry?
- The matrix Hamiltonian does not have spatial locality. But the wavefunction should contain an emergent locality.
- We have defined a partition in a very simple twomatrix model and computed the corresponding entropy (subtleties: role of permutations and 'partial gauge fixing').

Conclusions

- We found two contributions that match the expected emergent locality:
 - 1. a logarithmic entanglement from eigenvalues
 - → chiral boundary mode
 - 2. an area-law gauge-theoretic entanglement
 - → bulk Chern-Simons field
- Now have the understanding to move on to a more complicated model with compressible bulk dynamics.