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Introduction

Lore: the long-distance/low-energy behavior of every lattice
system with short-range interactions is captured by a standard
continuum quantum field theory.

Exotic lattice models, e.g., XY-plaguette model [Paramekanti,
Balents, Fisher; ...] and fracton models [Chamon; Haah; Vijay,
Haah, and Fu; ...] are notable counterexamples.

* Kinematics: exact or emergent exotic global symmetries (e.g.,
subsystem symmetries).

e Dynamics: UV/IR mixing, reminiscent of UV/IR mixing in certain
string constructions (gravity, little string theory, field theory on
a non-commutative space).



Modified Villain lattice versions of many
systems [..., Gorantla, Lam, NS, Shao]

Differ from the original lattice formulations

e Exhibit properties of the corresponding continuum theory:
— all global internal symmetries
— ‘t Hooft anomalies between these symmetries
— dualities

* Provide a rigorous formulation of the continuum theories.

We will not review or use them here — only use the fact that they
exist.



Our goal here

Focus on one example.

Study the spectrum and some correlation functions.
The main result is various manifestations of UV/IR mixing.

Our discussion can be formulated on the lattice (in its modified
Villain version) and then we can take the continuum limit.

Instead, we will present the analysis in the continuum, but we
will see that occasionally we will need to restore the lattice.



An exotic theory: 2+1d ¢-theory
[Paramekanti, Balents, Fisher; ... NS, Shao; ...]

S = fdrdxdy (% (0,0)? + %(axaycp)z) G~ ¢+ 2m

Subsystem global symmetries 0rjr = 0x0yjxy

Qx(x)=jgdyjf : Qy(y)=jgdxjr

U(1)™ momentum Jit = iUy, , Jxy = 0 x0y P

¢(x,y,7) = ¢(x,y,T) + ax(x) + ay(¥)
(@, @), can be discontinuous)

U(1)Y winding jr = —6 0y®,  Jxy = —6T¢

o Self-duality: ¢ < ¢, g < (2n)2 U™ s U)W



2+1d ¢-theory — spectrum [NS, Shao]

For simplicity, £, = ¢, = ¢
¢(x,y,t)

[ kyx KyYy
2m(1€+£>

= ¢x(x,t) + ¢y(y: t) + A(key ky) (t)e

Ko ky€Z20
: : 2 4 kxk3
Plane waves (oscillators) with w*= = (2m) o
0
Because of this dispersion relation:
« E ~1/#%(and not 1/¢, as in more standard systems)

* Forlarge ¢, can have low E with large p,, = k,. /£, provided
py = k, /¥ is sufficiently small — high momentum with low

energy. This leads to UV/IR mixing. (More below.)



2+1d ¢-theory — spectrum

¢(x,y,t)
27T <kxx+kyJ’>
= ¢ (1) + &y (v, 8) + z Qe y(Be VT

A{/ Ky Ry€Lzo
States charged under the momentum subsystem symmetry:

* The modes ¢, (x,t), ¢y (y,t) can be thought of as associated
with the spontaneous breaking of this symmetry. In fact, the
symmetry is restored in the quantum theory.

2T

* They include the standard winding modes ¢ = ~ (Wxx +

Wyy) and hence these should not be considered separately.



2+1d ¢-theory — spectrum

 For simplicity, ignore the common zero mode of ¢, (x,t) and
¢y (y,t). Then, ¢, (x,t) and ¢, (y,t) are independent rotors at
different positions:
Lo 2 2
5= dt( dx (8,5 (x, 1)) + jﬂ dy (9:0y(,1)) )
Like 1+1d free fields without the spatial derivatives (pointwise
periodic).
On the lattice with lattice spacinga, ¥ = alL,and X,y = 1,2 ..., L,

1
H = (2nx<f>2+2ny@>2> @m0 e

28Uy a

/N N\

y
1

Hota

Their energies diverge E ~ — 00,



2+1d ¢-theory — spectrum

What about states charged under the winding subsystem
symmetry?

To be periodic modulo 2 and carry charge,

b = (x@(y Vo) + YO (x — xy) — %) 0<xy<?
1 1 1
T :%a dyp = (5(3’ y0)+6(x—x0)——>

0*(x) = 3£ dy j¥ = 8(x — xo),
QY (y) = jﬁ dx j¥ = 8(y — o)

These configurations have infinite energy. Restoring the lattice
(2m)?
uta

spacing a, their energy is ~ — 00,
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2+1d ¢-theory — spectrum

To summarize:

* Plane waves (oscillators), created by 0,0, ¢, 0;: ¢, etc.
1

E ~
ViR £2
e States charged under the momentum subsystem symmetry,
. m _ 1
created by exp(i¢) E o
* States charged under the winding subsystem symmetry,
: 7 w1
created by exp(lqb) E i

The momentum and winding states are exchanged by the self-
duality.

Only the plane waves are present in the spectrum of the
continuum theory.
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2+1d ¢-theory — spectrum

The main surprising result of the analysis of the spectrum is that
the states charged under the momentum and winding subsystem
symmetries have high energy — infinite in the continuum limit.

