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Statement of the Paradox

* The entropy of a black hole is proportional to its area, Maldacena: 02

SEaumRnans
L

Implyies that the underlying Hilbert space is finite dimensional.
* For 2-point function of an operator in a theory that has finite dimensional Hilbert space,

Trle 17 0@e 2701(0)] = Y, e 2 EHENIEE) | g
L BE. D,
t — oo Ze f6a 8 E ¢ P BE
]

* The gravitational computation, however, gives a decaying answer

Crives a d@.{:o\vihg
answer!
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* |n Chaotic Quantum systewms, spectral statistical properties are similar’ to those of a

Random Matrix Theory (RMT)

14

P'[w] = A,@" exp |-B,0?|

| Level repulsion

* |n Integrable Quantum systews, specfral statistical properties are described by Poisson
Statistics
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* w is the level spacing between eigenstates



Quantum ergodicity.. manifestations

* Level repulsion and Spectral Rigidity in energy eigenstates of RMT leads to a
characteristic slope-ramp-plateauv behavior of observables like Spectral Form
factor and correlation functions in RMT.

Tr [6(r) 67(0)]
A

* Ergodic limit is defined as the energy domain in which RMT statistics persists
for a many-body (chaotic) system. Corresponding time is called f.r



- Quantum ergodicity.. a nistory

* Quantum ergodicity has been studied numerically for a large class of models

* Nuwerical computations of such observables in the SYK model demonstrate a
similar behavior.

* However, the microscopic description of this behavior in the SYK wmodel (or any
other systewm, for that matter) was incomplete.



Quantum erqodicity.. a history

* Quantum ergodicity has been studied numerically for a large class of models

[Efetov ‘97 and references therein]

* Nuwerical computations of such observables in the SYK model demonstrate a

3|Wl||ar behavwr’ [Cotler et. al. "16; Gharibyan, Hanada, Shenker, Tezuka 18

Saad, Shenker, Stanford 18]

* However, the microscopic description of this behavior in the SYK wmodel (or any
other systewm, for that matter) was incomplete.
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* Let us look at the resolvent of an operator which is defined as,
REw) =Y [(al01p) 5 (E,~ B~ o)
B

(El@lE’)‘zé(E—E’—a))

= JdE’ p(E)p(E)

Wi 1 X t
€11 = 0.0 U U, u,
[Pollack, Rozali, Sully, Wakeham ‘20]

* Note that the averaging = can be over of various kinds: disorder
averaging, coarse graining, microcanonical averaging, ete.



The Resolvent

* The resolvent is related to the Fourier transform of the therwmal
2-point function,

Trle PH0O(r) 67(0)] = JdE daye PETERIE o)

w i$ conjugate to the time, ¢

Late Eime €«—» small @

* Recall the identity,

Er=+1Im It
AAS) [Eiie—H]

lim e—0

1 1
T
E+i8—H] [E—ie—H])lo .

P(EDP(Ey) ~ — Re (Tr
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Ergodic limit with 0-model
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U2|2)—-> U |1)x U(l | 1)\\
// Also sPohEaMeausi.v

Symmetry brokei broken by the saddle
b/w advanced & point in the Limik
retarded section dim(H) > 1

* Effective description of Quantum ergodicity is captured by the
(pseudo-)Goldstones of this symmetry breaking

U(2]2)

—S5[Q;w] G
/dQe where Q) < U(l‘l) 3 U(1|1) e M(Q)

* There are two symwmetry breaking saddle points in the limif,

dim(H) > 1.
@ Standard saddle

M:H2><S2

andreev-Alkshuler saddle
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Operators in Ergodic limit

[Altland, Bagrets, PN, Sonner, Vielma ‘21]

* Qperator correlation functions in the ergodic limit show following
behaviour
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[Altland, Bagrets, PN, Sonner, Vielma ‘21]

* Qperator correlation functions in the ergodic limit show following
behaviour

RE o)=Y [(a|01p) 6(E,~ Ey— o)
p

2

LD
~ WO1Te 0] 2500+ Te[00"] - S Te0mro ) <ms<s>+1 sin <S>)

m— N=14 =—— N=18 = N=22
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1074
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[Saad '19; Altland, Bagrets, PN, Sonner, Vielma '21]
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~ Euelidean Wormholes

[Saad '19; Altland, Bagrets, PN, Sonner, Vielma '21]

Qaprc:vc&m:es Fhe

ramp and khe Jato&eau,!

the Quantum fluctuations

Doesnkt reproduce

>
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~ Euclidean Wormholes

[Saad '19; Altland, Bagrets, PN, Sonner, Vielma '21]
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Non-ergodic Regime

* The ergodic limif corresponds to a mean field approximation,
PY leock

* The non-ergodic regime is governed by deviations of the mean-field
away from ..

