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Votivation

Some major themes in 20th century
theoretical physics:

* Entropy counts microscopic degrees of freedom!
‘Boltzmann]

* Black holes have entropy!
Bekenstein and Hawking]

* |n certain cases can be matched microscopically!
Strominger and Vafa: SUSY + CFT]




Votivation

Quantum entanglement promises to be an organizing

orinciple for 21st century physics:
|[Bombelli et al.,

e Local interactions « area law entanglement Srednicki, ...]

Gauge interactions «‘topological’ entanglement  [Kitaev-Preskill,
Levin-Wen, ...]

e Spacetime requires a lot of entanglement
[Ryu-Takayangi, Lewkowyck-Maldacena, ...]

 What is the microscopic (bulk) origin of this
entanglement”? How is spacetime actually made”
Needed: Strominger-Vafa for the 21st century.




Votivation

* Jensor networks give a ‘'skeleton’ of spacetime that

IS bullt using boundary locality, which is already
manifest [Swingle, ...]

* The ‘flesh’ of spacetime, however, is due to
microscopic models that support a fully emergent
locality. Want to understand entanglement.

* Best understood framework: large N matrices.



Votivation
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Baby model: single matrix

* Singlet sector of £ ~ tr [MQ — V(M)} described by

eigenvalues {A} of M.

Density
fluctuations

* Eigenvalues are non-

interacting fermions. Fermi \
sea builds 1d space. Fermi sea

 Entanglement of interval [A1,A2] using conventional
many-body methods. Matches emergent 1+1
tachyon’ field [Das 95, Hartnoll-Mazenc 15]:

llog ’7'()\2)—’7'()\1)

37 Vgs(M)gs(\2)/p

S[MQ\Q] —



Beyond one matrix

e Eigenvalues are not enough. ‘Off-diagonal’ modes
stretching between coincident branes essential for
‘grown up’ holography.

 Noted by [Das-Kaushal-Mandal-Trivedi 20] that a class
of proto-geometric partitions are obtained by
diagonalizing one of the matrices (e.g. X1).

* Eigenvalues of X1 dealt with as in the single matrix case.
Induces a block decomposition of the remaining
matrices. Various proposals made for dealing with the
off-diagonal blocks.



Plan

* Consider a solvable matrix guantum mechanics
with two matrices.

 Compute the entanglement of a geometric partition.
New treatment of off-diagonal modes inspired by
entanglement in gauge theories.

* Obtain emergent 2d ‘area law’ and topological-like
subleading correction.

Work to appear shortly with Alex Frenkel, also many
discussions with Xizhi Han and Onkar Parrikar.



Quantum Hall Matrix Model

* Quantum Hall phases: incompressible droplet
supporting emergent Chern-Simons dynamics.

* Minimal microscopic realization: discretize the

area-preserving diffeos of the droplet into U(N).
[Susskind O1]

* |R-regulated version by [Polychronakos 01]:

H=tr(X*+Y?) (Xabs Yed) = i00d0pc

(Gauss law)  —i[X, Y]+ 00T =k



Quantum Hall Matrix Model

* Ground state [Hellerman-Van Raamsdonk 01]:
k
g) = e v wd (w12t - (w2, ] o)

Here Z = X + 1Y.

o State simple in terms of variables {x,U,W} where

X=UzU', U =UV
(det U)* | [ (za — o) 6—%&%1‘[{175 P21k
a<b C

[Karabali-Sakita 01]



Quantum Hall Matrix Model

* Wavetunction factorizes — allows computation of
two contributions to the entanglement due to a
vertical (fixed X) partition of the droplet:

C

.

o

) A ‘collective field’ contribution from tluctuations
- the x eigenvalues. Physically: correlations due to
niral boundary mode.

(2) A ‘gauge theoretic’ contribution from an
associated block partition of the U. Physically:
nonlocal correlations due to the Gauss law.



Quantum Hall Matrix Model
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Collective field entropy

e Similar to computations of the entanglement in
single-matrix models. But we used a new method.