* The momentum and winding states exist in the Hilbert space of
the lattice theory (in its modified Villain form), but they are not
dynamical excitations in the continuum theory — they are not
present in the Hilbert space of the continuum theory.

* Since they carry conserved charges, they are defects that can
be added to the continuum theory. Hence, they are
meaningful in the continuum limit. Note that they are
exchanged by the self-duality.



2+1d ¢-theory — UV/IR mixing

Go back to the lattice with L, = L, = L sitesand £ = al

1 1

Plane waves E ~ ==
L 1 1

Momentum and winding states E~—=—
fa La

We are interested in L — oo,

Above, we took a — 0 with fixed £ = La. This kept the plane
waves and pushed the charged states to infinity.

Alternatively, if we hold a fixed, i.e., £ — oo, all these states
approach zero energy.

We see that
[£ > 00,a - 0] #0

UV/IR mixing.
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2+1d ¢-theory — correlation functions

Consider the lattice theory in its modified Villain form. Fix a gauge
and then all the correlation functions are determined by the
Green’s function (propagator)

(p) = explicit but complicated expression

Study correlation functions of “good” local operators like exp (i),
A ¢, etc. and then take L, = L, = L — co. This can be done in

two different ways
e Continuum limit: a — 0, with fixed £ = alL. Operators at fixed

positions in space are separated by many (infinite in the limit)
lattice sites. Can later take £ — 0.

 Thermodynamic limit: fixed a, i.e., £ = aL. = co. Can later

separate operators to be many lattice spacings apart, i.e., a —
0.
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(0:¢ 0:)

Take the continuum limit and then infinite volume —i.e., £ > oo

(For simplicity, set u = uo = 1 and drop constants of order one.)
(

oy <l

1o
T Tyl

(0:¢(0,0,0)0:¢(x,y,7)) ~

Tl > |xyl
\

UV divergence as xy — 0
* Finite on the lattice with nonzero a.

* Asx — 0 with fixed vy, it is associated with large momenta p,..
(Similarly for y — 0 with fixed x.)

2
* Because of the dispersion relation w? ~ (pxpy) , can have large
Py With finite w, provided p,, is small enough.
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(0:¢ 0:)

f

oy <l

L1og el s> vl
r2°g|xy| o> by

(0:9(0,0,0)0:¢(x,y,7)) ~

\

Because of the dispersion relation w? ~ (pxpy) , We can have
large p, with finite w, provided p,, is small enough.

Regularize the IR by restoring finite ¢, then, |p, | = -. The

singularity as x = 0 becomes — r_210g|y_|'

€2
7|’

)

This reflects the UV/IR mixing in the spectrum of plane waves.

: 1
(If both x and y are small, it becomes — T—Zlog
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(exp(igp) exp(—igp))

(momentum or winding)

The subsystem symmetry forces the two operators to be at the
same spatial position (otherwise, the correlation function
vanishes)

(exp(i$(0,0,0)) exp(—i¢(0,0,7)))
As we take the continuum limit,
7]

(exp(iqb(0,0,0)) exp(—iqﬁ(0,0, T))) ~ exp (— %> -0

The exponent represents the energy of the lowest momentum
state E~1/fa — oo.

These operators vanish in the continuum limit —they are infinitely

irrelevant (redundant). .



(exp(igp) exp(—igp))

(momentum or winding)

In the thermodynamic limit (finite a) [Paramekanti, Balents,
Fisher]

2
(6Xp(l¢(0;0;0)) eXp(_i(p(O;O» T))> ~ €Xp <_ (log <g>> )

For large 7, it decays faster than any power, but is not
exponentially suppressed (as in the continuum limit). The a
dependence cannot be absorbed in wave-function
renormalization.

exp(ig) vanishs in the continuum limit — redundant operator

This reflects the UV/IR mixing in the spectrum of the momentum
and winding modes — their energies go to zero as L — oo, but

slower than the energies of the plane waves. ,



Many other models

* Gapped models with Z, subsystem symmetries
* Gauge theories of subsystem symmetries
* More possible subsystem symmetries in 3+1d

* Acertain 3+1d Zy gauge theory of a subsystem symmetry
describes the long-distance behavior of one of the most
celebrated fracton models, the X-cube model [Vijay, Haah, Ful].

All these models have a modified Villain version and a
corresponding continuum description.

They exhibit even more peculiar UV/IR mixing.

For example, the ground state degeneracy of the X-cube model
depends on the number of sites:
Nz(Lx+Ly+LZ)—3
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Summary

 The low-energy limit of a lattice theory is expected to be a
continuum quantum field theory.

* Exotic lattice models are challenging counter-examples because

— Subsystem global symmetry

— UV/IR mixing

— Large ground state degeneracy (infinite in the continuum
limit)

— Discontinuous and even singular observables in the
continuum limit

— Defects with restricted mobility

 Some peculiar continuum theories can capture these facts.
They involve discontinuous fields. They can be made rigorous
using modified Villain lattice models.



Thank you
Stay healthy