These deviations are controlled by amount of “information” in the Hamiltonian

ZIh) = <<J%9%Xp e ) T]>>

Fewer randowm parametersin H = corrections to mean field approximation,
‘{’\P X [lFOCk

19
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New Conjecture

Ergodic limit
Semi-classical Gravity <= of
Quantum theories

[Altland, Sonner '20; Altland, Bagrets, PN, Sonner, Vielma ‘21]
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New Conjecture

S s — ——e———— — E—— - _————

' Semi-classical gravity has more information about the fine-grained I
| structure of the spectrum of the Quantum theory! |

Ergodic limit
Semi-classical Gravity <= of
Quantum theories

[Altland, Sonner '20; Altland, Bagrets, PN, Sonner, Vielma ‘21]
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* Qbservables: elin, de Boer

Belin, de Boer, PN, Sonner

Statistics of OPE coefficients <<c,-jkc;’;m>> in ergodic regime

BPZY S
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Genus-2 partition function

A ACIIA
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ijk
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2
2
18




~ Ergodic Predictions in CFT2

| 19



Ergodlc Predictions in CFTz

Belin, de Boe PNS
* Tools: 000X

Tripled Hilbert space
K= HRQHRH



- Ergodic Predictions in CFT2

Belin, de Boer, PN, Sonner

* Tools: 211130000

Tripled Hilbert space
KL =—FHRQHRBH

H® = HQIQI+xx I QHQ I+, QI H

K ' Different eyeles of |
| ,Genus—z sace 4‘
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Erqodlc Predictions in CFT2

Belin, de Boer, PN, Sonner
2717171 . xxxxx

HP=HRQRHRQH

H® = HQIQI+xx I QHQ I+, QI H

.

Ditferent cyeles of
genus-2 sace |

* Useful operator fo study

®_C;<ef abc|d>|e>|f><a|<b|<cl

19



Ergodw Predictions in CFT2

Belin, de Boer, PN, Sonner

21717 .xxxxx
PO HRQHRH
K Different cycles of]
~ genus2 ace |

®_C2<ef abc|d>|e>|f><a|<b|<cl

[/ Reproduce the correct entropic suppressions as predicted 19
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- ETH for charged operators

Belin,de Boer, PN, Sonner ‘20

* A Tale of Two Conjectures:

(E;, O 03 | Eja Qj> = 5El-,Ej 5Ql-,Qj 5q,0 FAE] 0)
0o e (B, 0, 0her RO R

<Ei9 Qi | Og | l?ja Q]> = 5El-,Ej 5Qi’Qj 5q,0fa(E9 Q)
+ 3YUE, w, 0,50, g)e SEQV 2Rl-j



ETH for charged operators

Belin,de Boer, PN, Sonner ‘20

* A Tale of Two Conjectures:

(E;, O 03 | Eja Qj> = 5El-,Ej 5Ql-,Qj 5q,0 FAE] 0)
0 or B O 0her I RBCOD R

<Ei9 Qi | Og | E}'a QJ) = 5El-,Ej 5Qi’Qj 5q,0fa(E9 Q)
+ §4E, 0,0,50, e SEDR,
* Worwholes or no wormholes

1.



Sumwmary

+ We discussed that ergodic regime in physical systems holds the key to our
understanding of restoration of unitarity in physical observables

+ We developed a EFT description of the observables in terms of the Goldstones of
the causal symwetry breaking

+ We studied the connection between the Euclidean wormholes geometries and
the ergodic limit of the physical theories

T0 DO

o What is the bulk interpretation of the quantum fluctuations?

e Developing a more precise dictionary of the emergence of bulk in the ergodic
limit of a theory, especially in higher dimensions

o [eveloping a quantum ergodic understanding of the replica wormholes and Page
curve

23
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ZH] = <J@‘?@Texp [i‘i’ (z—H+h) - \I’]>

Z[h] =JQ‘PQZ‘PQZA exp

Zolh] = I@y exp

siEe : £
—ESTr(y ) — STrIn(K)) |,

Arriving at sigma model

dis

_°_ 1 aAavydpa
_z‘P-(z+h)-‘P—Z§STr[XAXA]

iy BER e
JTZ;' STr [¥PA ]_

Ky = <Z+h+yy®[|F°Ck>



Sigma model

D
Zolh] = [@y eXp —ESTr(yz) — STr ln(KO)

= + A4/ 1 E°
—_— o — l B _,
Yo 2y 4}/2

Zinh= J D0 exp )

Str (a)AQ)

T =exp(—W), W=—<9 B>,

B 0

: KO=<z+h+}/y®[|F°Ck>

LSl 0=TAT!

X s K 7
B=< ."), B=<x_ .”*>.
v iy =gy

0;Z[h] ‘ il J@Q exp |2inp(E)w Str |BB| + ...| x STr |BP,BBP,B|



Sigma model

07 Z[h] ‘ - J@Q exp |2inp(E)w Str |BB| + ...| x STr |BP,BBP,B]

i l
STr[B - X|STr[B - Y] = 2o(E) o STr(XY |

= l
STr[B: X-B-Y] = 2m(B) o STr[X|STr[Y]




d0Urees Tor various
correlation functions

Z[h] = JQZ‘?@‘P exp [i‘i’- (z — H+ h) \P]

* Sources for the operator correlation function that we have been
looking af,

* Source for Z-point function of d.o.s.
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