* In terms of the collective field n(z) = d(z — za)

the wavefunction [n] = e

k+1 1
Sn| = % dridron(xi)n(xe)log |z — xa| — §/da;n(:v)a:2

s strongly peaked on the Wigner semi-circle:

no(zr) = —/R2—22, R?>=2N(k+1)



Collective field entropy

e Fluctuations about the semi-circle n(z) = ny(z) + dn(x)
are described by the Gaussian wavefunction:

k41

plon] = e 2 J dz1dz2dn(z1)dn(x2) log |1 —z2|

* Using steps from [Jackiw-Strominger 81] one can
express this wave function in terms of a chiral
boson ¢:

plon] = /nge—fd7d9[i87¢89¢+(39¢)2]—ifdeqb(e)én(e)



Collective field entropy

* Can show that the ‘target space’ entanglement of

the elgenvalues is equal to the usual entanglement
of the chiral boson.

* This is fixed by conformal invariance.

* Finite N cuts off the mode expansion of the
boundary chiral field so that:

1
Sbdy = ElOg(NL) + .-

!

Length of cut with radius
normalized to one.



|_attice gauge theory

* The gauge-invariant variables (Wilson loops) of a
gauge theory are not local. Defining a geometric
partition theretore requires some work.

* [Donnelly 12]: links crossing the boundary are
assigned to both regions. In simple situations the
two copies of the holonomy on the link are required
by gauge invariance to be maximally entangled.

®i (Z uz>uz>> = As ~ L log(dim R)



Partitioning the matrices

* In the full theory, the U degrees of freedom are
‘oure gauge’ and do (almost) nothing.

* We will see however, that when the system Is
partitioned some of the U’s acquire dynamics.

* We partition U in the spirit of [Donnelly-Freidel 16].
|.e. write the kinetic term (which determines
symplectic structure) in the Lagrangian as a sum:

J

1 1
Lyin = 1 tr <@ZT(_Z T (1 - @)ZT(_Z> — LL kin LRkin

dt dt



Partitioning the matrices

* Here © projects to the space of lowest M
eigenvalues of X. One finds:

d d These are the
Lixin =yr—21 + = (YT YRL)

dt RL gt ~__ off-diagonal

Z

2

d z
LRxin = yr— R + 5 (Yng YLR) — Mmodes that live
INn both regions

e The Gauss law fixes

Y, . = Yry = UrYSLU! Y = yabap — i

(It is important only to consider U = U Ur that respect the
block partition)



Partitioning the matrices

To make a long-ish story short (details on arXiv shortly!):

* On each side of the cut UL and Ur become families of
harmonic oscillators, constrained to fixed energy.

e The energy is set by the singular values of Y3} .

 (Gauge invariance forces these oscillators to be
maximally entangled across the cut.

e The oscillators are ‘identical’. This is inherited from the
fact that U must not include permutations that re-order
the eigenvalues.



Gauge theoretic entropy

 With the above in place, the gauge-theoretic
entanglement entropy can be computed using the
Hardy-Ramanujan formula to count the dimension
of the entangled oscillator space. We find:

(NE)'/2log(NL)
V6

 Area law, regulated by finite N — emergent geometry!

S —

L

e [ogarithmic violation due to L-dependent cutoff on the
values the emergent U(1) connection can take.



Radial partition

* We also looked at a radial partition,
using a similar framework.

Find:

(Nk)1/2
V6

5 = Co — 21og[(Nk)'2C] + - --

* No logarithmic violation of area law here, because
there is more symmetry in the cutoft.

* Jrust subleading term in this case. Reminiscent of
topological entanglement terms.



Conclusions

* What partition of matrix degrees of freedom
captures the partition of an emergent geometry?

e [he
loca
eme

matrix Hamiltonian does not have spatial
ity. But the wavefunction should contain an

rgent locality.

* \We have defined a partition in a very simple two-
matrix model and computed the corresponding
entropy (subtleties: role of permutations and ‘partial
gauge fixing’).



Conclusions

 We found two contributions that match the
expected emergent locality:

1. a logarithmic entanglement from eigenvalues
— chiral boundary mode

2. an area-law gauge-theoretic entanglement
— bulk Chern-Simons field

 Now have the understanding to move on to a more
complicated model with compressible bulk
dynamics.



